221
Views
11
CrossRef citations to date
0
Altmetric
Reviews

Bone mineral density and vitamin D in PCOS and hirsutism

, &
Pages 449-459 | Published online: 10 Jan 2014

References

  • Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil. Steril. 81(1), 19–25 (2004).
  • Glintborg D, Andersen M. An update on the pathogenesis, inflammation, and metabolism in hirsutism and polycystic ovary syndrome. Gynecol. Endocrinol 26(4), 281–296 (2010).
  • Azziz R, Sanchez LA, Knochenhauer ES et al. Androgen excess in women: experience with over 1000 consecutive patients. J. Clin. Endocrinol. Metab. 89(2), 453–462 (2004).
  • Glintborg D, Hojlund K, Andersen M, Henriksen JE, Beck-Nielsen H, Handberg A. Soluble CD36 and risk markers of insulin resistance and atherosclerosis are elevated in polycystic ovary syndrome and significantly reduced during pioglitazone treatment. Diabetes Care 31(2), 328–334 (2008).
  • Glintborg D, Henriksen JE, Andersen M et al. Prevalence of endocrine diseases and abnormal glucose tolerance tests in 340 Caucasian premenopausal women with hirsutism as the referral diagnosis. Fertil. Steril. 82(6), 1570–1579 (2004).
  • Azziz R. Controversy in clinical endocrinology: diagnosis of polycystic ovarian syndrome: the Rotterdam criteria are premature. J. Clin. Endocrinol. Metab. 91(3), 781–785 (2006).
  • Azziz R, Carmina E, Dewailly D et al. The Androgen Excess and PCOS Society criteria for the polycystic ovary syndrome: the complete task force report. Fertil. Steril. 91(2), 456–488 (2009).
  • Wild RA, Carmina E, Diamanti-Kandarakis E et al. Assessment of cardiovascular risk and prevention of cardiovascular disease in women with the polycystic ovary syndrome: a consensus statement by the Androgen Excess and Polycystic Ovary Syndrome (AE-PCOS) Society. J. Clin. Endocrinol. Metab 95(5), 2038–2049 (2010).
  • Johnston CC Jr, Slemenda CW. Determinants of peak bone mass. Osteoporos. Int. 3( Suppl. 1), 54–55 (1993).
  • Stewart PM, Shackleton CH, Beastall GH, Edwards CR. 5 alpha-reductase activity in polycystic ovary syndrome. Lancet 335(8687), 431–433 (1990).
  • Lanzone A, Villa P, Fulghesu AM, Pavone V, Caruso A, Mancuso S. The growth hormone response to growth hormone-releasing hormone is blunted in polycystic ovary syndrome: relationship with obesity and hyperinsulinaemia. Hum. Reprod. 10(7), 1653–1657 (1995).
  • Anagnostis P, Karras S, Goulis DG. Vitamin D in human reproduction: a narrative review. Int. J. Clin. Pract. 67(3), 225–235 (2013).
  • Thomson RL, Spedding S, Buckley JD. Vitamin D in the aetiology and management of polycystic ovary syndrome. Clin. Endocrinol. (Oxf) 77(3), 343–350 (2012).
  • Dagogo-Jack S, al Ali N, Qurttom M. Augmentation of bone mineral density in hirsute women. J. Clin. Endocrinol. Metab 82(9), 2821–2825 (1997).
  • Yuksel O, Dokmetas HS, Topcu S, Erselcan T, Sencan M. Relationship between bone mineral density and insulin resistance in polycystic ovary syndrome. J. Bone Miner. Metab. 19(4), 257–262 (2001).
  • Dixon JE, Rodin A, Murby B, Chapman MG, Fogelman I. Bone mass in hirsute women with androgen excess. Clin. Endocrinol. (Oxf) 30(3), 271–277 (1989).
  • Good C, Tulchinsky M, Mauger D, Demers LM, Legro RS. Bone mineral density and body composition in lean women with polycystic ovary syndrome. Fertil. Steril. 72(1), 21–25 (1999).
  • Gregoriou O, Kouskouni E, Bakas P et al. Bone mineral density in women with idiopathic hirsutism. Gynecol. Endocrinol. 14(5), 364–368 (2000).
  • Legro RS, Kunselman AR, Dodson WC, Dunaif A. Prevalence and predictors of risk for type 2 diabetes mellitus and impaired glucose tolerance in polycystic ovary syndrome: a prospective, controlled study in 254 affected women. J. Clin. Endocrinol. Metab. 84(1), 165–169 (1999).
  • Kirchengast S, Huber J. Body composition characteristics and body fat distribution in lean women with polycystic ovary syndrome. Hum. Reprod. 16(6), 1255–1260 (2001).
  • Adami S, Zamberlan N, Castello R, Tosi F, Gatti D, Moghetti P. Effect of hyperandrogenism and menstrual cycle abnormalities on bone mass and bone turnover in young women. Clin. Endocrinol. (Oxf) 48(2), 169–173 (1998).
  • Glintborg D, Andersen M, Hagen C, Hermann AP. Higher bone mineral density in Caucasian, hirsute patients of reproductive age. Positive correlation of testosterone levels with bone mineral density in hirsutism. Clin. Endocrinol. (Oxf) 62(6), 683–691 (2005).
  • Prezelj J, Kocijancic A. Bone mineral density in hyperandrogenic amenorrhoea. Calcif. Tissue Int. 52(6), 422–424 (1993).
  • Noyan V, Yucel A, Sagsoz N. The association of bone mineral density with insulin resistance in patients with polycystic ovary syndrome. Eur. J. Obstet. Gynecol. Reprod. Biol. 115(2), 200–205 (2004).
  • Schmidt J, Dahlgren E, Brannstrom M, Landin-Wilhelmsen K. Body composition, bone mineral density and fractures in late postmenopausal women with polycystic ovary syndrome - a long-term follow-up study. Clin. Endocrinol. (Oxf) 77(2), 207–214 (2012).
  • Kassanos D, Trakakis E, Baltas CS et al. Augmentation of cortical bone mineral density in women with polycystic ovary syndrome: a peripheral quantitative computed tomography (pQCT) study. Hum. Reprod. 25(8), 2107–2114 (2010).
  • Rapuri PB, Kinyamu HK, Gallagher JC, Haynatzka V. Seasonal changes in calciotropic hormones, bone markers, and bone mineral density in elderly women. J. Clin. Endocrinol. Metab. 87(5), 2024–2032 (2002).
  • Compston JE. Sex steroids and bone. Physiol. Rev. 81(1), 419–447 (2001).
  • Notelovitz M. Androgen effects on bone and muscle. Fertil. Steril. 77( Suppl. 4), S34–S41 (2002).
  • Abu EO, Horner A, Kusec V, Triffitt JT, Compston JE. The localization of androgen receptors in human bone. J. Clin. Endocrinol. Metab. 82(10), 3493–3497 (1997).
  • Castelo-Branco C, Pons F, Martinez de Osaba MJ, Garrido J, Fortuny A. Menstrual history as a determinant of current bone density in young hirsute women. Metabolism 45(4), 515–518 (1996).
  • Gregoriou O, Kouskouni E, Bakas P et al. Bone mineral density in women with idiopathic hirsutism. Gynecol. Endocrinol. 14(5), 364–368 (2000).
  • Boots LR, Potter S, Potter D, Azziz R. Measurement of total serum testosterone levels using commercially available kits: high degree of between-kit variability. Fertil. Steril. 69(2), 286–292 (1998).
  • Khosla S, Bilezikian JP. The role of estrogens in men and androgens in women. Endocrinol. Metab. Clin. North Am.. 32(1), 195–218 (2003).
  • Sasano H, Uzuki M, Sawai T et al. Aromatase in human bone tissue. J. Bone Miner. Res. 12(9), 1416–1423 (1997).
  • Khosla S, Melton LJIII, Atkinson EJ, O'Fallon WM, Klee GG, Riggs BL. Relationship of serum sex steroid levels and bone turnover markers with bone mineral density in men and women: a key role for bioavailable estrogen. J. Clin. Endocrinol. Metab. 83(7), 2266–2274 (1998).
  • Douchi T, Yamamoto S, Oki T et al. Difference in the effect of adiposity on bone density between pre- and postmenopausal women. Maturitas 34(3), 261–266 (2000).
  • Orozco P, Nolla JM. Associations between body morphology and bone mineral density in premenopausal women. Eur. J. Epidemiol. 13(8), 919–924 (1997).
  • Evans DJ, Hoffmann RG, Kalkhoff RK, Kissebah AH. Relationship of body fat topography to insulin sensitivity and metabolic profiles in premenopausal women. Metabolism 33(1), 68–75 (1984).
  • Christensen JO, Svendsen OL. Bone mineral in pre- and postmenopausal women with insulin-dependent and non-insulin-dependent diabetes mellitus. Osteoporos. Int. 10(4), 307–311 (1999).
  • Abrahamsen B, Rohold A, Henriksen JE, Beck-Nielsen H. Correlations between insulin sensitivity and bone mineral density in non-diabetic men. Diabet. Med. 17(2), 124–129 (2000).
  • Barrett-Connor E, Kritz-Silverstein D. Does hyperinsulinemia preserve bone? Diabetes Care 19(12), 1388–1392 (1996).
  • Krakauer JC, McKenna MJ, Rao DS, Whitehouse FW. Bone mineral density in diabetes. Diabetes Care 20(8), 1339–1340 (1997).
  • Frederiksen L, Hojlund K, Hougaard DM, Brixen K, Andersen M. Testosterone therapy increased muscle mass and lipid oxidation in aging men. Age (Dordr.) 34(1), 145–156 (2012).
  • Kenny AM, Kleppinger A, Annis K et al. Effects of transdermal testosterone on bone and muscle in older men with low bioavailable testosterone levels, low bone mass, and physical frailty. J. Am. Geriatr. Soc. 58(6), 1134–1143 (2010).
  • Douchi T, Oki T, Yamasaki H, Kuwahata R, Nakae M, Nagata Y. Relationship of androgens to muscle size and bone mineral density in women with polycystic ovary syndrome. Obstet. Gynecol. 98(3), 445–449 (2001).
  • Yanazume Y, Kawamura Y, Kuwahata A et al. Difference in non-weight-bearing effects on bone mineral density between trunk and peripheral fat mass in women with polycystic ovary syndrome. J. Obstet. Gynaecol. Res. 36(2), 352–356 (2010).
  • Lacey DL, Timms E, Tan HL et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93(2), 165–176 (1998).
  • Geusens P. Emerging treatments for postmenopausal osteoporosis-focus on denosumab. Clin. Interv. Aging 4, 241–250 (2009).
  • Nybo M, Rasmussen LM. Osteoprotegerin released from the vascular wall by heparin mainly derives from vascular smooth muscle cells. Atherosclerosis 201(1), 33–35 (2008).
  • D'Amelio P, Isaia G, Isaia GC. The osteoprotegerin/RANK/RANKL system: a bone key to vascular disease. J. Endocrinol. Invest. 32(4 Suppl.), 6–9 (2009).
  • Davenport C, Ashley DT, O'sullivan EP et al. Identifying coronary artery disease in men with type 2 diabetes: osteoprotegerin, pulse wave velocity, and other biomarkers of cardiovascular risk. J. Hypertens. 29(12), 2469–2475 (2011).
  • Escobar-Morreale HF, Botella-Carretero JI, Martinez-Garcia MA, Luque-Ramirez M, Alvarez-Blasco F, San Millan JL. Serum osteoprotegerin concentrations are decreased in women with the polycystic ovary syndrome. Eur. J. Endocrinol. 159(3), 225–232 (2008).
  • Pepene CE, Ilie IR, Marian I, Duncea I. Circulating osteoprotegerin and soluble receptor activator of nuclear factor kappaB ligand in polycystic ovary syndrome: relationships to insulin resistance and endothelial dysfunction. Eur. J. Endocrinol. 164(1), 61–68 (2011).
  • Glintborg D, Hermann AP, Rasmussen LM, Andersen M. Plasma osteoprotegerin is associated with testosterone levels but unaffected by pioglitazone treatment in patients with polycystic ovary syndrome. J. Endocrinol. Invest. 36(7), 460–465 (2012).
  • Turner A, Chen TC, Barber TW, Malabanan AO, Holick MF, Tangpricha V. Testosterone increases bone mineral density in female-to-male transsexuals: a case series of 15 subjects. Clin. Endocrinol. (Oxf) 61(5), 560–566 (2004).
  • Li HW, Brereton RE, Anderson RA, Wallace AM, Ho CK. Vitamin D deficiency is common and associated with metabolic risk factors in patients with polycystic ovary syndrome. Metabolism 60(10), 1475–1481 (2011).
  • Thomson RL, Spedding S, Brinkworth GD, Noakes M, Buckley JD. Seasonal effects on vitamin D status influence outcomes of lifestyle intervention in overweight and obese women with polycystic ovary syndrome. Fertil. Steril. 99(6), 1779–1785 (2013).
  • Panidis D, Balaris C, Farmakiotis D et al. Serum parathyroid hormone concentrations are increased in women with polycystic ovary syndrome. Clin. Chem. 51(9), 1691–1697 (2005).
  • Mahmoudi T, Gourabi H, Ashrafi M, Yazdi RS, Ezabadi Z. Calciotropic hormones, insulin resistance, and the polycystic ovary syndrome. Fertil. Steril. 93(4), 1208–1214 (2009).
  • Glintborg D, Andersen M, Hagen C, Heickendorff L, Hermann AP. Association of pioglitazone treatment with decreased bone mineral density in obese premenopausal patients with polycystic ovary syndrome: a randomized, placebo-controlled trial. J. Clin. Endocrinol. Metab. 93(5), 1696–1701 (2008).
  • Wortsman J, Matsuoka LY, Chen TC, Lu Z, Holick MF. Decreased bioavailability of vitamin D in obesity. Am. J. Clin. Nutr. 72(3), 690–693 (2000).
  • Arunabh S, Pollack S, Yeh J, Aloia JF. Body fat content and 25-hydroxyvitamin D levels in healthy women. J. Clin. Endocrinol. Metab. 88(1), 157–161 (2003).
  • Scragg R, Holdaway I, Singh V, Metcalf P, Baker J, Dryson E. Serum 25-hydroxyvitamin D3 levels decreased in impaired glucose tolerance and diabetes mellitus. Diabetes Res.Clin. Pract. 27(3), 181–188 (1995).
  • Isaia G, Giorgino R, Adami S. High prevalence of hypovitaminosis D in female type 2 diabetic population. Diabetes Care 24(8), 1496 (2001).
  • Borissova AM, Tankova T, Kirilov G, Dakovska L, Kovacheva R. The effect of vitamin D3 on insulin secretion and peripheral insulin sensitivity in type 2 diabetic patients. Int. J. Clin. Pract. 57(4), 258–261 (2003).
  • Chiu KC, Chu A, Go VL, Saad MF. Hypovitaminosis D is associated with insulin resistance and beta cell dysfunction. Am. J. Clin. Nutr. 79(5), 820–825 (2004).
  • Hahn S, Haselhorst U, Tan S et al. Low serum 25-hydroxyvitamin D concentrations are associated with insulin resistance and obesity in women with polycystic ovary syndrome. Exp. Clin. Endocrinol. Diabetes 114(10), 577–583 (2006).
  • Bourlon PM, Billaudel B, Faure-Dussert A. Influence of vitamin D3 deficiency and 1,25 dihydroxyvitamin D3 on de novo insulin biosynthesis in the islets of the rat endocrine pancreas. J. Endocrinol. 160(1), 87–95 (1999).
  • Bourlon PM, Faure-Dussert A, Billaudel B. The de novo synthesis of numerous proteins is decreased during vitamin D3 deficiency and is gradually restored by 1, 25-dihydroxyvitamin D3 repletion in the islets of langerhans of rats. J. Endocrinol. 162(1), 101–109 (1999).
  • Hahn S, Haselhorst U, Tan S et al. Low serum 25-hydroxyvitamin D concentrations are associated with insulin resistance and obesity in women with polycystic ovary syndrome. Exp. Clin. Endocrinol. Diabetes 114(10), 577–583 (2006).
  • Wild RA, Painter PC, Coulson PB, Carruth KB, Ranney GB. Lipoprotein lipid concentrations and cardiovascular risk in women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 61(5), 946–951 (1985).
  • Barr S, Hart K, Reeves S, Jeanes Y. Dietary intake, body composition and physical activity levels in women with polycystic ovary syndrome compared with healthy controls. J. Hum. Nutr. Diet. 21(4), 377 (2008).
  • Douglas CC, Norris LE, Oster RA, Darnell BE, Azziz R, Gower BA. Difference in dietary intake between women with polycystic ovary syndrome and healthy controls. Fertil. Steril. 86(2), 411–417 (2006).
  • Hirschberg AL, Naessen S, Stridsberg M, Bystrom B, Holtet J. Impaired cholecystokinin secretion and disturbed appetite regulation in women with polycystic ovary syndrome. Gynecol. Endocrinol. 19(2), 79–87 (2004).
  • Moran LJ, Noakes M, Clifton PM et al. Ghrelin and measures of satiety are altered in polycystic ovary syndrome but not differentially affected by diet composition. J. Clin. Endocrinol. Metab 89(7), 3337–3344 (2004).
  • Morgan J, Scholtz S, Lacey H, Conway G. The prevalence of eating disorders in women with facial hirsutism: an epidemiological cohort study. Int. J. Eat. Disord. 41(5), 427–431 (2008).
  • Naessen S, Carlstrom K, Garoff L, Glant R, Hirschberg AL. Polycystic ovary syndrome in bulimic women--an evaluation based on the new diagnostic criteria. Gynecol. Endocrinol 22(7), 388–394 (2006).
  • Rashidi B, Haghollahi F, Shariat M, Zayerii F. The effects of calcium-vitamin D and metformin on polycystic ovary syndrome: a pilot study. Taiwan. J. Obstet. Gynecol. 48(2), 142–147 (2009).
  • Firouzabadi R, Aflatoonian A, Modarresi S, Sekhavat L, Mohammad Taheri S. Therapeutic effects of calcium & vitamin D supplementation in women with PCOS. Complement Ther. Clin. Pract. 18(2), 85–88 (2012).
  • Ardabili HR, Gargari BP, Farzadi L. Vitamin D supplementation has no effect on insulin resistance assessment in women with polycystic ovary syndrome and vitamin D deficiency. Nutr. Res. 32(3), 195–201 (2012).
  • Rahimi-Ardabili H, Pourghassem GB, Farzadi L. Effects of vitamin D on cardiovascular disease risk factors in polycystic ovary syndrome women with vitamin D deficiency. J. Endocrinol. Invest. 36(1), 28-32 (2013).
  • Spinelli A, Talamanca IF, Lauria L. Patterns of contraceptive use in 5 European countries. European Study Group on Infertility and Subfecundity. Am. J. Public Health 90(9), 1403–1408 (2000).
  • Lopez LM, Grimes DA, Schulz KF, Curtis KM. Steroidal contraceptives: effect on bone fractures in women. Cochrane. Database Syst. Rev. (7), CD006033 (2011).
  • Tremollieres F. Impact of oral contraceptive on bone metabolism. Best Pract. Res. Clin. Endocrinol. Metab. 27(1), 47–53 (2013).
  • Castelo-Branco C, Martinez de Osaba MJ, Pons F, Fortuny A. Gonadotropin-releasing hormone analog plus an oral contraceptive containing desogestrel in women with severe hirsutism: effects on hair, bone, and hormone profile after 1-year use. Metabolism 46(4), 437–440 (1997).
  • Gregoriou O, Bakas P, Konidaris S, Papadias K, Mathiopoulos D, Creatsas G. The effect of combined oral contraception with or without spironolactone on bone mineral density of hyperandrogenic women. Gynecol. Endocrinol. 14(5), 369–373 (2000).
  • Lupoli G, Di Carlo C, Nuzzo V et al. Gonadotropin-releasing hormone agonists administration in polycystic ovary syndrome. Effects on bone mass. J. Endocrinol. Invest. 20(8), 493–496 (1997).
  • Farquhar C, Lee O, Toomath R, Jepson R. Spironolactone versus placebo or in combination with steroids for hirsutism and/or acne. Cochrane. Database Syst. Rev. (4), CD000194 (2003).
  • Carbone LD, Cross JD, Raza SH et al. Fracture risk in men with congestive heart failure risk reduction with spironolactone. J. Am. Coll. Cardiol. 52(2), 135–138 (2008).
  • Gregoriou O, Bakas P, Konidaris S, Papadias K, Mathiopoulos D, Creatsas G. The effect of combined oral contraception with or without spironolactone on bone mineral density of hyperandrogenic women. Gynecol. Endocrinol. 14(5), 369–373 (2000).
  • Moghetti P, Castello R, Zamberlan N et al. Spironolactone, but not flutamide, administration prevents bone loss in hyperandrogenic women treated with gonadotropin-releasing hormone agonist. J. Clin. Endocrinol. Metab. 84(4), 1250–1254 (1999).
  • Rejnmark L. Bone effects of glitazones and other anti-diabetic drugs. Curr. Drug Saf. 3(3), 194–198 (2008).
  • Ravn P, Haugen AG, Glintborg D. Overweight in polycystic ovary syndrome. An update on evidence based advice on diet, exercise and metformin use for weight loss. Minerva Endocrinol. 38(1), 59–76 (2013).
  • Bechtold S, Dalla PR, Putzker S et al. Effect of antiandrogen treatment on bone density and bone geometry in adolescents with polycystic ovary syndrome. J. Pediatr .Adolesc. Gynecol. 25(3), 175–180 (2012).
  • Miyazaki Y, Mahankali A, Matsuda M et al. Effect of pioglitazone on abdominal fat distribution and insulin sensitivity in type 2 diabetic patients. J. Clin. Endocrinol. Metab. 87(6), 2784–2791 (2002).
  • Glintborg D, Andersen M. Thiazolinedione treatment in polycystic ovary syndrome. Gynecol. Endocrinol. 26(11), 791–803 (2010).
  • Ali AA, Weinstein RS, Stewart SA, Parfitt AM, Manolagas SC, Jilka RL. Rosiglitazone causes bone loss in mice by suppressing osteoblast differentiation and bone formation. Endocrinology 146(3), 1226–1235 (2005).
  • Jackson SM, Demer LL. Peroxisome proliferator-activated receptor activators modulate the osteoblastic maturation of MC3T3-E1 preosteoblasts. FEBS Lett. 471(1), 119–124 (2000).
  • Kahn SE, Haffner SM, Heise MA et al. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N. Engl. J. Med. 355(23), 2427–2443 (2006).
  • Grey A, Bolland M, Gamble G et al. The peroxisome proliferator-activated receptor-gamma agonist rosiglitazone decreases bone formation and bone mineral density in healthy postmenopausal women: a randomized, controlled trial. J. Clin. Endocrinol. Metab. 92(4), 1305–1310 (2007).
  • Nybo M, Preil SR, Juhl HF et al. Rosiglitazone Decreases Plasma Levels of Osteoprotegerin in a Randomized Clinical Trial with Type 2 Diabetes Patients. Basic Clin. Pharmacol. Toxicol. 109(6), 481–485 (2011).
  • Park JS, Cho MH, Nam JS et al. Effect of pioglitazone on serum concentrations of osteoprotegerin in patients with type 2 diabetes mellitus. Eur. J. Endocrinol. 164(1), 69–74 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.