33
Views
5
CrossRef citations to date
0
Altmetric
Review

Notch–Hes signaling in pituitary development

, , &
Pages 91-100 | Published online: 10 Jan 2014

References

  • Zhu X, Gleiberman A, Rosenfeld M. Molecular physiology of pituitary development: signaling and transcriptional networks. Physiol. Rev.87(3), 933–963 (2007).
  • Zhu X, Lin C, Prefontaine G, Tollkuhn J, Rosenfeld M. Genetic control of pituitary development and hypopituitarism. Curr. Opin. Genet. Dev.15(3), 332–340 (2005).
  • Zhu X, Rosenfeld M. Transcriptional control of precursor proliferation in the early phases of pituitary development. Curr. Opin. Genet. Dev.14(5), 567–574 (2004).
  • Kaufmann MH. The Atlas of Mouse Development (Revised edition). Elsevier Academic Press, London, UK 409–419 (1992).
  • Boersma C, Van Leeuwen F. Neuron–glia interactions in the release of oxytocin and vasopressin from the rat neural lobe: the role of opioids, other neuropeptides and their receptors. Neuroscience62(4), 1003–1020 (1994).
  • Virard I, Coquillat D, Bancila M, Kaing S, Durbec P. Oligodendrocyte precursor cells generate pituicytes in vivo during neurohypophysis development. Glia53(3), 294–303 (2006).
  • Burgess R, Lunyak V, Rosenfeld M. Signaling and transcriptional control of pituitary development. Curr. Opin. Genet. Dev.12(5), 534–539 (2002).
  • Carrière C, Gleiberman A, Lin C, Rosenfeld M. From panhypopituitarism to combined pituitary deficiencies: do we need the anterior pituitary? Rev. Endocr. Metab. Disord.5(1), 5–13 (2004)
  • Dasen J, Rosenfeld M. Signaling and transcriptional mechanisms in pituitary development. Annu. Rev. Neurosci.24, 327–355 (2001).
  • Keegan C, Camper S. Mouse knockout solves endocrine puzzle and promotes new pituitary lineage model. Genes Dev.17(6), 677–682 (2003).
  • Olson L, Rosenfeld M. Perspective: genetic and genomic approaches in elucidating mechanisms of pituitary development. Endocrinology143(6), 2007–2011 (2002)
  • Scully K, Rosenfeld M. Pituitary development: regulatory codes in mammalian organogenesis. Science295(5563), 2231–2235 (2002).
  • Takuma N, Sheng H, Furuta Y et al. Formation of Rathke’s pouch requires dual induction from the diencephalon. Development125(23), 4835–4840 (1998).
  • Treier M, Gleiberman A, O’Connell S et al. Multistep signaling requirements for pituitary organogenesis in vivo. Genes Dev.12(11), 1691–1704 (1998).
  • Treier M, O’Connell S, Gleiberman A et al. Hedgehog signaling is required for pituitary gland development. Development128(3), 377–386 (2001).
  • Cha K, Douglas K, Potok M, Liang H, Jones S, Camper S. WNT5A signaling affects pituitary gland shape. Mech. Dev.121(2), 183–194 (2004).
  • Szeto D, Rodriguez-Esteban C, Ryan A et al. Role of the Bicoid-related homeodomain factor Pitx1 in specifying hindlimb morphogenesis and pituitary development. Genes Dev.13(4), 484–494 (1999).
  • Suh H, Gage P, Drouin J, Camper S. Pitx2 is required at multiple stages of pituitary organogenesis: pituitary primordium formation and cell specification. Development129(2), 329–337 (2002).
  • Lin C, Kioussi C, O’Connell S et al. Pitx2 regulates lung asymmetry, cardiac positioning and pituitary and tooth morphogenesis. Nature401(6750), 279–282 (1999).
  • Sheng H, Zhadanov A, Mosinger BJ et al. Specification of pituitary cell lineages by the LIM homeobox gene Lhx3. Science272(5264), 1004–1007 (1996).
  • Sheng H, Moriyama K, Yamashita T et al. Multistep control of pituitary organogenesis. Science278(5344), 1809–1812 (1997).
  • Raetzman L, Ward R, Camper S. Lhx4 and Prop1 are required for cell survival and expansion of the pituitary primordia. Development129(18), 4229–4239 (2002).
  • Li X, Oghi K, Zhang J et al. Eya protein phosphatase activity regulates Six1-Dach- Eya transcriptional effects in mammalian organogenesis. Nature426(6964), 247–254 (2003).
  • Li X, Perissi V, Liu F, Rose D, Rosenfeld M. Tissue-specific regulation of retinal and pituitary precursor cell proliferation. Science297(5584), 1180–1183 (2002).
  • Nasonkin I, Ward R, Raetzman L et al. Pituitary hypoplasia and respiratory distress syndrome in Prop1 knockout mice. Hum. Mol. Genet.13(22), 2727–2735 (2004).
  • Ward R, Raetzman L, Suh H, Stone B, Nasonkin I, Camper S. Role of PROP1 in pituitary gland growth. Mol. Endocrinol.19(3), 698–710 (2005).
  • Sornson M, Wu W, Dasen J et al. Pituitary lineage determination by the prophet of Pit-1 homeodomain factor defective in Ames dwarfism. Nature384(6607), 327–333 (1996).
  • Dasen J, O’Connell S, Flynn S et al. Reciprocal interactions of Pit1 and GATA2 mediate signaling gradient-induced determination of pituitary cell types. Cell97(5), 587–598 (1999).
  • Lamolet B, Pulichino A, Lamonerie T et al. A pituitary cell-restricted T box factor, Tpit, activates POMC transcription in cooperation with Pitx homeoproteins. Cell104(6), 849–859 (2001).
  • Liu J, Lin C, Gleiberman A et al. Tbx19, a tissue-selective regulator of POMC gene expression. Proc. Natl Acad. Sci. USA98(15), 8674–8679 (2001).
  • Pulichino A, Vallette-Kasic S, Tsai J, Couture C, Gauthier Y, Drouin J. Tpit determines alternate fates during pituitary cell differentiation. Genes Dev.17(6), 738–747 (2003).
  • Procter A, Phillips JR, Cooper D. The molecular genetics of growth hormone deficiency. Hum. Genet.103(3), 255–272 (1998).
  • Kita A, Imayoshi I, Hojo M et al.Hes1 and Hes5 control the progenitor pool, intermediate lobe specification, and posterior lobe formation in the pituitary development. Mol. Endocrinol.21(6), 1458–1466 (2007).
  • Raetzman L, Cai J, Camper S. Hes1 is required for pituitary growth and melanotrope specification. Dev. Biol.304(2), 455–466 (2007).
  • Raetzman L, Ross S, Cook S, Dunwoodie S, Camper S, Thomas P. Developmental regulation of Notch signaling genes in the embryonic pituitary: Prop1 deficiency affects Notch2 expression. Dev. Biol.265(2), 329–340 (2004).
  • Raetzman L, Wheeler B, Ross S, Thomas P, Camper S. Persistent expression of Notch2 delays gonadotrope differentiation. Mol. Endocrinol.20(11), 2898–2908 (2006).
  • Zhu X, Zhang J, Tollkuhn J et al. Sustained Notch signaling in progenitors is required for sequential emergence of distinct cell lineages during organogenesis. Genes Dev.20(19), 2739–2753 (2006).
  • Chen J, Hersmus N, Van Duppen V, Caesens P, Denef C, Vankelecom H. The adult pituitary contains a cell population displaying stem/progenitor cell and early embryonic characteristics. Endocrinology146(9), 3985–3998 (2005).
  • Chen J, Crabbe A, Van Duppen V, Vankelecom H. The notch signaling system is present in the postnatal pituitary: marked expression and regulatory activity in the newly discovered side population. Mol. Endocrinol.20(12), 3293–3307 (2006).
  • Sasai Y, Kageyama R, Tagawa Y, Shigemoto R, Nakanishi S. Two mammalian helix–loop–helix factors structurally related to Drosophila hairy and Enhancer of split. Genes Dev.6(12B), 2620–2634 (1992).
  • Akazawa C, Sasai Y, Nakanishi S, Kageyama R. Molecular characterization of a rat negative regulator with a basic helix–loop–helix structure predominantly expressed in the developing nervous system. J. Biol. Chem.267(30), 21879–21885 (1992).
  • Kageyama R, Masamizu Y, Niwa Y. Oscillator mechanism of Notch pathway in the segmentation clock. Dev. Dyn.236(6), 1403–1409 (2007).
  • Kageyama R, Ohtsuka T. The Notch–Hes pathway in mammalian neural development. Cell Res.9(3), 179–188 (1999).
  • Kageyama R, Ohtsuka T, Hatakeyama J, Ohsawa R. Roles of bHLH genes in neural stem cell differentiation. Exp. Cell Res.306(2), 343–348 (2005).
  • Kageyama R, Ohtsuka T, Kobayashi T. The Hes gene family: repressors and oscillators that orchestrate embryogenesis. Development134(7), 1243–1251 (2007).
  • Ohsawa R, Kageyama R. Regulation of retinal cell fate specification by multiple transcription factors. Brain Res.DOI: 10.1016/j.brainres.2007.04.014 (2007) (Epub ahead of print).
  • Baek J, Hatakeyama J, Sakamoto S, Ohtsuka T, Kageyama R. Persistent and high levels of Hes1 expression regulate boundary formation in the developing central nervous system. Development133(13), 2467–2476 (2006).
  • Hatakeyama J, Bessho Y, Katoh K et al.Hes genes regulate size, shape and histogenesis of the nervous system by control of the timing of neural stem cell differentiation. Development131(22), 5539–5550 (2004).
  • Inoue T, Hojo M, Bessho Y, Tano Y, Lee J, Kageyama R. Math3 and NeuroD regulate amacrine cell fate specification in the retina. Development129(4), 831–842 (2002).
  • Ohtsuka T, Ishibashi M, Gradwohl G, Nakanishi S, Guillemot F, Kageyama R. Hes1 and Hes5 as notch effectors in mammalian neuronal differentiation. EMBO J.18(8), 2196–2207 (1999).
  • Hojo M, Ohtsuka T, Hashimoto N, Gradwohl G, Guillemot F, Kageyama R. Glial cell fate specification modulated by the bHLH gene Hes5 in mouse retina. Development127(12), 2515–2522 (2000).
  • Hatakeyama J, Kageyama R. Notch1 expression is spatiotemporally correlated with neurogenesis and negatively regulated by Notch1-independent Hes genes in the developing nervous system. Cereb. Cortex16(Suppl. 1), i132–i137 (2006).
  • Hatakeyama J, Sakamoto S, Kageyama R. Hes1 and Hes5 regulate the development of the cranial and spinal nerve systems. Dev. Neurosci.28(1–2), 92–101 (2006).
  • Tomita K, Hattori M, Nakamura E, Nakanishi S, Minato N, Kageyama R. The bHLH gene Hes1 is essential for expansion of early T cell precursors. Genes Dev.13(19), 1203–1210 (1999).
  • Sumazaki R, Shiojiri N, Isoyama S et al. Conversion of biliary system to pancreatic tissue in Hes1-deficient mice. Nat. Genet.36(1), 83–87 (2004).
  • Jensen J, Pedersen E, Galante P et al. Control of endodermal endocrine development by Hes1. Nat. Genet.24(1), 36–44 (2000).
  • Fre S, Huyghe M, Mourikis P, Robine S, Louvard D, Artavanis-Tsakonas S. Notch signals control the fate of immature progenitor cells in the intestine. Nature435(7044), 964–968 (2005).
  • de la Pompa J, Wakeham A, Correia K et al. Conservation of the Notch signalling pathway in mammalian neurogenesis. Development124(6), 1139–1148 (1997).
  • Gulisano M, Broccoli V, Pardini C, Boncinelli E. Emx1 and Emx2 show different patterns of expression during proliferation and differentiation of the developing cerebral cortex in the mouse. Eur. J. Neurosci.8(5), 1037–1050 (1996).
  • Vankelecom H. Stem cells in the postnatal pituitary? Neuroendocrinology85(2), 110–130 (2007).
  • Challen G, Little M. A side order of stem cells: the SP phenotype. Stem Cells24(1), 3–12 (2006).
  • Lamolet B, Poulin G, Chu K, Guillemot F, Tsai M, Drouin J. Tpit-independent function of NeuroD1(BETA2) in pituitary corticotroph differentiation. Mol. Endocrinol.18(4), 995–1003 (2004).
  • Pulichino A, Lamolet B, Vallette-Kasic S et al.Tpit-/-NeuroD1-/- mice reveal novel aspects of corticotroph development. Endocr. Res,30(4), 551–552 (2004).
  • Pogoda H, von der Hardt S, Herzog W, Kramer C, Schwarz H, Hammerschmidt M. The proneural gene ascl1a is required for endocrine differentiation and cell survival in the zebrafish adenohypophysis. Development133(6), 1079–1089 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.