40
Views
4
CrossRef citations to date
0
Altmetric
Review

Preserving insulin secretion in Type 2 diabetes mellitus

Pages 147-159 | Published online: 10 Jan 2014

References

  • King H, Aubert RE, Herman WH. Global burden of diabetes, 1995–2025: prevalence, numerical estimates, and projections. Diabetes Care21, 1414–1431 (1998).
  • Bell GI, Polonsky KS. Diabetes mellitus and genetically programmed defects in β-cell function. Nature414, 788–791 (2001).
  • Rolla A. The pathophysiological basis for intensive insulin replacement. Int. J. Obes. Relat. Metab. Disord.28(Suppl. 2), S3–S7 (2004).
  • Boden G, Shulman GI. Free fatty acids in obesity and Type 2 diabetes: defining their role in the development of insulin resistance and β-cell dysfunction. Eur. J. Clin. Invest.32, 14–33 (2002).
  • Kahn SE. The relative contributions of insulin resistance and β-cell dysfunction to the pathophysiology of Type 2 diabetes. Diabetologia46, 3–19 (2003).
  • Holman RR. Assessing the potential for a-glucosidase inhibitors in prediabetic states. Diabetes Res. Clin. Pract.40(Suppl.), S21–S25 (1998).
  • UK Prospective Diabetes Study Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with Type 2 diabetes (UKPDS 34). Lancet352, 854–865 (1998).
  • United Kingdom Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with Type 2 diabetes (UKPDS 33). Lancet352, 837–853 (1998).
  • Wajchenberg BL. β-cell failure in diabetes and preservation by clinical treatment. Endocr. Rev.28, 187–218 (2007).
  • Katakura M, Komatsu M, Sato Y, Hashizume K, Aizawa T. Primacy of β-cell dysfunction in the development of hyperglycemia: a study in the Japanese general population. Metabolism53, 949–953 (2004).
  • Jensen CC, Cnop M, Hull RL, Fujimoto WY, Kahn SE. β-cell function is a major contributor to oral glucose tolerance in high-risk relatives of four ethnic groups in the U.S. Diabetes51, 2170–2178 (2002).
  • White MF. Insulin signaling in health and disease. Science302, 1710–1711 (2003).
  • Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature414, 799–806 (2001).
  • Pessin JE, Saltiel AR. Signaling pathways in insulin action: molecular targets of insulin resistance. J. Clin. Invest.106, 165–169 (2000).
  • Weyer C, Bogardus C, Mott DM, Pratley RE. The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of Type 2 diabetes mellitus. J. Clin. Invest.104, 787–794 (1999).
  • Levy J, Atkinson AB, Bell PM, McCance DR, Hadden DR. β-cell deterioration determines the onset and rate of progression of secondary dietary failure in Type 2 diabetes mellitus: the 10-year follow-up of the Belfast Diet Study. Diabet. Med.15, 290–296 (1998).
  • Kloppel G, Lohr M, Habich K, Oberholzer M, Heitz PU. Islet pathology and the pathogenesis of Type 1 and Type 2 diabetes mellitus revisited. Surv. Synth. Pathol. Res.4, 110–125 (1985).
  • Clark A, Wells CA, Buley ID et al. Islet amyloid, increased A-cells, reduced β-cells and exocrine fibrosis: quantitative changes in the pancreas in Type 2 diabetes. Diabetes Res.9, 151–159 (1988).
  • Pick A, Clark J, Kubstrup C et al. Role of apoptosis in failure of β-cell mass compensation for insulin resistance and β-cell defects in the male Zucker diabetic fatty rat. Diabetes47, 358–364 (1998).
  • Burks DJ, White MF. IRS proteins and β-cell function. Diabetes50(Suppl. 1), S140–S145 (2001).
  • Rhodes CJ. Type 2 diabetes-a matter of β-cell life and death? Science307, 380–384 (2005).
  • Vollenweider P, Menard B, Nicod P. Insulin resistance, defective insulin receptor substrate 2-associated phosphatidylinositol-3´ kinase activation, and impaired atypical protein kinase C (ζ /λ) activation in myotubes from obese patients with impaired glucose tolerance. Diabetes51, 1052–1059 (2002).
  • Milburn JL Jr, Hirose H, Lee YH et al. Pancreatic β-cells in obesity. Evidence for induction of functional, morphologic, and metabolic abnormalities by increased long chain fatty acids. J. Biol. Chem.270, 1295–1299 (1995).
  • Cockburn BN, Ostrega DM, Sturis J, Kubstrup C, Polonsky KS, Bell GI. Changes in pancreatic islet glucokinase and hexokinase activities with increasing age, obesity, and the onset of diabetes. Diabetes46, 1434–1439 (1997).
  • Meece J. Pancreatic islet dysfunction in Type 2 diabetes: a rational target for incretin-based therapies. Curr. Med. Res. Opin.23, 933–944 (2007).
  • Cavaghan MK, Ehrmann DA, Polonsky KS. Interactions between insulin resistance and insulin secretion in the development of glucose intolerance. J. Clin. Invest.106, 329–333 (2000).
  • Weir GC, Bonner-Weir S. Five stages of evolving β-cell dysfunction during progression to diabetes. Diabetes53(Suppl. 3), S16–S21 (2004).
  • Donath MY, Halban PA. Decreased β-cell mass in diabetes: significance, mechanisms and therapeutic implications. Diabetologia47, 581–589 (2004).
  • Maedler K, Spinas GA, Lehmann R et al. Glucose induces β-cell apoptosis via upregulation of the Fas receptor in human islets. Diabetes50, 1683–1690 (2001).
  • Robertson RP, Harmon J, Tran PO, Tanaka Y, Takahashi H. Glucose toxicity in β-cells: Type 2 diabetes, good radicals gone bad, and the glutathione connection. Diabetes52, 581–587 (2003).
  • Kajimoto Y, Matsuoka T, Kaneto H et al. Induction of glycation suppresses glucokinase gene expression in HIT-T15 cells. Diabetologia42, 1417–1424 (1999).
  • Kaneto H, Katakami N, Kawamori D et al. Involvement of oxidative stress in the pathogenesis of diabetes. Antiox. Redox Signal.9, 355–366 (2007).
  • Hirsch IB, Brownlee M. Should minimal blood glucose variability become the gold standard of glycemic control? J. Diabetes Complication19, 178–181 (2005).
  • Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature414, 813–820 (2001).
  • Shimabukuro M, Zhou YT, Levi M, Unger RH. Fatty acid-induced b cell apoptosis: a link between obesity and diabetes. Proc. Natl Acad. Sci. USA95, 2498–2502 (1998).
  • Maedler K, Carr RD, Bosco D, Zuellig RA, Berney T, Donath MY. Sulfonylurea induced β-cell apoptosis in cultured human islets. J. Clin. Endocrinol. Metab.90, 501–506 (2005).
  • Kolb H, Mandrup-Poulsen T. An immune origin of Type 2 diabetes? Diabetologia48, 1068–1050 (2005).
  • Pacini G, Mari A. Methods for clinical assessment of insulin sensitivity and β-cell function. Best Pract. Res. Clin. Endocrinol. Metab.17, 305–322 (2003).
  • Mykkanen L, Haffner SM, Hales CN, Ronnemaa T, Laakso M. The relation of proinsulin, insulin, and proinsulin-to-insulin ratio to insulin sensitivity and acute insulin response in normoglycemic subjects. Diabetes46, 1990–1995 (1997).
  • Bell DS, Ovalle F. The role of C-peptide levels in screening for latent autoimmune diabetes in adults. Am. J. Ther.11, 308–311 (2004).
  • Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia28, 412–419 (1985).
  • Wallace TM, Levy JC, Matthews DR. Use and abuse of HOMA modeling. Diabetes Care27, 1487–1495 (2004).
  • Song Y, Manson JE, Tinker L et al. Insulin sensitivity and insulin secretion determined by the homeostasis model assessment (HOMA) and risk of diabetes mellitus in a multi-ethnic cohort of women: the Women’s Health Initiative Observational Study. Diabetes Care30, 1747–1752 (2007).
  • Sarafidis PA, Lasaridis AN, Nilsson PM et al. Validity and reproducibility of HOMA-IR, 1/HOMA-IR, QUICKI and McAuley’s indices in patients with hypertension and Type II diabetes. J. Hum. Hypertens.21, 709–716 (2007).
  • Cavaghan MK, Ehrmann DA, Byrne MM, Polonsky KS. Treatment with the oral antidiabetic agent troglitazone improves b cell responses to glucose in subjects with impaired glucose tolerance. J. Clin. Invest.100, 530–537 (1997).
  • Pontiroli AE, Pizzocri P, Caumo A, Perseghin G, Luzi L. Evaluation of insulin release and insulin sensitivity through oral glucose tolerance test: differences between NGT, IFG, IGT, and Type 2 diabetes mellitus. A cross-sectional and follow-up study. Acta Diabetol.41, 70–76 (2004).
  • Stumvoll M, Mitrakou A, Pimenta W et al. Use of the oral glucose tolerance test to assess insulin release and insulin sensitivity. Diabetes Care23, 295–301 (2000).
  • Tripathy D, Carlsson M, Almgren P et al. Insulin secretion and insulin sensitivity in relation to glucose tolerance: lessons from the Botnia Study. Diabetes49, 975–980 (2000).
  • Guerrero-Romero F, Rodriguez-Moran M. Assessing progression to impaired glucose tolerance and Type 2 diabetes mellitus. Eur. J. Clin. Invest.36, 796–802 (2006).
  • Shim WS, Kim SK, Kim HJ et al. Decrement of postprandial insulin secretion determines the progressive nature of Type-2 diabetes. Eur. J. Endocrinol.155, 615–622 (2006).
  • American Association of Clinical Endocrinologists. American Association of Clinical Endocrinologists medical guidelines for clinical practice for the management of diabetes mellitus. Endocr. Pract.13(Suppl. 1), 4–68 (2007).
  • Tseng YH, Ueki K, Kriauciunas KM, Kahn CR. Differential roles of insulin receptor substrates in the anti-apoptotic function of insulin-like growth factor-1 and insulin. J. Biol. Chem.277, 31601–31611 (2002).
  • Hennige AM, Ozcan U, Okada T et al. Alterations in growth and apoptosis of insulin receptor substrate-1-deficient β-cells. Am. J. Physiol. Endocrinol. Metab.289, E337–E346 (2005).
  • Dandona P, Chaudhuri A, Ghanim H, Mohanty P. Proinflammatory effects of glucose and anti-inflammatory effect of insulin: relevance to cardiovascular disease. Am. J. Cardiol.99, 15B–26B (2007).
  • Dandona P, Chaudhuri A, Mohanty P, Ghanim H. Anti-inflammatory effects of insulin. Curr. Opin. Clin. Nutr. Metab. Care10, 511–517 (2007).
  • Garvey WT, Olefsky JM, Griffin J, Hamman RF, Kolterman OG. The effect of insulin treatment on insulin secretion and insulin action in Type II diabetes mellitus. Diabetes34, 222–234 (1985).
  • Gormley MJ, Hadden DR, Woods R, Sheridan B, Andrews WJ. One month’s insulin treatment of Type II diabetes: the early and medium-term effects following insulin withdrawal. Metabolism35, 1029–1036 (1986).
  • Ryan EA, Imes S, Wallace C. Short-term intensive insulin therapy in newly diagnosed Type 2 diabetes. Diabetes Care27, 1028–1032 (2004).
  • Shichiri M, Kishikawa H, Ohkubo Y, Wake N. Long-term results of the Kumamoto Study on optimal diabetes control in Type 2 diabetic patients. Diabetes Care23(Suppl. 2), B21–B29 (2000).
  • Alvarsson M, Sundkvist G, Lager I et al. Beneficial effects of insulin versus sulphonylurea on insulin secretion and metabolic control in recently diagnosed Type 2 diabetic patients. Diabetes Care26, 2231–2237 (2003).
  • Li Y, Xu W, Liao Z et al. Induction of long-term glycemic control in newly diagnosed Type 2 diabetic patients is associated with improvement of β-cell function. Diabetes Care27, 2597–2602 (2004).
  • Ilkova H, Glaser B, Tunckale A, Bagriacik N, Cerasi E. Induction of long-term glycemic control in newly diagnosed Type 2 diabetic patients by transient intensive insulin treatment. Diabetes Care20, 1353–1356 (1997).
  • Ovalle F, Bell DS. Effect of rosiglitazone versus insulin on the pancreatic β-cell function of subjects with Type 2 diabetes. Diabetes Care27, 2585–2589 (2004).
  • Diabetes Prevention Program Research Group. Reduction in the incidence of Type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med.346, 393–403 (2002).
  • Kitabchi AE, Temprosa M, Knowler WC et al. Role of insulin secretion and sensitivity in the evolution of Type 2 diabetes in the diabetes prevention program: effects of lifestyle intervention and metformin. Diabetes54, 2404–2414 (2005).
  • Lebovitz HE, Dole JF, Patwardhan R, Rappaport EB, Freed MI. Rosiglitazone monotherapy is effective in patients with Type 2 diabetes. J. Clin. Endocrinol. Metab.86, 280–288 (2001).
  • Einhorn D, Rendell M, Rosenzweig J, Egan JW, Mathisen AL, Schneider RL. Pioglitazone hydrochloride in combination with metformin in the treatment of Type 2 diabetes mellitus: a randomized, placebo-controlled study. The Pioglitazone 027 Study Group. Clin. Ther.22, 1395–1409 (2000).
  • Rosenblatt S, Miskin B, Glazer NB, Prince MJ, Robertson KE. The impact of pioglitazone on glycemic control and atherogenic dyslipidemia in patients with Type 2 diabetes mellitus. Coron. Artery. Dis.12, 413–423 (2001).
  • Durbin RJ. Thiazolidinedione therapy in the prevention/delay of Type 2 diabetes in patients with impaired glucose tolerance and insulin resistance. Diabetes Obes. Metab.6, 280–285 (2004).
  • Rosen CJ. The rosiglitazone story – lessons from an FDA Advisory Committee meeting. N. Engl. J. Med.357, 844–846 (2007).
  • Kahn SE, Haffner SM, Heise MA et al. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N. Engl. J. Med.355, 2427–2443 (2006).
  • Li J, Tian H, Li Q et al. Improvement of insulin sensitivity and β-cell function by nateglinide and repaglinide in Type 2 diabetic patients: a randomized controlled double-blind and double-dummy multicentre clinical trial. Diabetes Obes. Metab.9, 558–565 (2007).
  • Mari A, Gastaldelli A, Foley JE, Pratley RE, Ferrannini E. β-cell function in mild Type 2 diabetic patients: effects of 6-month glucose lowering with nateglinide. Diabetes Care28, 1132–1138 (2005).
  • Takahashi A, Nagashima K, Hamasaki A et al. Sulfonylurea and glinide reduce insulin content, functional expression of K(ATP) channels, and accelerate apoptotic β-cell death in the chronic phase. Diabetes Res. Clin. Pract.77, 343–350 (2007).
  • Chiasson JL, Brindisi MC, Rabasa-Lhoret R. The prevention of Type 2 diabetes: what is the evidence? Minerva Endocrinologica30, 179–191 (2005).
  • Drucker DJ. Glucagon-like peptides: regulators of cell proliferation, differentiation, and apoptosis. Mol. Endocrinol.17, 161–171 (2003).
  • Hui H, Nourparvar A, Zhao X, Perfetti R. Glucagon-like peptide-1 inhibits apoptosis of insulin-secreting cells via a cyclic 5´-adenosine monophosphate-dependent protein kinase A- and a phosphatidylinositol 3-kinase-dependent pathway. Endocrinology144, 1444–1455 (2003).
  • Li Y, Hansotia T, Yusta B, Ris F, Halban PA, Drucker DJ. Glucagon-like peptide-1 receptor signaling modulates b cell apoptosis. J. Biol. Chem.278, 471–478 (2003).
  • Fehse F, Trautmann M, Holst JJ et al. Exenatide augments first- and second-phase insulin secretion in response to intravenous glucose in subjects with Type 2 diabetes. J. Clin. Endocrinol. Metab.90, 5991–5997 (2005).
  • Mari A, Degn K, Brock B, Rungby J, Ferrannini E, Schmitz O. Characterization of β-cell function improvement by liraglutide: modeling analysis of 24-h tests. Diabetes55, A124 (2006).
  • Zinman B, Hoogwerf BJ, Duran GS et al. The effect of adding exenatide to a thiazolidinedione in suboptimally controlled Type 2 diabetes: a randomized trial. Ann. Intern. Med.146, 477–485 (2007).
  • Buse JB, Klonoff DC, Nielsen LL et al. Metabolic effects of two years of exenatide treatment on diabetes, obesity, and hepatic biomarkers in patients with Type 2 diabetes: an interim analysis of data from the open-label, uncontrolled extension of three double-blind, placebo-controlled trials. Clin. Ther.29, 139–153 (2007).
  • Sturis J, Gotfredsen CF, Romer J et al. GLP-1 derivative liraglutide in rats with β-cell deficiencies: influence of metabolic state on β-cell mass dynamics. Br. J. Pharmacol.140, 123–132 (2003).
  • Rolin B, Larsen MO, Gotfredsen CF et al. The long-acting GLP-1 derivative NN2211 ameliorates glycemia and increases β-cell mass in diabetic mice. Am. J. Physiol. Endocrinol. Metab.283, E745–E752 (2002).
  • Bregenholt S, Moldrup A, Blume N et al. The long-acting glucagon-like peptide-1 analogue, liraglutide, inhibits β-cell apoptosis In vitro. Biochem. Biophys. Res. Commun.330, 577–584 (2005).
  • Degn KB, Juhl CB, Sturis J et al. One week’s treatment with the long-acting glucagon-like peptide 1 derivative liraglutide (NN2211) markedly improves 24-h glycemia and a- and β-cell function and reduces endogenous glucose release in patients with Type 2 diabetes. Diabetes53, 1187–1194 (2004).
  • Chang AM, Jakobsen G, Sturis J et al. The GLP-1 derivative NN2211 restores β-cell sensitivity to glucose in Type 2 diabetic patients after a single dose. Diabetes52, 1786–1791 (2003).
  • Mari A, Sallas WM, He YL et al. Vildagliptin, a dipeptidyl peptidase-IV inhibitor, improves model-assessed β-cell function in patients with Type 2 diabetes. J. Clin. Endocrinol. Metab.90, 4888–4894 (2005).
  • Aschner P, Kipnes MS, Lunceford JK, Sanchez M, Mickel C, Williams-Herman DE. Effect of the dipeptidyl peptidase-4 inhibitor sitagliptin as monotherapy on glycemic control in patients with Type 2 diabetes. Diabetes Care29, 2632–2637 (2006).
  • Williams-Herman D, Xu L. Initial combination therapy with sitagliptin, a selective DPP-4 inhibitor, and metformin leads to marked improvement in β-cell function in patients with Type 2 diabetes. Diabetes56, A142 (2007).
  • Utzschneider KM, Tong J, Udayasankar J. The dipeptidyl peptidase-4 (DPP-4) vildaglitin improves insulin sensitivity and β-cell function in subjects with impaired fasting glucose. Diabetes56, A137 (2007).
  • Andraws R, Brown DL. Effect of inhibition of the renin-angiotensin system on development of Type 2 diabetes mellitus (meta-analysis of randomized trials). Am. J. Cardiol.99, 1006–1012 (2007).
  • Jandeleit-Dahm KA, Tikellis C, Reid CM, Johnston CI, Cooper ME. Why blockade of the renin-angiotensin system reduces the incidence of new-onset diabetes. J. Hypertens.23, 463–473 (2005).
  • Scheen AJ. Prevention of Type 2 diabetes mellitus through inhibition of the renin–angiotensin system. Drugs64, 2537–2565 (2004).
  • Leung PS. Mechanisms of protective effects induced by blockade of the renin–angiotensin system: novel role of the pancreatic islet angiotensin-generating system in Type 2 diabetes. Diabet. Med.24, 110–116 (2007).
  • Larsen CM, Faulenbach M, Vaag A et al. Interleukin-1-receptor antagonist in Type 2 diabetes mellitus. N. Engl. J. Med.356, 1517–1526 (2007).
  • Meneghini LF. Impact of bariatric surgery on Type 2 diabetes. Cell. Biochem. Biophys.48, 97–102 (2007).
  • Dixon JB, O’Brien PE. Health outcomes of severely obese Type 2 diabetic subjects 1 year after laparoscopic adjustable gastric banding. Diabetes Care25, 358–363 (2002).
  • Polyzogopoulou EV, Kalfarentzos F, Vagenakis AG, Alexandrides TK. Restoration of euglycemia and normal acute insulin response to glucose in obese subjects with Type 2 diabetes following bariatric surgery. Diabetes52, 1098–1103 (2003).
  • Hickey MS, Pories WJ, MacDonald KG Jr et al. A new paradigm for Type 2 diabetes mellitus: could it be a disease of the foregut? Ann. Surg.227, 637–643 (1998).
  • Miholic J, Orskov C, Holst JJ, Kotzerke J, Meyer HJ. Emptying of the gastric substitute, glucagon-like peptide-1 (GLP-1), and reactive hypoglycemia after total gastrectomy. Dig. Dis. Sci.36, 1361–1370 (1991).
  • Gebhard B, Holst JJ, Biegelmayer C, Miholic J. Postprandial GLP-1, norepinephrine, and reactive hypoglycemia in dumping syndrome. Dig. Dis. Sci.46, 1915–1923 (2001).
  • Bjork E, Berne C, Kampe O, Wibell L, Oskarsson P, Karlsson FA. Diazoxide treatment at onset preserves residual insulin secretion in adults with autoimmune diabetes. Diabetes45, 1427–1430 (1996).
  • Ortqvist E, Bjork E, Wallensteen M et al. Temporary preservation of β-cell function by diazoxide treatment in childhood Type 1 diabetes. Diabetes Care27, 2191–2197 (2004).
  • Nathan DM, Buse JB, Davidson MB et al. Management of hyperglycemia in Type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy. A consensus statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care29, 1963–1972 (2006).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.