79
Views
3
CrossRef citations to date
0
Altmetric
Review

Searching for additional endocrine functions of the skeleton: genetic approaches and implications for therapeutics

, &

References

  • Liu S, Guo R, Simpson LG, et al. Regulation of fibroblastic growth factor 23 expression but not degradation by PHEX. J Biol Chem 2003;278(39):37419-26
  • Quarles LD. FGF23, PHEX, and MEPE regulation of phosphate homeostasis and skeletal mineralization. Am J Physiol Endocrinol Metab 2003;285(1):E1-9
  • Feng JQ, Ward LM, Liu S, et al. Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat Genet 2006;38(11):1310-15
  • Liu S, Quarles LD. How fibroblast growth factor 23 works. J Am Soc Nephrol 2007;18(6):1637-47
  • Liu S, Zhou J, Tang W, et al. Pathogenic role of Fgf23 in Dmp1-null mice. Am J Physiol Endocrinol Metab 2008;295(2):E254-61
  • Quarles LD. Endocrine functions of bone in mineral metabolism regulation. J Clin Invest 2008;118(12):3820-8
  • Martin A, Quarles LD. Evidence for FGF23 involvement in a bone-kidney axis regulating bone mineralization and systemic phosphate and vitamin D homeostasis. Adv Exp Med Biol 2012;728:65-83
  • Quarles LD. Skeletal secretion of FGF-23 regulates phosphate and vitamin D metabolism. Nat Rev Endocrinol 2012;8(5):276-86
  • Xiao Z, Huang J, Cao L, et al. Osteocyte-specific deletion of Fgfr1 suppresses FGF23. Plos One 2014;9(8):e104154
  • Wilson A, Trumpp A. Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol 2006;6(2):93-106
  • Mendez-Ferrer S, Michurina TV, Ferraro F, et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 2010;466(7308):829-34
  • Morrison SJ, Scadden DT. The bone marrow niche for haematopoietic stem cells. Nature 2014;505(7483):327-34
  • Clarke B. Normal bone anatomy and physiology. Clin J Am Soc Nephrol 2008;3(Suppl 3):S131-9
  • Frost HM. Tetracycline-based histological analysis of bone remodeling. Calcif Tissue Res 1969;3(3):211-37
  • Mika C, Holtkamp K, Heer M, et al. A 2-year prospective study of bone metabolism and bone mineral density in adolescents with anorexia nervosa. J Neural Transm 2007;114(12):1611-18
  • Audi L, Vargas DM, Gussinyé M, et al. Clinical and biochemical determinants of bone metabolism and bone mass in adolescent female patients with anorexia nervosa. Pediatr Res 2002;51(4):497-504
  • Soyka LA, Grinspoon S, Levitsky LL, et al. The effects of anorexia nervosa on bone metabolism in female adolescents. J Clin Endocrinol Metab 1999;84(12):4489-96
  • Jacoangeli F, Zoli A, Taranto A, et al. Osteoporosis and anorexia nervosa: relative role of endocrine alterations and malnutrition. Eat Weight Disord 2002;7(3):190-5
  • Misra M, Miller KK, Bjornson J, et al. Alterations in growth hormone secretory dynamics in adolescent girls with anorexia nervosa and effects on bone metabolism. J Clin Endocrinol Metab 2003;88(12):5615-23
  • Misra M, Katzman DK, Cord J, et al. Bone metabolism in adolescent boys with anorexia nervosa. J Clin Endocrinol Metab 2008;93(8):3029-36
  • Misra M, Klibanski A. Bone metabolism in adolescents with anorexia nervosa. J Endocrinol Invest 2011;34(4):324-32
  • Misra M, Klibanski A. Anorexia nervosa, obesity and bone metabolism. Pediatr Endocrinol Rev 2013;11(1):21-33
  • Fazeli PK, Klibanski A. Bone metabolism in anorexia nervosa. Curr Osteoporos Rep 2014;12(1):82-9
  • Himes JH. Bone growth and development in protein-calorie malnutrition. World Rev Nutr Diet 1978;28:143-87
  • Faridi MM, Ansari Z, Bhargava SK. Imprints of protein energy malnutrition on the skeleton of children. J Trop Pediatr 1984 30(3):150-3
  • Ducy P, Amling M, Takeda S, et al. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 2000;100(2):197-207
  • Takeda S, Elefteriou F, Levasseur R, et al. Leptin regulates bone formation via the sympathetic nervous system. Cell 2002;111(3):305-17
  • Elefteriou F, Ahn JD, Takeda S, et al. Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature 2005;434(7032):514-20
  • Fu L, Patel MS, Bradley A, et al. The molecular clock mediates leptin-regulated bone formation. Cell 2005;122(5):803-15
  • Shi Y, Yadav VK, Suda N, et al. Dissociation of the neuronal regulation of bone mass and energy metabolism by leptin in vivo. Proc Natl Acad Sci USA 2008;105(51):20529-33
  • Yadav VK, Oury F, Suda N, et al. A serotonin-dependent mechanism explains the leptin regulation of bone mass, appetite, and energy expenditure. Cell 2009;138(5):976-89
  • Wei J, Ducy P. Co-dependence of bone and energy metabolisms. Arch Biochem Biophys 2010;503(1):p.35-40
  • Lee NK, Sowa H, Hinoi E, et al. Endocrine regulation of energy metabolism by the skeleton. Cell 2007;130(3):456-69
  • Ferron M, Hinoi E, Karsenty G, Ducy P. Osteocalcin differentially regulates beta cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice. Proc Natl Acad Sci USA 2008;105(13):5266-70
  • Ferron M, Wei J, Yoshizawa T, et al. Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell 2010;142(2):296-308
  • Hauschka PV, Lian JB, Cole DE, Gundberg CM. Osteocalcin and matrix Gla protein: vitamin K-dependent proteins in bone. Physiol Rev 1989;69(3):990-1047
  • Price PA. Gla-containing proteins of bone. Connect Tissue Res 1989;21(1-4):51-7. discussion 57-60
  • Ducy P, Desbois C, Boyce B, et al. Increased bone formation in osteocalcin-deficient mice. Nature 1996;382(6590):448-52
  • Murshed M, Schinke T, McKee MD, Karsenty G. Extracellular matrix mineralization is regulated locally; different roles of two gla-containing proteins. J Cell Biol 2004;165(5):625-30
  • Martin TJ. A skeleton key to metabolism. Nat Med 2007;13(9):1021-3
  • Ferron M, McKee MD, Levine RL, et al. Intermittent injections of osteocalcin improve glucose metabolism and prevent type 2 diabetes in mice. Bone 2012;50(2):568-75
  • Stafford DW. The vitamin K cycle. J Thromb Haemost 2005;3(8):1873-8
  • Poser JW, Esch FS, Ling NC, Price PA. Isolation and sequence of the vitamin K-dependent protein from human bone. Undercarboxylation of the first glutamic acid residue. J Biol Chem 1980;255(18):8685-91
  • Ferron M, Lacombe J, Germain A, et al. GGCX and VKORC1 inhibit osteocalcin endocrine functions. J Cell Biol 2015;208(6):761-76
  • Shiba S, Ikeda K, Azuma K, et al. Gamma-Glutamyl carboxylase in osteoblasts regulates glucose metabolism in mice. Biochem Biophys Res Commun 2014;453(3):350-5
  • Ferron M, Wei J, Yoshizawa T, et al. An ELISA-based method to quantify osteocalcin carboxylation in mice. Biochem Biophys Res Commun 2010;397(4):691-6
  • Mauro LJ, Olmsted EA, Davis AR, Dixon JE. Parathyroid hormone regulates the expression of the receptor protein tyrosine phosphatase, OST-PTP, in rat osteoblast-like cells. Endocrinology 1996;137(3):925-33
  • Dacquin R, Mee PJ, Kawaguchi J, et al. Knock-in of nuclear localised beta-galactosidase reveals that the tyrosine phosphatase Ptprv is specifically expressed in cells of the bone collar. Dev Dyn 2004;229(4):826-34
  • Hinoi E, Gao N, Jung DY, et al. The sympathetic tone mediates leptin’s inhibition of insulin secretion by modulating osteocalcin bioactivity. J Cell Biol 2008;183(7):1235-42
  • Yoshizawa T, Hinoi E, Jung DY, et al. The transcription factor ATF4 regulates glucose metabolism in mice through its expression in osteoblasts. J Clin Invest 2009;119(9):2807-17
  • Rached MT, Kode A, Silva BC, et al. FoxO1 expression in osteoblasts regulates glucose homeostasis through regulation of osteocalcin in mice. J Clin Invest 2010;120(1):357-68
  • Fulzele K, Riddle RC, DiGirolamo DJ, et al. Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition. Cell 2010;142(2):309-19
  • Simonet WS, Lacey DL, Dunstan CR, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 1997;89(2):309-19
  • Scimeca JC, Franchi A, Trojani C, et al. The gene encoding the mouse homologue of the human osteoclast-specific 116-kDa V-ATPase subunit bears a deletion in osteosclerotic (oc/oc) mutants. Bone 2000;26(3):207-13
  • Seifert MF, Marks SCJr. Morphological evidence of reduced bone resorption in the osteosclerotic (oc) mouse. Am J Anat 1985;172(2):141-53
  • Marks SCJr, Seifert MF, Lane PW. Osteosclerosis, a recessive skeletal mutation on chromosome 19 in the mouse. J Hered 1985;76(3):171-6
  • Lacombe J, Karsenty G, Ferron M. In vivo analysis of the contribution of bone resorption to the control of glucose metabolism in mice. Mol Metab 2013;2(4):498-504
  • Faienza MF, Luce V, Ventura A, et al. Skeleton and glucose metabolism: a bone-pancreas loop. Int J Endocrinol 2015;2015:758148
  • Wei JW, Makinistoglu J, Maurizi A, et al. Glucose uptake and Runx2 synergize to orchestrate osteoblast differentiation and bone formation. Cell 2015; In press
  • Ducy P, Zhang R, Geoffroy V, et al. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 1997;89(5):747-54
  • Ducy P, Karsenty G. Two distinct osteoblast-specific cis-acting elements control expression of a mouse osteocalcin gene. Mol Cell Biol 1995;15(4):1858-69
  • Harada S, Rodan GA. Control of osteoblast function and regulation of bone mass. Nature 2003;423(6937):349-55
  • Karsenty G, Kronenberg HM, Settembre C. Genetic control of bone formation. Annu Rev Cell Dev Biol 2009;25:629-48
  • Nilsson A, Ohlsson C, Isaksson OG, et al. Hormonal regulation of longitudinal bone growth. Eur J Clin Nutr 1994;48(Suppl 1):S150-8. discussion S158-60
  • Raisz LG. Hormonal regulation of bone growth and remodelling. Ciba Found Symp 1988;136:226-38
  • Canalis E. The hormonal and local regulation of bone formation. Endocr Rev 1983;4(1):62-77
  • Raisz LG, Canalis EM, Dietrich JW, et al. Hormonal regulation of bone formation. Recent Prog Horm Res 1978;34:335-56
  • Nakamura T, Imai Y, Matsumoto T, et al. Estrogen prevents bone loss via estrogen receptor alpha and induction of Fas ligand in osteoclasts. Cell 2007;130(5):811-23
  • Khosla S, Melton LJ3rd, Atkinson EJ, O’Fallon WM. Relationship of serum sex steroid levels to longitudinal changes in bone density in young versus elderly men. J Clin Endocrinol Metab 2001;86(8):3555-61
  • Vandewalle S, Taes Y, Fiers T, et al. Associations of sex steroids with bone maturation, bone mineral density, bone geometry, and body composition: a cross-sectional study in healthy male adolescents. J Clin Endocrinol Metab 2014;99(7):E1272-82
  • Shiau HJ, Aichelmann-Reidy ME, Reynolds MA. Influence of sex steroids on inflammation and bone metabolism. Periodontol 2000;64(1):81-94
  • Frenkel B, Hong A, Baniwal SK, et al. Regulation of adult bone turnover by sex steroids. J Cell Physiol 2010;224(2):305-10
  • Manolagas SC, Kousteni S, Jilka RL. Sex steroids and bone. Recent Prog Horm Res 2002;57:385-409
  • Vanderschueren D, Vandenput L, Boonen S, et al. Androgens and bone. Endocr Rev 2004;25(3):389-425
  • Venken K, De Gendt K, Boonen S, et al. Relative impact of androgen and estrogen receptor activation in the effects of androgens on trabecular and cortical bone in growing male mice: a study in the androgen receptor knockout mouse model. J Bone Miner Res 2006;21(4):576-85
  • Oury F, Sumara G, Sumara O, et al. Endocrine regulation of male fertility by the skeleton. Cell 2011;144(5):796-809
  • Oury F, Ferron M, Huizhen W, et al. Osteocalcin regulates murine and human fertility through a pancreas-bone-testis axis. J Clin Invest 2013;123(6):2421-33
  • Buday B, Pach FP, Literati-Nagy B, et al. Serum osteocalcin is associated with improved metabolic state via adiponectin in females versus testosterone in males. Gender specific nature of the bone-energy homeostasis axis. Bone 2013;57(1):98-104
  • Cui R, Su B, Sheng C, et al. Total osteocalcin in serum predicts testosterone level in male type 2 diabetes mellitus. Int J Clin Exp Med 2014;7(4):1145-9
  • Liao M, Guo X, Yu X, et al. Role of metabolic factors in the association between osteocalcin and testosterone in Chinese men. J Clin Endocrinol Metab 2013;98(8):3463-9
  • Kanazawa I, Tanaka K, Ogawa N, et al. Undercarboxylated osteocalcin is positively associated with free testosterone in male patients with type 2 diabetes mellitus. Osteoporos Int 2013;24(3):1115-19
  • Kirmani S, Atkinson EJ, Melton LJ3rd, et al. Relationship of testosterone and osteocalcin levels during growth. J Bone Miner Res 2011;26(9):2212-16
  • Bolland MJ, Grey A, Horne AM, Reid IR. Testosterone levels following decreases in serum osteocalcin. Calcif Tissue Int 2013;93(2):133-6
  • Pi M, Chen L, Huang MZ, et al. GPRC6A null mice exhibit osteopenia, feminization and metabolic syndrome. Plos One 2008;3(12):e3858
  • Wellendorph P, Hansen KB, Balsgaard A, et al. Deorphanization of GPRC6A: a promiscuous L-alpha-amino acid receptor with preference for basic amino acids. Mol Pharmacol 2005;67(3):589-97
  • Pi M, Faber P, Ekema G, et al. Identification of a novel extracellular cation-sensing G-protein-coupled receptor. J Biol Chem 2005;280(48):40201-9
  • Wellendorph P, Brauner-Osborne H. Molecular cloning, expression, and sequence analysis of GPRC6A, a novel family C G-protein-coupled receptor. Gene 2004;335:37-46
  • Wei J, Hanna T, Suda N, et al. Osteocalcin promotes beta-cell proliferation during development and adulthood through Gprc6a. Diabetes 2014;63(3):1021-31
  • Pi M, Wu Y, Quarles LD. GPRC6A mediates responses to osteocalcin in beta-cells in vitro and pancreas in vivo. J Bone Miner Res 2011;26(7):1680-3
  • Kuang D, Yao Y, Lam J, et al. Cloning and characterization of a family C orphan G-protein coupled receptor. J Neurochem 2005;93(2):383-91
  • Pi M, Quarles LD. Multiligand specificity and wide tissue expression of GPRC6A reveals new endocrine networks. Endocrinology 2012;153(5):2062-9
  • Boisen KA, Main KM, Rajpert-De Meyts E, et al. Are male reproductive disorders a common entity? The testicular dysgenesis syndrome. Ann N Y Acad Sci 2001;948:90-9
  • Glass AR, Vigersky RA. Testicular reserve of testosterone precursors in primary testicular failure. Fertil Steril 1982;38(1):92-6
  • Paduch DA. Testicular cancer and male infertility. Curr Opin Urol 2006;16(6):419-27
  • Winters SJ, Troen P. A reexamination of pulsatile luteinizing hormone secretion in primary testicular failure. J Clin Endocrinol Metab 1983;57(2):432-5
  • Takenouchi T, Sato W, Torii C, Kosaki K. Progressive cognitive decline in an adult patient with cleidocranial dysplasia. Eur J Med Genet 2014;57(7):319-21
  • McBrien H, Turk J, Letch N. The management of ADHD and associated problems in a young person with cleidocranial dysostosis (CCD) and mild intellectual disability. Clin Child Psychol Psychiatry 2006;11(3):445-56
  • Soule ABJr. Mutational dysostosis (cleidocranial dysostosis). J Bone Joint Surg Am 1946;28:81-102
  • Oury F, Khrimian L, Denny CA, et al. Maternal and offspring pools of osteocalcin influence brain development and functions. Cell 2013;155(1):228-41
  • Yeap BB, Alfonso H, Chubb SA, et al. Higher serum undercarboxylated osteocalcin and other bone turnover markers are associated with reduced diabetes risk and lower estradiol concentrations in older men. J Clin Endocrinol Metab 2015;100(1):63-71
  • Chen X, Wu Y, Liu L, et al. Osteocalcin is inversely associated with glucose levels in middle-aged Tibetan men with different degrees of glucose tolerance. Diabetes Metab Res Rev 2014;30(6):476-82
  • Hwang YC, Jeong IK, Ahn KJ, Chung HY. The uncarboxylated form of osteocalcin is associated with improved glucose tolerance and enhanced beta-cell function in middle-aged male subjects. Diabetes Metab Res Rev 2009;25(8):768-72
  • Villafan-Bernal JR, Llamas-Covarrubias MA, Muñoz-Valle JF, et al. A cut-point value of uncarboxylated to carboxylated index is associated with glycemic status markers in type 2 diabetes. J Investig Med 2014;62(1):33-6
  • Iki M, Tamaki J, Fujita Y, et al. Serum undercarboxylated osteocalcin levels are inversely associated with glycemic status and insulin resistance in an elderly Japanese male population: Fujiwara-kyo Osteoporosis Risk in Men (FORMEN) Study. Osteoporos Int 2012;23(2):761-70
  • Zhou M, Ma X, Li H, et al. Serum osteocalcin concentrations in relation to glucose and lipid metabolism in Chinese individuals. Eur J Endocrinol 2009;161(5):723-9
  • Rui X, Xu B, Su J, et al. Differential pattern for regulating insulin secretion, insulin resistance, and lipid metabolism by osteocalcin in male and female T2DM patients. Med Sci Monit 2014;20:711-19
  • Iglesias P, Arrieta F, Piñera M, et al. Serum concentrations of osteocalcin, procollagen type 1 N-terminal propeptide and beta-CrossLaps in obese subjects with varying degrees of glucose tolerance. Clin Endocrinol (Oxf) 2011;75(2):184-8
  • Lucey AJ, Paschos GK, Thorsdottir I, et al. Young overweight and obese women with lower circulating osteocalcin concentrations exhibit higher insulin resistance and concentrations of C-reactive protein. Nutr Res 2013;33(1):67-75
  • Juanola-Falgarona M, Cándido-Fernández J, Salas-Salvadó J, et al. Association between serum ferritin and osteocalcin as a potential mechanism explaining the iron-induced insulin resistance. Plos One 2013;8(10):e76433
  • Lee SW, Jo HH, Kim MR, et al. Association between osteocalcin and metabolic syndrome in postmenopausal women. Arch Gynecol Obstet 2015. [Epub ahead of print]
  • El-Eshmawy M, Abdel Aal I. Relationships between preptin and osteocalcin in obese, overweight, and normal weight adults. Appl Physiol Nutr Metab 2015;40(3):218-22
  • Hu WW, Ke YH, He JW, et al. Serum osteocalcin levels are inversely associated with plasma glucose and body mass index in healthy Chinese women. Acta Pharmacol Sin 2014;35(12):1521-6
  • Kim YS, Nam JS, Yeo DW, et al. The effects of aerobic exercise training on serum osteocalcin, adipocytokines and insulin resistance on obese young males. Clin Endocrinol (Oxf) 2014;82(5):686-94
  • Kim GS, Jekal Y, Kim HS, et al. Reduced serum total osteocalcin is associated with central obesity in Korean children. Obes Res Clin Pract 2014;8(3):e201-98
  • Ngarmukos C, Chailurkit LO, Chanprasertyothin S, et al. A reduced serum level of total osteocalcin in men predicts the development of diabetes in a long-term follow-up cohort. Clin Endocrinol (Oxf) 2012;77(1):42-6
  • Yeap BB, Chubb SA, Flicker L, et al. Reduced serum total osteocalcin is associated with metabolic syndrome in older men via waist circumference, hyperglycemia, and triglyceride levels. Eur J Endocrinol 2010;163(2):265-72
  • Confavreux CB, Szulc P, Casey R, et al. Lower serum osteocalcin is associated with more severe metabolic syndrome in elderly men from the MINOS cohort. Eur J Endocrinol 2014;171(2):275-83
  • Bezerra dos Santos Magalhaes K, Magalhães MM, Diniz ET, et al. Metabolic syndrome and central fat distribution are related to lower serum osteocalcin concentrations. Ann Nutr Metab 2013;62(3):183-8
  • Prats-Puig A, Osiniri I, Soriano-Rodríguez P, et al. Undercarboxylated osteocalcin relates to cardiovascular risk markers in offspring of families with metabolic syndrome. Atherosclerosis 2014;233(1):272-7
  • Chin KY, Ima-Nirwana S, Mohamed IN, et al. Serum osteocalcin is significantly related to indices of obesity and lipid profile in Malaysian men. Int J Med Sci 2014;11(2):151-7
  • Maddaloni E, D’Onofrio L, Lauria A, et al. Osteocalcin levels are inversely associated with Hba1c and BMI in adult subjects with long-standing type 1 diabetes. J Endocrinol Invest 2014;37(7):661-6
  • Alfadda AA, Masood A, Shaik SA, et al. Association between osteocalcin, metabolic syndrome, and cardiovascular risk factors: role of total and undercarboxylated osteocalcin in patients with type 2 diabetes. Int J Endocrinol 2013;2013:197519
  • Oosterwerff MM, van Schoor NM, Lips P, Eekhoff EM. Osteocalcin as a predictor of the metabolic syndrome in older persons: a population-based study. Clin Endocrinol (Oxf) 2013;78(2):242-7
  • Winhofer Y, Handisurya A, Tura A, et al. Osteocalcin is related to enhanced insulin secretion in gestational diabetes mellitus. Diabetes Care 2010;33(1):139-43
  • Wei J, Ferron M, Clarke CJ, et al. Bone-specific insulin resistance disrupts whole-body glucose homeostasis via decreased osteocalcin activation. J Clin Invest 2014;124(4):1-13
  • Ferris HA, Kahn CR. New mechanisms of glucocorticoid-induced insulin resistance: make no bones about it. J Clin Invest 2012;122(11):3854-7
  • Brennan-Speranza TC, Henneicke H, Gasparini SJ, et al. Osteoblasts mediate the adverse effects of glucocorticoids on fuel metabolism. J Clin Invest 2012;122(11):4172-89
  • Zhou B, Li H, Liu J, et al. Intermittent injections of osteocalcin reverse autophagic dysfunction and endoplasmic reticulum stress resulting from diet-induced obesity in the vascular tissue via the NFkappaB-p65-dependent mechanism. Cell Cycle 2013;12(12):1901-13
  • Zhou B, Li H, Xu L, et al. Osteocalcin reverses endoplasmic reticulum stress and improves impaired insulin sensitivity secondary to diet-induced obesity through nuclear factor-kappaB signaling pathway. Endocrinology 2013;154(3):1055-68
  • Gupte AA, Sabek OM, Fraga D, et al. Osteocalcin protects against nonalcoholic steatohepatitis in a mouse model of metabolic syndrome. Endocrinology 2014;155(12):4697-705
  • Mizokami A, Yasutake Y, Higashi S, et al. Oral administration of osteocalcin improves glucose utilization by stimulating glucagon-like peptide-1 secretion. Bone 2014;69:68-79
  • Mizokami A, Yasutake Y, Gao J, et al. Osteocalcin induces release of glucagon-like peptide-1 and thereby stimulates insulin secretion in mice. Plos One 2013;8(2):e57375
  • Riddle RC, Frey JL, Tomlinson RE, et al. Tsc2 is a molecular checkpoint controlling osteoblast development and glucose homeostasis. Mol Cell Biol 2014;34(10):1850-62
  • Bozec A, Bakiri L, Jimenez M, et al. Osteoblast-specific expression of Fra-2/AP-1 controls adiponectin and osteocalcin expression and affects metabolism. J Cell Sci 2013;126(Pt 23):5432-40
  • Yoshikawa Y, Kode A, Xu L, et al. Genetic evidence points to an osteocalcin-independent influence of osteoblasts on energy metabolism. J Bone Miner Res 2011;26(9):2012-25
  • Makinistoglu MP, Karsenty G. The class II histone deacetylase HDAC4 regulates cognitive, metabolic and endocrine functions through its expression in osteoblasts. Mol Metab 2015;4(1):64-9
  • Gillespie JR, Bush JR, Bell GI, et al. GSK-3beta function in bone regulates skeletal development, whole-body metabolism, and male life span. Endocrinology 2013;154(10):3702-18
  • Lee NJ, Nguyen AD, Enriquez RF, et al. NPY signalling in early osteoblasts controls glucose homeostasis. Mol Metab 2015;4(3):164-74

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.