49
Views
7
CrossRef citations to date
0
Altmetric
Special Report

Physiological and pharmacological properties of 5-methoxytryptophol

, , &
Pages 355-364 | Published online: 10 Jan 2014

References

  • Pévet P, Balemans MG, Legerstee WC, Vivien-Roels B. Circadian rhythmicity of the activity of hydroxyindole-O-methyl transferase (HIOMT) in the formation of melatonin and 5-methoxytryptophol in the pineal, retina, and harderian gland of the golden hamster. J. Neural Transm. 49(4), 229–245 (1980).
  • Balemans MG, Pévet P, Legerstee WC, Nevo E. Preliminary investigations of melatonin and 5-methoxy-tryptophol synthesis in the pineal, retina, and harderian gland of the mole rat and in the pineal of the mouse ‘eyeless’. J. Neural Transm. 49(4), 247–255 (1980).
  • Skene DJ, Pevet P, Vivien-Roels B, Masson-Pevet M, Arendt J. Effect of different photoperiods on concentrations of 5-methoxytryptophol and melatonin in the pineal gland of the Syrian hamster. J. Endocrinol. 114(2), 301–309 (1987).
  • Skene DJ, Vivien-Roels B, Sparks DL et al. Daily variation in the concentration of melatonin and 5-methoxytryptophol in the human pineal gland: effect of age and Alzheimer’s disease. Brain Res. 528(1), 170–174 (1990).
  • Menendez-Pelaez A. Melatonin and other indoles in the rodent Harderian glands: Regulation and physiological significance. In: Advances in Pineal Research (Vol. 4). Reiter RJ, Lukaszyk A (Eds). John Libbey, London, UK, 75–80 (1990).
  • Smith I. Indoles of pineal origin: biochemical and physiological status. Psychoneuroendocrinology 8(1), 41–60 (1983).
  • Pévet P. The 5-methoxyindoles different from melatonin: their effects on the sexual axis. In: The Pineal Gland and its Endocrine Role. Axeirod J, Fraschini F, Velo GP (Eds). Plenum Press, London, UK, 331–348 (1983).
  • Ooi VE, Ng TB. Histological studies on the effects of pineal 5-methoxyindoles on the reproductive organs of the male golden hamster. J. Pineal Res. 7(4), 315–324 (1989).
  • Joy KP, Agha AK. Seasonal effects of administration of melatonin and 5-methoxytryptophol on ovarian activity in the catfish Heteropneustes fossilis (Bloch). J. Pineal Res. 10(2), 65–70 (1991).
  • Grace MS, Cahill GM, Besharse JC. Melatonin deacetylation: retinal vertebrate class distribution and Xenopus laevis tissue distribution. Brain Res. 559(1), 56–63 (1991).
  • Skene DJ, Vivien-Roels B, Pevet P. Day and nighttime concentrations of 5-methoxytryptophol and melatonin in the retina and pineal gland from different classes of vertebrates. Gen. Comp. Endocrinol. 84(3), 405–411 (1991).
  • Vivien-Roels B, Pevet P, Masson-Pevet M, Canguilhem B. Seasonal variations in the daily rhythm of pineal gland and/or circulating melatonin and 5-methoxytryptophol concentrations in the European hamster, Cricetus cricetus. Gen. Comp. Endocrinol. 86(2), 239–247 (1992).
  • Vivien-Roels B, Pévet P, Zarazaga L, Malpaux B, Chemineau P. Daily and light-at-night induced variations of circulating 5-methoxytryptophol (5-ML) in ewes with respectively high and low nocturnal melatonin secretion. J. Pineal Res. 27(4), 230–236 (1999).
  • Zawilska JB, Skene DJ, Nowak JZ. 5-methoxytryptophol rhythms in the chick pineal gland: effect of environmental lighting conditions. Neurosci. Lett. 251(1), 33–36 (1998).
  • Zawilska JB, Rosiak J, Vivien-Roels B, Skene DJ, Pévet P, Nowak JZ. Daily variation in the concentration of 5-methoxytryptophol and melatonin in the duck pineal gland and plasma. J. Pineal Res. 32(4), 214–218 (2002).
  • Carter SJ, Laud CA, Smith I et al. 5-methoxytryptophol in rat pineal glands and other tissues. Prog. Brain Res. 52, 267–269 (1979).
  • Reiter RJ. The pineal and its indole products: basic aspects and clinical applications. In: The Brain as an Endocrine Organ. Cohen MP, Foley PP (Eds). Springer-Verlag, Berlin, Germany, 96–149 (1989).
  • Wilson BW, Lynch HJ, Ozaki Y. 5-methoxytryptophol in rat serum and pineal: detection, quantitation, and evidence for daily rhythmicity. Life Sci. 23(10), 1019–1023 (1978).
  • Foley PB, Cairncross KD. Investigation of circadian rhythms for pineal 5-hydroxytryptophol and other indoles in the rat. J. Pineal Res. 4(1), 107–118 (1987).
  • Semm P, Vollrath L. Alterations in the spontaneous activity of cells in the guinea pig pineal gland and visual system produced by pineal indoles. J. Neural Transm. 53(4), 265–275 (1982).
  • Semm P, Vollrath L. Electrical responses of homing pigeon and guinea-pig Purkinje cells to pineal indoleamines applied by microelectrophoresis. J. Comp. Physiol. 154, 675–681 (1984).
  • Paterson AT, Vickers C. Sex and strain related effects of melatonin and 5-methoxytryptophol on open field behaviour in paired mice. Behav. Brain Res. 13(2), 107–113 (1984).
  • Hooper RJ, Silman RE, Leone RM et al. Immediate response of 5-methoxytryptophol in the circulation to hypoglycaemic stress induced by insulin. J. Endocrinol. 83(2), 193–197 (1979).
  • Ng TB, Lo LL. Inhibitory actions of pineal indoles on steroidogenesis in isolated rat Leydig cells. J. Pineal Res. 5(3), 229–243 (1988).
  • Skene DJ, Vivien-Roels B, Pevet P. Pineal 5-methoxytryptophol rhythms in the box turtle: effect of photoperiod and environmental temperature. Neurosci. Lett. 98(1), 69–73 (1989).
  • Lakhdar-Ghazal N, Vivien-Roels B, Pevet P. Seasonal variations in pineal 5-methoxytryptophol (5-ML) concentrations and in the daily pattern of pineal 5-ML and melatonin in the desert rodent Jaculus orientalis: effect of prolonged illumination during the night. J. Pineal Res. 13(1), 28–35 (1992).
  • Hofman MA, Skene DJ, Swaab DF. Effect of photoperiod on the diurnal melatonin and 5-methoxytryptophol rhythms in the human pineal gland. Brain Res. 671(2), 254–260 (1995).
  • Mefford IN, Chang P, Klein DC, Namboodiri MA, Sugden D, Barchas J. Reciprocal day/night relationship between serotonin oxidation and N-acetylation products in the rat pineal gland. Endocrinology 113(5), 1582–1586 (1983).
  • Skene DJ, Smith I, Arendt J. Radioimmunoassay of pineal 5-methoxytryptophol in different species: comparison with pineal melatonin content. J. Endocrinol. 110(1), 177–184 (1986).
  • Miguez JM, Recio J, Vivien-Roels B, Pévet P. Daily variation in the content of indoleamines, catecholamines and related compounds in the pineal gland of Syrian hamsters kept under long and short photoperiods. J. Pineal Res. 19(3), 139–148 (1995).
  • Zawilska JB, Rosiak J, Vivien-Roels B, Skene DJ, Pévet P, Nowak JZ. Effects of cycloheximide and aminophylline on 5-methoxytryptophol and melatonin contents in the chick pineal gland. Gen. Comp. Endocrinol. 120(2), 212–219 (2000).
  • Zawilska JB, Vivien-Roels B, Skene DJ, Pévet P, Nowak JZ. Phase-shifting effects of light on the circadian rhythms of 5-methoxytryptophol and melatonin in the chick pineal gland. J. Pineal Res. 29(1), 1–7 (2000).
  • Zawilska JB, Berezinska M, Rosiak J et al. Daily variation in the concentration of melatonin and 5-methoxytryptophol in the goose pineal gland, retina, and plasma. Gen. Comp. Endocrinol. 134(3), 296–302 (2003).
  • Besharse JC, Dunis DA. Methoxyindoles and photoreceptor metabolism: activation of rod shedding. Science 219(4590), 1341–1343 (1983).
  • Molina-Carballo A, Muñoz-Hoyos A, Martin-García JA, Uberos-Fernández J, Rodriguez-Cabezas T, Acuña-Castroviejo D. 5-methoxytryptophol and melatonin in children: differences due to age and sex. J. Pineal Res. 21(2), 73–79 (1996).
  • Hooper RJ, Silman RE, Leone RM et al. Changes in the concentration of 5-methoxytryptophol in the circulation at different phases of the human menstrual cycle. J. Endocrinol. 82(2), 269–264 (1979).
  • Garidou ML, Vivien-Roels B, Pevet P, Miguez J, Simonneaux V. Mechanisms regulating the marked seasonal variation in melatonin synthesis in the European hamster pineal gland. Am. J. Physiol. Regul. Integr. Comp. Physiol. 284(4), R1043–R1052 (2003).
  • Pévet P, Vivien-Roels B, Masson-Pévet M. Annual changes in the daily pattern of melatonin synthesis and release. In: Roles of Melatonin and Pineal Peptides in Neuroimmunomodulation. Fraschini F and Reiter RJ (Eds). Plenum, New York, NY, USA, 147–157 (1991).
  • Masson-Pévet M, Pévet P, Vivien-Roels B. Pinealectomy and constant release of melatonin or 5-methoxytryptamine induce testicular atrophy in the European hamster (Cricetus cricetus L.). J. Pineal Res. 4(1), 79–88 (1987).
  • Yáñez J, Meissl H. Secretion of the methoxyindoles melatonin, 5-methoxytryptophol, 5-methoxyindoleacetic acid, and 5-methoxytryptamine from trout pineal organs in superfusion culture: effects of light intensity. Gen. Comp. Endocrinol. 101(2), 165–172 (1996).
  • Ceinos RM, Rábade S, Soengas JL, Míguez JM. Indoleamines and 5-methoxyindoles in trout pineal organ in vivo: daily changes and influence of photoperiod. Gen. Comp. Endocrinol. 144(1), 67–77 (2005).
  • Gesto M, Tintos A, Rodríguez-Illamola A, Soengas JL, Míguez JM. Effects of naphthalene, β-naphthoflavone and benzo(a)pyrene on the diurnal and nocturnal indoleamine metabolism and melatonin content in the pineal organ of rainbow trout, Oncorhynchus mykiss. Aquat. Toxicol. 92(1), 1–8 (2009).
  • Bouhaddou N, Lakhdar-Ghazal N. 5-methoxytryptophol induced c-Fos expression dependently on season in the SCN and thalamic structures of the jerboas (Jaculus orientalis). Rythmes 41(1), 32 (2010).
  • Blanc A, Vivien-Roels B, Pévet P, Attia J, Buisson B. Melatonin and 5-methoxytryptophol (5-ML) in nervous and/or neurosensory structures of a gastropod mollusc (Helix aspersa maxima): synthesis and diurnal rhythms. Gen. Comp. Endocrinol. 131(2), 168–175 (2003).
  • Dubocovich ML. Melatonin receptors: are there multiple subtypes? Trends Pharmacol. Sci. 16(2), 50–56 (1995).
  • Dubocovich ML, Takahashi JS. Use of 2-[125I]iodomelatonin to characterize melatonin binding sites in chicken retina. Proc. Natl Acad. Sci. USA 84(11), 3916–3920 (1987).
  • Dubocovich ML, Shankar G, Mickel M. 2-[125I]iodomelatonin labels sites with identical pharmacological characteristics in chicken brain and chicken retina. Eur. J. Pharmacol. 162(2), 289–299 (1989).
  • Yuan H, Tang F, Pang SF. Binding characteristics, regional distribution and diurnal variation of [125I]-iodomelatonin binding sites in the chicken brain. J. Pineal Res. 9(3), 179–191 (1990).
  • Dubocovich ML. Melatonin is a potent modulator of dopamine release in the retina. Nature 306(5945), 782–784 (1983).
  • Niles LP, Pickering DS, Sayer BG. HPLC-purified 2-[125I]iodomelatonin labels multiple binding sites in hamster brain. Biochem. Biophys. Res. Commun. 147(3), 949–956 (1987).
  • Duncan MJ, Takahashi JS, Dubocovich ML. 2-[125I]iodomelatonin binding sites in hamster brain membranes: pharmacological characteristics and regional distribution. Endocrinology 122(5), 1825–1833 (1988).
  • Duncan MJ, Takahashi JS, Dubocovich ML. Characterization and localization of 2-[125I]-iodomelatonin binding sites in Djungarian hamster brain. Endocrinology 125, 1011–1017 (1989).
  • Gerdin MJ, Mseeh F, Dubocovich ML. Mutagenesis studies of the human MT2 melatonin receptor. Biochem. Pharmacol. 66(2), 315–320 (2003).
  • Dubocovich ML, Markowska M. Functional MT1 and MT2 melatonin receptors in mammals. Endocrine 27(2), 101–110 (2005).
  • Mcisaac WM, Farrell G, Taborsky RG, Taylor AN. Indole compounds: isolation from pineal tissue. Science 148(3666), 102–103 (1965).
  • Otani T, Creaven PJ, Farrell G, McIsaac WM. Studies on the biosynthesis of 5-methoxytryptophol in the pineal. Biochim. Biophys. Acta 184(1), 184–190 (1969).
  • Grace MS, Besharse JC. Solubilization and biochemical characterization of the melatonin deacetylase from Xenopus laevis retina. J. Neurochem. 60(3), 990–999 (1993).
  • Cahill GM, Besharse JC. Retinal melatonin is metabolized within the eye of Xenopus laevis. Proc. Natl Acad. Sci. USA 86(3), 1098–1102 (1989).
  • Rogawski MA, Roth RH, Aghajanian GK. Melatonin: deacetylation to 5-methoxytryptamine by liver but not brain aryl acylamidase. J. Neurochem. 32(4), 1219–1226 (1979).
  • Sun X, Deng J, Liu T, Borjigin J. Circadian 5-HT production regulated by adrenergic signaling. Proc. Natl Acad. Sci. U.S.A. 99(7), 4686–4691 (2002).
  • King TS, Steinlechner S. Pineal indolalkylamine synthesis and metabolism: kinetic considerations. Pineal. Res. Rev. 3, 69–113 (1985).
  • Reiter RJ, Tan DX, Terron MP, Flores LJ, Czarnocki Z. Melatonin and its metabolites: new findings regarding their production and their radical scavenging actions. Acta Biochim. Pol. 54(1), 1–9 (2007).
  • Simonneaux V, Ribelayga C. Generation of the melatonin endocrine message in mammals: a review of the complex regulation of melatonin synthesis by norepinephrine, peptides, and other pineal transmitters. Pharmacol. Rev. 55(2), 325–395 (2003).
  • Slominski A, Pisarchik A, Semak I, Sweatman T, Wortsman J. Characterization of the serotoninergic system in the C57BL/6 mouse skin. Eur. J. Biochem. 270(16), 3335–3344 (2003).
  • Slominski A, Semak I, Pisarchik A, Sweatman T, Szczesniewski A, Wortsman J. Conversion of L-tryptophan to serotonin and melatonin in human melanoma cells. FEBS Lett. 511(1-3), 102–106 (2002).
  • Delvigs P, McIsaac WM, Taborsky RG. The metabolism of 5-methoxytryptophol. J. Biol. Chem. 240, 348–350 (1965).
  • Carter SJ, Laud CA, Smith I et al. Concentration of 5-methoxytryptophol in pineal gland and plasma of the rat. J. Endocrinol. 83(1), 35–40 (1979).
  • Linsell C, Mullen PE, Silman RE et al. The measurement of the daily fluctuations of 5-methoxytryptophol in human plasma. Prog. Brain Res. 52, 501–505 (1979).
  • Balemans MGM. Indole metabolism in the pineal gland, the Harderian gland and the retina of mammals. In: The Pineal Organ: Photobiology, Biochronornetry, Endocrinology. Oksche A, Pévet P (Eds). Elsevier, North Holland Biomedical Press, Amsterdam, The Netherlands, 261–280 (1981).
  • Alebouyeh M, Takeda M, Onozato ML et al. Expression of human organic anion transporters in the choroid plexus and their interactions with neurotransmitter metabolites. J. Pharmacol. Sci. 93(4), 430–436 (2003).
  • Hardeland R, Reiter RJ, Poeggeler B, Tan DX. The significance of the metabolism of the neurohormone melatonin: antioxidative protection and formation of bioactive substances. Neurosci. Biobehav. Rev. 17(3), 347–357 (1993).
  • Talbot JA, Reiter RJ. Influence of melatonin, 5-methoxytryptophol and pinealectomy on pituitary and plasma gonadotropin and prolactin levels in castrated adult male rats. Neuroendocrinology 13(3), 164–172 (1973).
  • Little JC, Vaughan MK, Haider N, Smith I, Reiter RJ. Effects of afternoon injections of O-acetyl-5-methoxytryptophol, melatonin or 5-methoxytryptophol in female Syrian hamsters. J. Neural Transm. 66(3-4), 291–301 (1986).
  • Kostoglou-Athanassiou I, Forsling ML. Effect of 5-hydroxytryptamine and pineal metabolites on the secretion of neurohypophysial hormones. Brain Res. Bull. 46(5), 417–422 (1998).
  • Sackman JW, Little JC, Rudeen PK, Waring PJ, Reiter RJ. The effects of pineal indoles given late in the light period on reproductive organs and pituitary prolactin levels in male golden hamsters. Horm. Res. 8(2), 84–92 (1977).
  • Fraschini F, Martini L. The Hypothalamus. Academic Press, New York, NY, USA, 529 (1970).
  • Fraschini F, Collu R, Martini L. Mechanisms of inhibitory action of pineal principles in gonadotrophin secretion. In: The Pineal Gland. Wolstenholme GEW, Knight J (Eds). Churchill Livingstone, London, UK, 259–278 (1971).
  • Balemans MG, van de Veerdonk FC, van de Kamer JC. The influence of 5-methoxytryptophol, a pineal compound, on comb growth, ovarian weight, follicular growth and egg production of juvenile, maturing and adult white leghorn hens (Gallus domesticus L.). J. Neural Transm. 41(1), 37–46 (1977).
  • Vaughan MK, Richardson BA, Johnson LY et al. Natural and synthetic analogues of melatonin and related compounds. II. Effects on plasma thyroid hormones and cholesterol levels in male Syrian hamsters. J. Neural Transm. 56(4), 279–291 (1983).
  • Georgiou E. Uber die Natur und die Pathogenese der Krebstumoren. Radikale Heilung de Krebses bei weiblichen Mauses. Z. Krebsforschung 38, 562–572 (1929).
  • Regelson W, Pierpaoli W. Melatonin: a rediscovered antitumor hormone? Its relation to surface receptors; sex steroid metabolism, immunologic response, and chronobiologic factors in tumor growth and therapy. Cancer Invest. 5(4), 379–385 (1987).
  • Konakchieva R, Kyurkchiev S, Kehayov I, Taushanova P, Kanchev L. Selective effect of methoxyindoles on the lymphocyte proliferation and melatonin binding to activated human lymphoid cells. J. Neuroimmunol. 63(2), 125–132 (1995).
  • Lissoni P, Pittalis S, Rovelli F et al. Immunomodulatory properties of a pineal indole hormone other than melatonin, the 5-methoxytryptophol. J. Biol. Regul. Homeost. Agents 10(1), 27–30 (1996).
  • Liu F, Ng TB, Fung MC. Pineal indoles stimulate the gene expression of immunomodulating cytokines. J. Neural Transm. 108(4), 397–405 (2001).
  • Bartsch H, Bartsch C, Noteborn HP, Flehmig B, Ebels I, Salemink CA. Growth-inhibiting effect of crude pineal extracts on human melanoma cells in vitro is different from that of known synthetic pineal substances. J. Neural Transm. 69(3-4), 299–311 (1987).
  • Leone AM. The effects of melatonin and melatonin analogues on the P388, DLD-1 and MCF-7 tumour cell lines. In: Role of Melatonin and Pineal Peptides in NeuroImmunomodulation. Fraschini F, Reiter RJ (Eds). Plenum Press, New York, NY, USA, 241–242 (1991).
  • Blask DE, Hill SM. Effects of melatonin on cancer: studies on MCF-7 human breast cancer cells in culture. J. Neural Transm. Suppl. 21, 433–449 (1986).
  • Sze SF, Ng TB, Liu WK. Antiproliferative effect of pineal indoles on cultured tumor cell lines. J. Pineal Res. 14(1), 27–33 (1993).
  • Lissoni P, Fumagalli L, Paolorossi F, Rovelli F, Roselli MG, Maestroni GJ. Anticancer neuroimmunomodulation by pineal hormones other than melatonin: preliminary Phase II study of the pineal indole 5-methoxytryptophol in association with low-dose IL-2 and melatonin. J. Biol. Regul. Homeost. Agents 11(3), 119–122 (1997).
  • Lissoni P. Modulation of anticancer cytokines IL-2 and IL-12 by melatonin and the other pineal indoles 5-methoxytryptamine and 5-methoxytryptophol in the treatment of human neoplasms. Ann. NY Acad. Sci. 917, 560–567 (2000).
  • Lissoni P, Malugani F, Brivio F et al. Total pineal endocrine substitution therapy (TPEST) as a new neuroendocrine palliative treatment of untreatable metastatic solid tumor patients: a Phase II study. Neuro Endocrinol. Lett. 24(3-4), 259–262 (2003).
  • Reiter RJ, Vaughan MK. Pineal antigonadotrophic substances: polypeptides and indoles. Life Sci. 21(2), 159–171 (1977).
  • Pévet P, Balemans MG, de Reuver GF. The pineal gland of the mole (Talpa europaea L.). VII. Activity of hydroxyindole-O-methyltransferase (HIOMT) in the formation of 5-methoxytryptophan, 5-methoxytryptamine, 5-methoxyindole-3-acetic acid, 5-methoxytryptophol and melantonin in the eyes and the pineal gland. J. Neural Transm. 51(3-4), 271–282 (1981).
  • Pévet P, Haldar-Misra C. Daily 5-methoxytryptamine injections inhibit short-day-induced testicular atrophy in golden hamsters. J. Neural Transm. 55(1), 95–99 (1982).
  • Reiter RJ, Vaughan MK. A study of indoles which inhibit pineal antigonadotrophic activity in male hamsters. Endocr. Res. Commun. 2(3), 299–308 (1975).
  • Balemans MG. Age-dependent effects of 5-methoxytryptophol and melatonin on testes and comb growth of the white leghorn (Gallus domesticus L.). J. Neural Transm. 33(3), 179–194 (1972).
  • Balemans MG. The stimulatory effects of several concentrations of 5-methoxytryptophol on testicular growth in the white leghorn (Gallus domesticus L.). J. Neural Transm. 34(1), 49–60 (1973).
  • Balemans MG. The inhibitory effect of 5-methoxytryptophol on ovarian weight, follicular growth and egg production of adult white leghorn hens (Gallus domesticus L.). J. Neural Transm. 34(2), 159–169 (1973).
  • Haldar C, Ghosh M. Effect of 5-methoxyindoles on testicular function of the Indian jungle bush quail Perdicula asiatica. Arch. Anat. Histol. Embryol. 71, 97–107 (1988).
  • Haldar C, Singh S. Modulation of ovarian function by various indolamines during the sexually active phase in the Indian palm squirrel, Funambulus pennanti. Can. J. Zool. 73(2), 266–269 (1995).
  • Mcisaac WM, Taborsky RG, Farrell G. 5-methoxytryptophol: effect of estrus and ovarian weight. Science 145(3627), 63–64 (1964).
  • Vílchez-Martinez JA, Debeljuk L. Effect of 5-methoxytryptophol on the reproductive system of male rats. J. Reprod. Fertil. 30(2), 305–308 (1972).
  • Vaughan MK, Vaughan GM, Reiter RJ. Inhibition of human chorionic gonadotrophin-induced hypertrophy of the ovaries and uterus in immature mice by some pineal indoles, 6-hydroxymelatonin and arginine vasotocin. J. Endocrinol. 68(3), 397–400 (1976).
  • Vaughan MK, Reiter RJ, Vaughan GM, Bigelow L, Altschule MD. Inhibition of compensatory ovarian hypertrophy in the mouse and vole: a comparison of Altschule’s pineal extract, pineal indoles, vasopressin, and oxytocin. Gen. Comp. Endocrinol. 18(2), 372–377 (1972).
  • Ng TB, Ooi VEC. Effect of pineal indoles on testicular histology of mice. Prog. Neuropsychopharmacol. Biol. Psychiatry. 24(1), 117–129 (2000).
  • Lang U, Aubert ML, Rivest RW, Vinas-Bradtke JC, Sizonenko PC. Inhibitory action of exogenous melatonin, 5-methoxytryptamine, and 6-hydroxymelatonin on sexual maturation of male rats: activity of 5-methoxytryptamine might be due to its conversion to melatonin. Biol. Reprod. 33(3), 618–628 (1985).
  • Farrell G, Powers D, Otani T. Inhibition of ovulation in the rabbit: seasonal variation and effects of indoles. Endocrinology 83(3), 599–603 (1968).
  • Haldar C, Ghosh M. Effect of pinealectomy and 5-methoxyindoles on Harderian gland activity of the Indian Jungle bush quail Perdicula asiatica. Indian J. Exp. Biol. 27(8), 704–708 (1989).
  • Saxena N, Singh N, Mishra M, Keshava GB, Shukla PK, Tripathi RP. Synthesis of azatricyclodiones and octahydro-benzo[f]isoindoles and their antimicrobial evaluation. J. Enzyme Inhib. Med. Chem., 23(4), 476–482 (2008).
  • Ramachandran A, Patel M, Patel C. Effects of pineal indoles and parachlorophenylalanine on seasonal reproduction in the pigeon. J. Exp. Biol. 199(Pt 4), 793–800 (1996).
  • Pévet P. 5-Methoxyindoles, pineal peptides and reproduction. In: The Pineal Gland: Endocrine Aspects. Brown GM, Wainwright SD (Eds). Oxford, Pergamon, Turkey, 81–102 (1985).
  • Liu F, Ng TB. Effect of pineal indoles on activities of the antioxidant defense enzymes superoxide dismutase, catalase, and glutathione reductase, and levels of reduced and oxidized glutathione in rat tissues. Biochem. Cell Biol. 78(4), 447–453 (2000).
  • Ng TB, Liu F, Zhao L. Antioxidative and free radical scavenging activities of pineal indoles. J. Neural Transm. 107(11), 1243–1251 (2000).
  • Poeggeler B, Reiter RJ, Hardeland R, Tan DX, Barlow-Walden LR. Melatonin and structurally-related, endogenous indoles act as potent electron donors and radical scavengers in vitro. Redox. Rep. 2, 179–184 (1996).
  • García JJ, Reiter RJ, Cabrera JJ et al. 5-methoxytryptophol preserves hepatic microsomal membrane fluidity during oxidative stress. J. Cell. Biochem. 76(4), 651–657 (2000).
  • Ortega-Gutiérrez S, García JJ, Martínez-Ballarín E et al. Melatonin improves deferoxamine antioxidant activity in protecting against lipid peroxidation caused by hydrogen peroxide in rat brain homogenates. Neurosci. Lett. 323(1), 55–59 (2002).
  • Goda K, Amako K, Kishimoto R, Ogiri Y. Photochemical properties of kynurenine pathway metabolites and indoleamines. Adv. Exp. Med. Biol. 527, 687–693 (2003).
  • Wang HX, Liu F, Ng TB. Examination of pineal indoles and 6-methoxy-2-benzoxazolinone for antioxidant and antimicrobial effects. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 130(3), 379–388 (2001).
  • García-Camero G, Oltra-Ramírez A, García-Segoviano JA, Castro-Mussot ME. Effect of the pineal indoleamine hormones melatonin, 5-hydroxyindoleacetic acid and 5-methoxytryptophol on the human neutrophil respiratory burst activity. Toxicol. Lett. 180(Suppl. 5), Abstract S209 (2008).
  • Millán-Plano S, Piedrafita E, Miana-Mena FJ et al. Melatonin and structurally-related compounds protect synaptosomal membranes from free radical damage. Int. J. Mol. Sci. 11(1), 312–328 (2010).
  • Chan WY, Ng TB. Changes induced by pineal indoles in post-implantation mouse embryos. Gen. Pharmacol. 26(5), 1113–1118 (1995).
  • Chan WY, Ng TB. Development of pre-implantation mouse embryos under the influence of pineal indoles. J. Neural Transm. Gen. Sect. 96(1), 19–29 (1994).
  • Ooi VE, Lee DW, Ng TB. Effect of pineal indoles on the chick embryo. Gen. Pharmacol. 32(2), 219–224 (1999).
  • Morton DJ. Both hydroxy- and methoxyindoles modify basal temperature in the rat. J. Pineal Res. 4(1), 1–5 (1987).
  • Wang H, Ng TB. Hypotensive activity of the pineal indoleamine hormones melatonin, 5-methoxytryptophol and 5-methoxytryptamine. Pharmacol. Toxicol. 86(3), 125–128 (2000).
  • Naranjo-Rodriguez EB, Osornio AO, Hernandez-Avitia E, Mendoza-Fernández V, Escobar A. Anxiolytic-like actions of melatonin, 5-metoxytryptophol, 5-hydroxytryptophol and benzodiazepines on a conflict procedure. Prog. Neuropsychopharmacol. Biol. Psychiatry 24(1), 117–129 (2000).
  • Feldstein A, Chang FH, Kucharski JM. Tryptophol, 5-hydroxytryptophol and 5-methoxytryptophol induced sleep in mice. Life Sci. 9(6), 323–329 (1970).
  • Ouzir M, Moussaouiti RE, Lakhdar-Ghazal N. Impact of lead on the circadian rhythm of locomotor activity and prophylactic effect of melatonin and 5-metoxytryptophol. Front. Neurosci. doi:10.3389/conf.neuro.01.2009.16.161 (2009) (Epub ahead of print).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.