37
Views
2
CrossRef citations to date
0
Altmetric
Review

Role of nuclear receptor coregulators in metabolism

&
Pages 797-807 | Published online: 10 Jan 2014

References

  • Haslam DW, James WP. Obesity. Lancet366(9492), 1197–1209 (2005).
  • Alberti KGM, Zimmet P, Shaw J. The metabolic syndrome – a new worldwide definition. Lancet366(9491), 1059–1062 (2005).
  • Seidell JC. Obesity as a health problem. In: Oxford Textbook of Endocrinology and DIabetes. Wass JAH, Shalet SM (Eds). Oxford University Press, Oxford, UK 1611–1614 (2002).
  • van Harmelen V, Skurk T, Rohrig K et al. Effect of BMI and age on adipose tissue cellularity and differentiation capacity in women. Int. J. Obes. Relat. Metab. Disord.27(8), 889–895 (2003).
  • Baron AD, Brechtel G, Wallace P, Edelman SV. Rates and tissue sites of non-insulin- and insulin-mediated glucose uptake in humans. Am. J. Physiol. Endocrinol. Metab.255(6), E769–E774 (1988).
  • Ronti T, Lupattelli G, Mannarino E. The endocrine function of adipose tissue: an update. Clin. Endocrinol. (Oxford)64(4), 355–365 (2006).
  • Robinson-Rechavi M, Garcia HE, Laudet V. The nuclear receptor superfamily. J. Cell. Sci.116(4), 585–586 (2003).
  • Mangelsdorf DJ, Thummel C, Beato M et al. The nuclear receptor superfamily: the second decade. Cell83(6), 835–839 (1995).
  • Francis GA, Fayard E, Picard F, Auwerx J. Nuclear receptors and the control of metabolism. Annu. Rev. Physiol.65, 261–311 (2003).
  • Braissant O, Foufelle F, Scotto C, Dauca M, Wahli W. Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-α, -β, and -γ in the adult rat. Endocrinology137(1), 354–366 (1996).
  • Gulick T, Cresci S, Caira T, Moore DD, Kelly DP. The peroxisome proliferator-activated receptor regulates mitochondrial fatty acid oxidative enzyme gene expression. Proc. Natl Acad. Sci. USA91(23), 11012–11016 (1994).
  • Fürnsinn C, Willson T, Brunmair B. Peroxisome proliferator-activated receptor-+Ý, a regulator of oxidative capacity, fuel switching and cholesterol transport. Diabetologia50(1), 8–17 (2007).
  • Wang YX, Lee CH, Tiep S et al. Peroxisome-proliferator-activated receptor δ activates fat metabolism to prevent obesity. Cell113(2), 159–170 (2003).
  • Rosen ED, Sarraf P, Troy AE et al. PPAR γ is required for the differentiation of adipose tissue in vivo and in vitro. Mol. Cell4(4), 611–617 (1999).
  • Sprecher DL, Massien C, Pearce G et al. Triglyceride: high-density lipoprotein cholesterol effects in healthy subjects administered a peroxisome proliferator activated receptor δ agonist. Arterioscler. Thromb. Vasc. Biol.27(2), 359–365 (2007).
  • Giguere V. To ERR in the estrogen pathway. Trends Endocrinol. Metab.13(5), 220–225 (2002).
  • Huss JM, Torra IP, Staels B, Giguere V, Kelly DP. Estrogen-related receptor α directs peroxisome proliferator-activated receptor α signaling in the transcriptional control of energy metabolism in cardiac and skeletal muscle. Mol. Cell. Biol.24(20), 9079–9091 (2004).
  • Villena JA, Hock MB, Chang WY et al. Orphan nuclear receptor estrogen-related receptor α is essential for adaptive thermogenesis. Proc. Natl Acad. Sci. USA104(4), 1418–1423 (2007).
  • Kallen J, Schlaeppi J-M, Bitsch F et al. Evidence for ligand-independent transcriptional activation of the human estrogen-related receptor α (ERRα): crystal structure of ERRα ligand binding domain in complex with peroxisome proliferator-activated receptor coactivator-1α. J. Biol. Chem.279(47), 49330–49337 (2004).
  • Willy PJ, Murray IR, Qian J et al. Regulation of PPARγ coactivator 1α (PGC-1α) signaling by an estrogen-related receptor α (ERRα) ligand. Proc. Natl Acad. Sci. USA101(24), 8912–8917 (2004).
  • McKenna NJ, O’Malley BW. Combinatorial control of gene expression by nuclear receptors and coregulators. Cell108(4), 465–474 (2002).
  • Puigserver P, Wu Z, Park CW et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell92(6), 829–839 (1998).
  • Lin J, Puigserver P, Donovan J, Tarr P, Spiegelman BM. Peroxisome proliferator-activated receptor γ coactivator 1β (PGC-1β ), a novel PGC-1-related transcription coactivator associated with host cell factor. J. Biol. Chem.277(3), 1645–1648 (2002).
  • Andersson U, Scarpulla RC. PGC-1-related coactivator, a novel, serum-inducible coactivator of nuclear respiratory factor 1-dependent transcription in mammalian cells. Mol. Cell. Biol.21(11), 3738–3749 (2001).
  • Cavailles V, Dauvois S, L’Horset F et al. Nuclear factor RIP140 modulates transcriptional activation by the estrogen receptor. EMBO J.14(15), 3741–3751 (1995).
  • L’Horset F, Dauvois S, Heery D, Cavailles V, Parker M. RIP-140 interacts with multiple nuclear receptors by means of two distinct sites. Mol. Cell. Biol.16(11), 6029–6036 (1996).
  • Heery DM, Hoare S, Hussain S, Parker MG, Sheppard H. Core LXXLL motif sequences in CREB-binding protein, SRC1, and RIP140 define affinity and selectivity for steroid and retinoid receptors. J. Biol. Chem.276(9), 6695–6702 (2001).
  • Hu X, Chen Y, Farooqui M et al. Suppressive effect of receptor-interacting protein 140 on coregulator binding to retinoic acid receptor complexes, histone-modifying enzyme activity, and gene activation. J. Biol. Chem.279(1), 319–325 (2004).
  • Christian M, Tullet JM, Parker MG. Characterization of four autonomous repression domains in the corepressor receptor interacting protein 140. J. Biol. Chem.279(15), 15645–15651 (2004).
  • Puigserver P, Adelmant G, Wu Z et al. Activation of PPAR coactivator-1 through transcription factor docking. Science286(5443), 1368–1371 (1999).
  • Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol. Rev.84(1), 277–359 (2004).
  • Nedergaard J, Bengtsson T, Cannon B. Unexpected evidence for active brown adipose tissue in adult humans. Am. J. Physiol. Endocrinol. Metab.293(2), E444–E452 (2007).
  • Bogacka I, Xie H, Bray GA, Smith SR. Pioglitazone induces mitochondrial biogenesis in human subcutaneous adipose tissue in vivo. Diabetes54(5), 1392–1399 (2005).
  • Nedergaard J, Petrovic N, Lindgren EM, Jacobsson A, Cannon B. PPARγ in the control of brown adipocyte differentiation. Biochim. Biophys. Acta1740(2), 293–304 (2005).
  • Sears IB, MacGinnitie MA, Kovacs LG, Graves RA. Differentiation-dependent expression of the brown adipocyte uncoupling protein gene: regulation by peroxisome proliferator-activated receptor γ. Mol. Cell. Biol.16(7), 3410–3419 (1996).
  • Tiraby C, Tavernier G, Lefort C et al. Acquirement of brown fat cell features by human white adipocytes. J. Biol. Chem.278(35), 33370–33376 (2003).
  • Uldry M, Yang W, St-Pierre J et al. Complementary action of the PGC-1 coactivators in mitochondrial biogenesis and brown fat differentiation. Cell Metab.3(5), 333–341 (2006).
  • Leone TC, Lehman JJ, Finck BN et al. PGC-1&α; deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol.3(4), e101 (2005).
  • Lin J, Wu PH, Tarr PT et al. Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1α null mice. Cell119(1), 121–135 (2004).
  • del Mar Gonzalez-Barroso M, Pecqueur C, Gelly C et al. Transcriptional activation of the human UCP1 gene in a rodent cell line. synergism of retinoids, isoproterenol, and thiozolidinedione is mediated by a multipartite response element. J. Biol. Chem.275(41), 31722–31732 (2000).
  • Huss JM, Kopp RP, Kelly DP. Peroxisome proliferator-activated receptor coactivator-1α (PGC-1α ) coactivates the cardiac-enriched nuclear receptors estrogen-related receptor-α and -γ . Identification of novel leucine-rich interaction motif within PGC-1α. J. Biol. Chem.277(43), 40265–40274 (2002).
  • Schreiber SN, Knutti D, Brogli K, Uhlmann T, Kralli A. The transcriptional coactivator PGC-1 regulates the expression and activity of the orphan nuclear receptor estrogen-related receptor α (ERRα ). J. Biol. Chem.278(11), 9013–9018 (2003).
  • Lelliott CJ, Medina-Gomez G, Petrovic N et al. Ablation of PGC-1&β; results in defective mitochondrial activity, thermogenesis, hepatic function, and cardiac performance. PLoS Biol.4(11), e369 (2006).
  • Leonardsson G, Steel JH, Christian M et al. Nuclear receptor corepressor RIP140 regulates fat accumulation. Proc. Natl Acad. Sci. USA101(22), 8437–8442 (2004).
  • Christian M, Kiskinis E, Debevec D et al. RIP140-targeted repression of gene expression in adipocytes. Mol. Cell. Biol.25(21), 9383–9391 (2005).
  • Powelka AM, Seth A, Virbasius JV et al. Suppression of oxidative metabolism and mitochondrial biogenesis by the transcriptional corepressor RIP140 in mouse adipocytes. J. Clin. Invest.116(1), 125–136 (2006).
  • Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI. Impaired mitochondrial activity in the insulin-resistant offspring of patients with Type 2 diabetes. N. Engl. J. Med.350(7), 664–671 (2004).
  • Bassel-Duby R, Olson EN. Signaling pathways in skeletal muscle remodeling. Annu. Rev. Biochem.75(1), 19–37 (2006).
  • Schiaffino S, Reggiani C. Molecular diversity of myofibrillar proteins: gene regulation and functional significance. Physiol. Rev.76(2), 371–423 (1996).
  • Larsson L, Edstrom L, Lindegren B, Gorza L, Schiaffino S. MHC composition and enzyme-histochemical and physiological properties of a novel fast-twitch motor unit type. Am. J. Physiol. Cell Physiol.261(1), C93–C101 (1991).
  • Wang Y-X, Zhang C-L, Yu RT et al. Regulation of muscle fiber type and running endurance by PPAR&δ. PLoS Biol.2(10), e294 (2004).
  • Lin J, Wu H, Tarr PT et al. Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres. Nature418(6899), 797–801 (2002).
  • Baar KEIT, Wende AR, Jones TE et al. Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1. FASEB J.16(14), 1879–1886 (2002).
  • Arany Z, Lebrasseur N, Morris C et al. The transcriptional coactivator PGC-1β drives the formation of oxidative type IIX fibers in skeletal muscle. Cell Metab.5(1), 35–46 (2007).
  • Patti ME, Butte AJ, Crunkhorn S et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1. Proc. Natl Acad. Sci. USA100(14), 8466–8471 (2003).
  • Russell AP, Feilchenfeldt J, Schreiber S et al. Endurance training in humans leads to fiber type-specific increases in levels of peroxisome proliferator-activated receptor-γ coactivator-1 and peroxisome proliferator-activated receptor-α in skeletal muscle. Diabetes52(12), 2874–2881 (2003).
  • Kramer DK, Ahlsen M, Norrbom J et al. Human skeletal muscle fibre type variations correlate with PPAR α, PPAR δ and PGC-1 α mRNA. Acta Physiol. (Oxford)188(3–4), 207–216 (2006).
  • Seth A, Steel JH, Nichol D et al. The transcriptional corepressor RIP140 regulates oxidative metabolism in skeletal muscle. Cell Metab.6(3), 236–245 (2007).
  • St-Pierre J, Drori S, Uldry M et al. Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell127(2), 397–408 (2006).
  • Weydt P, Pineda VV, Torrence AE et al. Thermoregulatory and metabolic defects in Huntington’s disease transgenic mice implicate PGC-1α in Huntington’s disease neurodegeneration. Cell Metab.4(5), 349–362 (2006).
  • Vianna CR, Huntgeburth M, Coppari R et al. Hypomorphic mutation of PGC-1β causes mitochondrial dysfunction and liver insulin resistance. Cell Metab.4(6), 453–464 (2006).
  • Sladek R, Bader JA, Giguere V. The orphan nuclear receptor estrogen-related receptor α is a transcriptional regulator of the human medium-chain acyl coenzyme A dehydrogenase gene. Mol. Cell. Biol.17(9), 5400–5409 (1997).
  • Lin J, Handschin C, Spiegelman BM. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab.1(6), 361–370 (2005).
  • Puigserver P, Rhee J, Lin J et al. Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARγ coactivator-1. Mol. Cell8(5), 971–982 (2001).
  • Cao W, Daniel KW, Robidoux J et al. p38 mitogen-activated protein kinase is the central regulator of cyclic AMP-dependent transcription of the brown fat uncoupling protein 1 gene. Mol. Cell. Biol.24(7), 3057–3067 (2004).
  • Christian M, White R, Parker MG. Metabolic regulation by the nuclear receptor corepressor RIP140. Trends Endocrinol. Metab.17(6), 243–250 (2006).
  • Han SH, Quon MJ, Koh KK. Beneficial vascular and metabolic effects of peroxisome proliferator-activated receptor-α activators. Hypertension46(5), 1086–1092 (2005).
  • Yki-Jarvinen H. Thiazolidinediones. N. Engl. J. Med.351(11), 1106–1118 (2004).
  • Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N. Engl. J. Med.356(24), 2457–2471 (2007).
  • Debevec D, Christian M, Morganstein D et al. Receptor interacting protein 140 regulates expression of uncoupling protein 1 in adipocytes through specific peroxisome proliferator activated receptor isoforms and estrogen-related receptor α. Mol. Endocrinol.21(7), 1581–1592 (2007).
  • Fievet C, Fruchart J-C, Staels B. PPARα and PPARγ dual agonists for the treatment of Type 2 diabetes and the metabolic syndrome. Curr. Opin. Pharmacol.6(6), 606–614 (2006).
  • Kendall DM, Rubin CJ, Mohideen P et al. Improvement of glycemic control, triglycerides, and HDL cholesterol levels with muraglitazar, a dual (α/γ) peroxisome proliferator-activated receptor activator, in patients with Type 2 diabetes inadequately controlled with metformin monotherapy: a double-blind, randomized, pioglitazone-comparative study. Diabetes Care29(5), 1016–1023 (2006).
  • Nissen SE, Wolski K, Topol EJ. Effect of Muraglitazar on death and major adverse cardiovascular events in patients with Type 2 diabetes mellitus. JAMA294(20), 2581–2586 (2005).
  • Seth A, Steel JH, Nichol D et al. The transcriptional co-repressor RIP140 regulates oxidative metabolism in skeletal muscle. Cell Metab.6(3), 236–245 (2007).
  • Wende AR, Huss JM, Schaeffer PJ, Giguere V, Kelly DP. PGC-1α coactivates PDK4 gene expression via the orphan nuclear receptor ERRα: a mechanism for transcriptional control of muscle glucose metabolism. Mol. Cell. Biol.25(24), 10684–10694 (2005).
  • Zhang Y, Ma K, Sadana P et al. Estrogen-related receptors stimulate pyruvate dehydrogenase kinase isoform 4 gene expression. J. Biol. Chem.281(52), 39897–39906 (2006).
  • Mazzucotelli A, Viguerie N, Tiraby C et al. The transcriptional coactivator PGC-1α and the nuclear receptor PPARα control the expression of glycerol kinase and metabolism genes independently of PPARγ activation in human white adipocytes. Diabetes56(10), 2467–2475 (2007).
  • Koves TR, Li P, An J et al. Peroxisome proliferator-activated receptor-g co-activator 1a-mediated metabolic remodeling of skeletal myocytes mimics exercise training and reverses lipid-induced mitochondrial inefficiency. J. Biol. Chem.280(39), 33588–33598 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.