35
Views
2
CrossRef citations to date
0
Altmetric
Review

FoxO proteins in pancreatic β-cells as potential therapeutic targets in diabetes

&
Pages 175-185 | Published online: 10 Jan 2014

References

  • Kaestner KH, Knochel W, Martinez DE. Unified nomenclature for the winged helix/forkhead transcription factors. Genes Dev.14, 142–146 (2000).
  • Greer EL, Brunet A. FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene24(50), 7410–7425 (2005).
  • Glauser DA, Schlegel W. The emerging role of FOXO transcription factors in pancreatic β cells. J. Endocrinol.193(2), 195–207 (2007).
  • van der Horst A, Burgering BM. Stressing the role of FoxO proteins in lifespan and disease. Nat. Rev. Mol. Cell Biol.8(6), 440–450 (2007).
  • Brunet A, Bonni A, Zigmond MJ et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell96(6), 857–868 (1999).
  • Essers MA, Weijzen S, de Vries-Smits AM et al. FOXO transcription factor activation by oxidative stress mediated by the small GTPase Ral and JNK. EMBO J.23(24), 4802–4812 (2004).
  • Matsumoto M, Accili D. All roads lead to FoxO. Cell Metab.1(4), 215–216 (2005).
  • Lehtinen MK, Yuan Z, Boag PR et al. A conserved MST–FOXO signaling pathway mediates oxidative-stress responses and extends life span. Cell125(5), 987–1001 (2006).
  • Brunet A, Sweeney LB, Sturgill JF et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science303(5666), 2011–2015 (2004).
  • Kitamura YI, Kitamura T, Kruse JP et al. FoxO1 protects against pancreatic β cell failure through NeuroD and MafA induction. Cell Metab.2(3), 153–163 (2005).
  • Matsuzaki H, Daitoku H, Hatta M, Tanaka K, Fukamizu A. Insulin-induced phosphorylation of FKHR (Foxo1) targets to proteasomal degradation. Proc. Natl Acad. Sci. USA100(20), 11285–11290 (2003).
  • van der HorstA, de Vries-Smits AM, Brenkman AB et al. FOXO4 transcriptional activity is regulated by monoubiquitination and USP7/HAUSP. Nat. Cell Biol.8(10), 1064–1073 (2006).
  • Ramaswamy S, Nakamura N, Sansal I, Bergeron L, Sellers WR. A novel mechanism of gene regulation and tumor suppression by the transcription factor FKHR. Cancer Cell2(1), 81–91 (2002).
  • Buteau J, Shlien A, Foisy S, Accili D. Metabolic diapause in pancreatic β-cells expressing a gain-of-function mutant of the forkhead protein Foxo1. J. Biol. Chem.282(1), 287–293 (2007).
  • Mercado GE, Barr FG. Fusions involving PAX and FOX genes in the molecular pathogenesis of alveolar rhabdomyosarcoma: recent advances. Curr. Mol. Med.7(1), 47–61 (2007).
  • So CW, Cleary ML. Common mechanism for oncogenic activation of MLL by forkhead family proteins. Blood101(2), 633–639 (2003).
  • Hu MC, Lee DF, Xia W et al. IkB kinase promotes tumorigenesis through inhibition of forkhead FOXO3a. Cell117(2), 225–237 (2004).
  • Yang H, Zhao R, Yang HY, Lee MH. Constitutively active FOXO4 inhibits Akt activity, regulates p27 Kip1 stability, and suppresses HER2-mediated tumorigenicity. Oncogene24(11), 1924–1935 (2005).
  • Paik JH, Kollipara R, Chu G et al. FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell128(2), 309–323 (2007).
  • Ni YG, Berenji K, Wang N et al. Foxo transcription factors blunt cardiac hypertrophy by inhibiting calcineurin signaling. Circulation114(11), 1159–1168 (2006).
  • Bakker WJ, Blazquez-Domingo M, Kolbus A et al. FoxO3a regulates erythroid differentiation and induces BTG1, an activator of protein arginine methyl transferase 1. J. Cell Biol.164(2), 175–184 (2004).
  • Bakker WJ, van Dijk TB, Parren-van Amelsvoort M et al. Differential regulation of Foxo3a target genes in erythropoiesis. Mol. Cell. Biol.27(10), 3839–3854 (2007).
  • Nakae J, Kitamura T, Kitamura Y et al. The forkhead transcription factor Foxo1 regulates adipocyte differentiation. Dev. Cell4(1), 119–129 (2003).
  • Hribal ML, Nakae J, Kitamura T, Shutter JR, Accili D. Regulation of insulin-like growth factor-dependent myoblast differentiation by Foxo forkhead transcription factors. J. Cell Biol.162(4), 535–541 (2003).
  • Kitamura T, Kitamura YI, Funahashi Y et al. A Foxo/Notch pathway controls myogenic differentiation and fiber type specification. J. Clin. Invest.117(9), 2477–2485 (2007).
  • Barthel A, Schmoll D, Unterman TG. FoxO proteins in insulin action and metabolism. Trends Endocrinol. Metab.16(4), 183–189 (2005).
  • Puigserver P, Rhee J, Donovan J et al. Insulin-regulated hepatic gluconeogenesis through FOXO1–PGC-1a interaction. Nature423(6939), 550–555 (2003).
  • Furuyama T, Kitayama K, Yamashita H, Mori N. Forkhead transcription factor FOXO1 (FKHR)-dependent induction of PDK4 gene expression in skeletal muscle during energy deprivation. Biochem. J.375(Pt 2), 365–371 (2003).
  • Kitamura T, Nakae J, Kitamura Y et al. The forkhead transcription factor Foxo1 links insulin signaling to Pdx1 regulation of pancreatic β cell growth. J. Clin. Invest.110(12), 1839–1847 (2002).
  • Kim MS, Pak YK, Jang PG et al. Role of hypothalamic Foxo1 in the regulation of food intake and energy homeostasis. Nat. Neurosci.9(7), 901–906 (2006).
  • Kitamura T, Feng Y, Ido Kitamura Y et al. Forkhead protein FoxO1 mediates Agrp-dependent effects of leptin on food intake. Nat. Med.12(5), 534–540 (2006).
  • Kitamura T, Ido Kitamura Y. Role of FoxO proteins in pancreatic β cells. Endocr. J.54(4), 507–515 (2007).
  • Contreras JL, Smyth CA, Bilbao G et al. Simvastatin induces activation of the serine-threonine protein kinase AKT and increases survival of isolated human pancreatic islets. Transplantation74(8), 1063–1069 (2002).
  • Del Guerra S, Lupi R, Marselli L et al. Functional and molecular defects of pancreatic islets in human type 2 diabetes. Diabetes54(3), 727–735 (2005).
  • McKinnon CM, Ravier MA, Rutter GA. FoxO1 is required for the regulation of preproglucagon gene expression by insulin in pancreatic alphaTC1–9 cells. J. Biol. Chem.281(51), 39358–39369 (2006).
  • Dickson LM, Rhodes CJ. Pancreatic β-cells growth and survival in the onset of Type 2 diabetes: a role for protein kinase B in the Akt? Am. J. Physiol. Endocrinol. Metab.287(2), E192–E198 (2004).
  • Srinivasan S, Bernal-Mizrachi E, Ohsugi M, Permutt MA. Glucose promotes pancreatic islet β-cells survival through a PI 3-kinase/Akt-signaling pathway. Am. J. Physiol. Endocrinol. Metab.283(4), E784–E793 (2002).
  • Li L, El-Kholy W, Rhodes CJ, Brubaker PL. Glucagon-like peptide-1 protects β cells from cytokine-induced apoptosis and necrosis: role of protein kinase B. Diabetologia48(7), 1339–1349 (2005).
  • Wang Q, Li L, Xu E et al. Glucagon-like peptide-1 regulates proliferation and apoptosis via activation of protein kinase B in pancreatic INS-1 β cells. Diabetologia47(3), 478–487 (2004).
  • Nakae J, Biggs WH 3rd, Kitamura T et al. Regulation of insulin action and pancreatic β-cells function by mutated alleles of the gene encoding forkhead transcription factor Foxo1. Nat. Genet.32(2), 245–253 (2002).
  • Hashimoto N, Kido Y, Uchida T et al. Ablation of PDK1 in pancreatic β cells induces diabetes as a result of loss of β cell mass. Nat. Genet.38(5), 589–593 (2006).
  • Okamoto H, Hribal ML, Lin HV et al. Role of the forkhead protein FoxO1 in β cell compensation to insulin resistance. J. Clin. Invest.116(3), 775–782 (2006).
  • Buteau J, Spatz ML, Accili D. Transcription factor FoxO1 mediates glucagon-like peptide-1 effects on pancreatic β-cells mass. Diabetes55(5), 1190–1196 (2006).
  • Kim SJ, Winter K, Nian C et al. Glucose-dependent insulinotropic polypeptide (GIP) stimulation of pancreatic β-cells survival is dependent upon phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB) signaling, inactivation of the forkhead transcription factor Foxo1, and down-regulation of bax expression. J. Biol. Chem.280(23), 22297–22307 (2005).
  • Martinez SC, Cras-Meneur C, Bernal-Mizrachi E, Permutt MA. Glucose regulates Foxo1 through insulin receptor signaling in the pancreatic islet {β}-cell. Diabetes55(6), 1581–1591 (2006).
  • Kawamori D, Kaneto H, Nakatani Y et al. The forkhead transcription factor Foxo1 bridges the JNK pathway and the transcription factor PDX-1 through its intracellular translocation. J. Biol. Chem.281(2), 1091–1098 (2006).
  • Kaneto H, Nakatani Y, Kawamori D et al. Role of oxidative stress, endoplasmic reticulum stress, and c-Jun N-terminal kinase in pancreatic β-cells dysfunction and insulin resistance. Int. J. Biochem. Cell Biol.37(8), 1595–1608 (2005).
  • Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat. Rev. Drug Discov.4(12), 988–1004 (2005).
  • Ghatak S, Misra S, Toole BP. Hyaluronan oligosaccharides inhibit anchorage-independent growth of tumor cells by suppressing the phosphoinositide 3-kinase/Akt cell survival pathway. J. Biol. Chem.277(41), 38013–38020 (2002).
  • Sah JF, Balasubramanian S, Eckert RL, Rorke EA. Epigallocatechin-3-gallate inhibits epidermal growth factor receptor signaling pathway. Evidence for direct inhibition of ERK1/2 and AKT kinases. J. Biol. Chem.279(13), 12755–12762 (2004).
  • Samuels Y, Diaz LA Jr, Schmidt-Kittler O et al. Mutant PIK3CA promotes cell growth and invasion of human cancer cells. Cancer Cell7(6), 561–573 (2005).
  • Meng Q, Xia C, Fang J, Rojanasakul Y, Jiang BH. Role of PI3K and AKT specific isoforms in ovarian cancer cell migration, invasion and proliferation through the p70S6K1 pathway. Cell Signal.18(12), 2262–2271 (2006).
  • Noske A, Kaszubiak A, Weichert W et al. Specific inhibition of AKT2 by RNA interference results in reduction of ovarian cancer cell proliferation: increased expression of AKT in advanced ovarian cancer. Cancer Lett.246(1–2), 190–200 (2007).
  • An HJ, Cho NH, Yang HS et al. Targeted RNA interference of phosphatidylinositol 3-kinase p110-β induces apoptosis and proliferation arrest in endometrial carcinoma cells. J. Pathol.212(2), 161–169 (2007).
  • Brunet A, Park J, Tran H et al. Protein kinase SGK mediates survival signals by phosphorylating the forkhead transcription factor FKHRL1 (FOXO3a). Mol. Cell. Biol.21(3), 952–965 (2001).
  • Park JY, Lin PY, Weiss RH. Targeting the PI3K–Akt pathway in kidney cancer. Expert Rev. Anticancer Ther.7(6), 863–870 (2007).
  • Reagan-Shaw S, Ahmad N. The role of Forkhead-box Class O (FoxO) transcription factors in cancer: a target for the management of cancer. Toxicol. Appl. Pharmacol.224(3), 360–368 (2006).
  • Brownawell AM, Kops GJ, Macara IG, Burgering BM. Inhibition of nuclear import by protein kinase B (Akt) regulates the subcellular distribution and activity of the forkhead transcription factor AFX. Mol. Cell. Biol.21(10), 3534–3546 (2001).
  • Schwab TS, Madison BB, Grauman AR, Feldman EL. Insulin-like growth factor-I induces the phosphorylation and nuclear exclusion of forkhead transcription factors in human neuroblastoma cells. Apoptosis10(4), 831–840 (2005).
  • Kau TR, Schroeder F, Ramaswamy S et al. A chemical genetic screen identifies inhibitors of regulated nuclear export of a Forkhead transcription factor in PTEN-deficient tumor cells. Cancer Cell4(6), 463–476 (2003).
  • Schroeder FC, Kau TR, Silver PA, Clardy J. The psammaplysenes, specific inhibitors of FOXO1a nuclear export. J. Nat. Prod.68(4), 574–576 (2005).
  • Heyliger CE, Tahiliani AG, McNeill JH. Effect of vanadate on elevated blood glucose and depressed cardiac performance of diabetic rats. Science227(4693), 1474–1477 (1985).
  • Schmid AC, Byrne RD, Vilar R, Woscholski R. Bisperoxovanadium compounds are potent PTEN inhibitors. FEBS Lett.566(1–3), 35–38 (2004).
  • Lazar DF, Saltiel AR. Lipid phosphatases as drug discovery targets for type 2 diabetes. Nat. Rev. Drug Discov.5(4), 333–342 (2006).
  • Samuel VT, Choi CS, Phillips TG et al. Targeting foxo1 in mice using antisense oligonucleotide improves hepatic and peripheral insulin action. Diabetes55(7), 2042–2050 (2006).
  • Kobayashi Y, Furukawa-Hibi Y, Chen C et al. SIRT1 is critical regulator of FOXO-mediated transcription in response to oxidative stress. Int. J. Mol. Med.16(2), 237–243 (2005).
  • Baur JA, Sinclair DA. Therapeutic potential of resveratrol: the in vivo evidence. Nat. Rev. Drug Discov.5(6), 493–506 (2006).
  • Milne JC, Lambert PD, Schenk S et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature450(7170), 712–716 (2007).
  • Ferrannini E. Insulin resistance versus insulin deficiency in non-insulin-dependent diabetes mellitus: problems and prospects. Endocr. Rev.19(4), 477–490 (1998).
  • Butler AE, Janson J, Bonner-Weir S et al. β-cells deficit and increased β-cells apoptosis in humans with type 2 diabetes. Diabetes52(1), 102–110 (2003).
  • Rhodes CJ. Type 2 diabetes-a matter of β-cells life and death? Science307(5708), 380–384 (2005).
  • Fridlyand LE, Philipson LH. Does the glucose-dependent insulin secretion mechanism itself cause oxidative stress in pancreatic β-cells? Diabetes53(8), 1942–1948 (2004).
  • Baggio LL, Drucker DJ. Therapeutic approaches to preserve islet mass in type 2 diabetes. Annu. Rev. Med.57, 265–281 (2006).
  • Drucker DJ. The biology of incretin hormones. Cell Metab.3(3), 153–165 (2006).
  • Hatipoglu B, Benedetti E, Oberholzer J. Islet transplantation: current status and future directions. Curr. Diab. Rep.5(4), 311–316 (2005).
  • Lakey JR, Mirbolooki M, Shapiro AM. Current status of clinical islet cell transplantation. Methods Mol. Biol.333, 47–104 (2006).
  • Accili D, Arden KC. FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell117(4), 421–426 (2004).
  • Aikin R, Hanley S, Maysinger D et al. Autocrine insulin action activates Akt and increases survival of isolated human islets. Diabetologia49(12), 2900–2909 (2006).
  • Aikin R, Maysinger D, Rosenberg L. Cross-talk between phosphatidylinositol 3-kinase/AKT and c-jun NH2-terminal kinase mediates survival of isolated human islets. Endocrinology145(10), 4522–4531 (2004).
  • Davalli AM, Scaglia L, Zangen DH et al. Vulnerability of islets in the immediate posttransplantation period. Dynamic changes in structure and function. Diabetes45(9), 1161–1167 (1996).
  • Marinkovic D, Zhang X, Yalcin S et al. Foxo3 is required for the regulation of oxidative stress in erythropoiesis. J. Clin. Invest.117(8), 2133–2144 (2007).
  • Lock LT, Tzanakakis ES. Stem/progenitor cell sources of insulin-producing cells for the treatment of diabetes. Tissue Eng.13(7), 1399–1412 (2007).
  • Kato M, Yuan H, Xu ZG et al. Role of the Akt/FoxO3a pathway in TGF-β1-mediated mesangial cell dysfunction: a novel mechanism related to diabetic kidney disease. J. Am. Soc. Nephrol.17(12), 3325–3335 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.