54
Views
3
CrossRef citations to date
0
Altmetric
Review

Molecular genetic studies of gene identification for osteoporosis

, , , , &
Pages 223-267 | Published online: 10 Jan 2014

References

  • Liu YJ, Shen H, Xiao P et al. Molecular genetic studies of gene identification for osteoporosis: a 2004 update. J. Bone Miner. Res.21(10), 1511–1535 (2006).
  • Liu YZ, Liu YJ, Recker RR et al. Molecular studies of identification of genes for osteoporosis: the 2002 update. J. Endocrinol.177(2), 147–196 (2003).
  • Eichner JE, Friedrich CA, Cauley JA et al. A 2-HS glycoprotein phenotypes and quantitative hormone and bone measures in postmenopausal women. Calcif. Tissue Int.47(6), 345–349 (1990).
  • Jia L, Ho NC, Park SS et al. Comprehensive resource: skeletal gene database. Am. J. Med. Genet.106(4), 275–281 (2001).
  • Shen H, Liu Y, Liu P et al. Nonreplication in genetic studies of complex diseases – lessons learned from studies of osteoporosis and tentative remedies. J. Bone Miner. Res.20(3), 365–376 (2005).
  • Munafo MR, Flint J. Meta-analysis of genetic association studies. Trends Genet.20(9), 439–444 (2004).
  • Mitra S, Desai M, Ikram KM. Vitamin D receptor gene polymorphisms and bone mineral density in postmenopausal Indian women. Maturitas55(1), 27–35 (2006).
  • Palomba S, Orio F Jr, Russo T et al. BsmI vitamin D receptor genotypes influence the efficacy of antiresorptive treatments in postmenopausal osteoporotic women. A 1-year multicenter, randomized and controlled trial Osteoporos. Int.16(8), 943–952 (2005).
  • Horst-Sikorska W, Kalak R, Wawrzyniak A et al. Association analysis of the polymorphisms of the VDR gene with bone mineral density and the occurrence of fractures. J. Bone Miner. Metab.25(5), 310–319 (2007).
  • Grundberg E, Lau EM, Pastinen T et al. Vitamin D receptor 3´ haplotypes are unequally expressed in primary human bone cells and associated with increased fracture risk: the MrOS Study in Sweden and Hong Kong. J. Bone Miner. Res.22(6), 832–840 (2007).
  • Falchetti A, Sferrazza C, Cepollaro C et al. FokI polymorphism of the vitamin D receptor gene correlates with parameters of bone mass and turnover in a female population of the Italian island of Lampedusa. Calcif. Tissue Int.80(1), 15–20 (2007).
  • Macdonald HM, McGuigan FE, Stewart A et al. Large-scale population-based study shows no evidence of association between common polymorphism of the VDR gene and BMD in British women. J. Bone Miner. Res.21(1), 151–162 (2006).
  • Uitterlinden AG, Ralston SH, Brandi ML et al. The association between common vitamin D receptor gene variations and osteoporosis: a participant-level meta-analysis. Ann. Intern. Med.145(4), 255–264 (2006).
  • Fang Y, Rivadeneira F, van Meurs JB et al. Vitamin D receptor gene BsmI and TaqI polymorphisms and fracture risk: a meta-analysis. Bone39(4), 938–945 (2006).
  • Albagha OM, Pettersson U, Stewart A et al. Association of oestrogen receptor a gene polymorphisms with postmenopausal bone loss, bone mass, and quantitative ultrasound properties of bone. J. Med. Genet.42(3), 240–246 (2005).
  • Wang CL, Tang XY, Chen WQ et al. Association of estrogen receptor a gene polymorphisms with bone mineral density in Chinese women: a meta-analysis. Osteoporos. Int.18(3), 295–305 (2007).
  • Lai BM, Cheung CL, Luk KD et al. Estrogen receptor α CA dinucleotide repeat polymorphism is associated with rate of bone loss in perimenopausal women and bone mineral density and risk of osteoporotic fractures in postmenopausal women. Osteoporos. Int. (2007). (Epub ahead of print).
  • Mann V, Hobson EE, Li B et al. A COL1A1 Sp1 binding site polymorphism predisposes to osteoporotic fracture by affecting bone density and quality. J. Clin. Invest.107(7), 899–907 (2001).
  • Lohmueller KE, Pearce CL, Pike M et al. Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat. Genet.33(2), 177–182 (2003).
  • Ralston SH, Uitterlinden AG, Brandi ML et al. Large-scale evidence for the effect of the COLIA1 Sp1 polymorphism on osteoporosis outcomes: the GENOMOS study. PLoS Med.3(4), E90 (2006).
  • Yamada Y, Ando F, Niino N et al. Association of a -1997G–>T polymorphism of the collagen Iα1 gene with bone mineral density in postmenopausal Japanese women. Hum. Biol.77(1), 27–36 (2005).
  • Yazdanpanah N, Rivadeneira F, van Meurs JB et al. The -1997 G/T and Sp1 polymorphisms in the collagen type I α1 (COLIA1) gene in relation to changes in femoral neck bone mineral density and the risk of fracture in the elderly: the Rotterdam study. Calcif. Tissue Int.81(1), 18–25 (2007).
  • Tzakas P, Wong BY, Logan AG et al. Transforming growth factor β-1 (TGFβ1) and peak bone mass: association between intragenic polymorphisms and quantitative ultrasound of the heel. BMC Musculoskelet. Disord.6, 29 (2005).
  • Long JR, Liu PY, Lu Y et al. Tests of linkage and/or association of TGF-β1 and COL1A1 genes with bone mass. Osteoporos. Int.16(1), 86–92 (2005).
  • McGuigan FE, Macdonald HM, Bassiti A et al. Large-scale population-based study shows no association between common polymorphisms of the TGFB1 gene and BMD in women. J. Bone Miner. Res.22(2), 195–202 (2007).
  • Bustamante M, Nogues X, Enjuanes A et al.COL1A1, ESR1, VDR and TGFB1 polymorphisms and haplotypes in relation to BMD in Spanish postmenopausal women. Osteoporos. Int.18(2), 235–243 (2007).
  • Medici M, van Meurs JB, Rivadeneira F et al.BMP-2 gene polymorphisms and osteoporosis: the Rotterdam Study. J. Bone Miner. Res.21(6), 845–854 (2006).
  • Ichikawa S, Johnson ML, Koller DL et al. Polymorphisms in the bone morphogenetic protein 2 (BMP2) gene do not affect bone mineral density in white men or women. Osteoporos. Int.17(4), 587–592 (2006).
  • Xiong DH, Shen H, Zhao LJ et al. A robust and comprehensive analysis of 20 osteoporosis candidate genes by very high-density single-nucleotide polymorphism screen among 405 Caucasian Nuclear families identified significant association and gene-gene interaction. J. Bone Miner. Res.21(11), 1678–1695 (2006).
  • McGuigan FE, Larzenius E, Callreus M et al. Variation in the BMP2 gene: bone mineral density and ultrasound in young adult and elderly women. Calcif. Tissue Int.81(4), 254–262 (2007).
  • Abrahamsen B, Madsen JS, Tofteng CL et al. Are effects of MTHFR (C677T) genotype on BMD confined to women with low folate and riboflavin intake? Analysis of food records from the Danish osteoporosis prevention study. Bone36(3), 577–583 (2005).
  • Riancho JA, Valero C, Zarrabeitia MT. MTHFR polymorphism and bone mineral density: meta-analysis of published studies. Calcif. Tissue Int.79(5), 289–293 (2006).
  • Hong X, Hsu YH, Terwedow H et al. Association of the methylenetetrahydrofolate reductase C677T polymorphism and fracture risk in Chinese postmenopausal women. Bone40(3), 737–742 (2007).
  • Liu YJ, Liu XH, Lei SF et al.A2-HS glycoprotein gene is associated with bone size at the hip in Chinese. Yi Chuan Xue Bao32(11), 1128–1135 (2005).
  • Jiang H, Lei SF, Xiao SM et al. Association and linkage analysis of COL1A1 and AHSG gene polymorphisms with femoral neck bone geometric parameters in both Caucasian and Chinese nuclear families. Acta Pharmacol. Sin.28(3), 375–381 (2007).
  • Kung AW, Lai BM, Ng MY et al. T-1213C polymorphism of estrogen receptor β is associated with low bone mineral density and osteoporotic fractures. Bone39(5), 1097–1106 (2006).
  • Silvestri S, Thomsen AB, Gozzini A et al. Estrogen receptor α and β polymorphisms: is there an association with bone mineral density, plasma lipids, and response to postmenopausal hormone therapy? Menopause13(3), 451–461 (2006).
  • Ichikawa S, Koller DL, Peacock M et al. Polymorphisms in the estrogen receptor β (ESR2) gene are associated with bone mineral density in Caucasian men and women. J. Clin. Endocrinol. Metab.90(11), 5921–5927 (2005).
  • Xiao P, Liu PY, Lu Y et al. Association tests of interleukin-6 (IL-6) and type II tumor necrosis factor receptor (TNFR2) genes with bone mineral density in Caucasians using a re-sampling approach. Hum. Genet.117(4), 340–348 (2005).
  • Lei SF, Liu YZ, Deng FY et al. Association and linkage analyses of interleukin-6 gene 634C/G polymorphism and bone phenotypes in Chinese. J. Bone Miner. Metab.23(4), 323–328 (2005).
  • Wang YB, Guo JJ, Liu YJ et al. The human calcium-sensing receptor and interleukin-6 genes are associated with bone mineral density in Chinese. Yi Chuan Xue Bao33(10), 870–880 (2006).
  • Lorentzon M, Swanson C, Eriksson AL et al. Polymorphisms in the aromatase gene predict areal BMD as a result of affected cortical bone size: the GOOD study. J. Bone Miner. Res.21(2), 332–339 (2006).
  • Dick IM, Devine A, Prince RL. Association of an aromatase TTTA repeat polymorphism with circulating estrogen, bone structure, and biochemistry in older women. Am. J. Physiol. Endocrinol. Metab.288(5), E989–E995 (2005).
  • Hong X, Hsu YH, Terwedow H et al.CYP19A1 polymorphisms are associated with bone mineral density in Chinese men. Hum. Genet.121(3–4), 491–500 (2007).
  • Arko B, Prezelj J, Kocijancic A et al. Association of the osteoprotegerin gene polymorphisms with bone mineral density in postmenopausal women. Maturitas51(3), 270–279 (2005).
  • Choi JY, Shin A, Park SK et al. Genetic polymorphisms of OPG, RANK, and ESR1 and bone mineral density in Korean postmenopausal women. Calcif. Tissue Int.77(3), 152–159 (2005).
  • Kim JG, Kim JH, Kim JY et al. Association between osteoprotegerin (OPG), receptor activator of nuclear factor-κB (RANK), and RANK ligand (RANKL) gene polymorphisms and circulating OPG, soluble RANKL levels, and bone mineral density in Korean postmenopausal women. Menopause (2007). (Epub ahead of print).
  • Koller DL, Ichikawa S, Johnson ML et al. Contribution of the LRP5 gene to normal variation in peak BMD in women. J. Bone Miner. Res.20(1), 75–80 (2005).
  • Bollerslev J, Wilson SG, Dick IM et al.LRP5 gene polymorphisms predict bone mass and incident fractures in elderly Australian women. Bone36(4), 599–606 (2005).
  • van Meurs JB, Rivadeneira F, Jhamai M et al. Common genetic variation of the low-density lipoprotein receptor-related protein 5 and 6 genes determines fracture risk in elderly white men. J. Bone Miner. Res.21(1), 141–150 (2006).
  • Giroux S, Elfassihi L, Cardinal G et al.LRP5 coding polymorphisms influence the variation of peak bone mass in a normal population of French–Canadian women. Bone40(5), 1299–1307 (2007).
  • Xiong DH, Lei SF, Yang F et al. Low-density lipoprotein receptor-related protein 5 (LRP5) gene polymorphisms are associated with bone mass in both Chinese and whites. J. Bone Miner. Res.22(3), 385–393 (2007).
  • Kiel DP, Ferrari SL, Cupples LA et al. Genetic variation at the low-density lipoprotein receptor-related protein 5 (LRP5) locus modulates Wnt signaling and the relationship of physical activity with bone mineral density in men. Bone40(3), 587–596 (2007).
  • Zhao HY, Liu JM, Ning G et al. The influence of Lys3Asn polymorphism in the osteoprotegerin gene on bone mineral density in Chinese postmenopausal women. Osteoporos. Int.16(12), 1519–1524 (2005).
  • Arko B, Prezelj J, Komel R et al. Sequence variations in the osteoprotegerin gene promoter in patients with postmenopausal osteoporosis. J. Clin. Endocrinol. Metab.87(9), 4080–4084 (2002).
  • Koh JM, Park BL, Kim DJ et al. Identification of novel RANK polymorphisms and their putative association with low BMD among postmenopausal women. Osteoporos. Int.18(3), 323–331 (2007).
  • Hsu YH, Niu T, Terwedow HA et al. Variation in genes involved in the RANKL/RANK/OPG bone remodeling pathway are associated with bone mineral density at different skeletal sites in men. Hum. Genet.118(5), 568–577 (2006).
  • Daroszewska A, Ralston SH. Genetics of Paget’s disease of bone. Clin. Sci. (Lond.)109(3), 257–263 (2005).
  • Hughes AE, Ralston SH, Marken J et al. Mutations in TNFRSF11A, affecting the signal peptide of RANK, cause familial expansile osteolysis. Nat. Genet.24(1), 45–48 (2000).
  • Palenzuela L, Vives-Bauza C, Fernandez-Cadenas I et al. Familial expansile osteolysis in a large Spanish kindred resulting from an insertion mutation in the TNFRSF11A gene. J. Med. Genet.39(10), E67 (2002).
  • Johnson-Pais TL, Singer FR, Bone HG et al. Identification of a novel tandem duplication in exon 1 of the TNFRSF11A gene in two unrelated patients with familial expansile osteolysis. J. Bone Miner. Res.18(2), 376–380 (2003).
  • Whyte MP, Hughes AE. Expansile skeletal hyperphosphatasia is caused by a 15-base pair tandem duplication in TNFRSF11A encoding RANK and is allelic to familial expansile osteolysis. J. Bone Miner. Res.17(1), 26–29 (2002).
  • Streeten EA, McBride DJ, Pollin TI et al. Quantitative trait loci for BMD identified by autosome-wide linkage scan to chromosomes 7q and 21q in men from the Amish Family Osteoporosis Study. J. Bone Miner. Res.21(9), 1433–1442 (2006).
  • Xiao P, Shen H, Guo YF et al. Genomic regions identified for BMD in a large sample including epistatic interactions and gender-specific effects. J. Bone Miner. Res.21(10), 1536–1544 (2006).
  • Devoto M, Spotila LD, Stabley DL et al. Univariate and bivariate variance component linkage analysis of a whole-genome scan for loci contributing to bone mineral density. Eur. J. Hum. Genet.13(6), 781–788 (2005).
  • Cheung CL, Huang QY, Ng MY et al. Confirmation of linkage to chromosome 1q for spine bone mineral density in southern Chinese. Hum. Genet.120(3), 354–359 (2006).
  • Demissie S, Dupuis J, Cupples LA et al. Proximal hip geometry is linked to several chromosomal regions: genome-wide linkage results from the Framingham Osteoporosis Study. Bone40(3), 743–750 (2007).
  • Shen H, Long JR, Xiong DH et al. A genomewide scan for quantitative trait loci underlying areal bone size variation in 451 Caucasian families. J. Med. Genet.43(11), 873–880 (2006).
  • Wang L, Liu YJ, Xiao P et al. Chromosome 2q32 May harbor a QTL affecting BMD variation at different skeletal sites. J. Bone Miner. Res.22(11), 1672–1678 (2007).
  • Xiong DH, Shen H, Xiao P et al. Genome-wide scan identified QTLs underlying femoral neck cross-sectional geometry that are novel studied risk factors of osteoporosis. J. Bone Miner. Res.21(3), 424–437 (2006).
  • Ralston SH, Galwey N, MacKay I et al. Loci for regulation of bone mineral density in men and women identified by genome wide linkage scan: the FAMOS study. Hum. Mol. Genet.14(7), 943–951 (2005).
  • Zhang F, Xiao P, Yang F et al. A whole genome linkage scan for QTLs underlying peak bone mineral density. Osteoporos. Int.19(3), 303–310 (2007).
  • Styrkarsdottir U, Cazier JB, Kong A et al. Linkage of osteoporosis to chromosome 20p12 and association to BMP2. PLoS Biol.1(3), E69 (2003).
  • Hirschhorn JN, Daly MJ. Genome-wide association studies for common diseases and complex traits. Nat. Rev. Genet.6(2), 95–108 (2005).
  • Thomas DC, Haile RW, Duggan D. Recent developments in genomewide association scans: a workshop summary and review. Am. J. Hum. Genet.77(3), 337–345 (2005).
  • Ridker PM, Chasman DI, Zee RY et al. Rationale, design, and methodology of the Women’ Genome Health Study: a genome-wide association study of more than 25 000 initially healthy american women. Clin. Chem.54(2), 249–255 (2007).
  • Kiel DP, Demissie S, Dupuis J et al. Genome-wide association with bone mass and geometry in the Framingham Heart Study. BMC Med. Genet.8(Suppl. 1), S14 (2007).
  • Tang CH, Hsu TL, Lin WW et al. Attenuation of bone mass and increase of osteoclast formation in decoy receptor 3 transgenic mice. J. Biol. Chem.282(4), 2346–2354 (2007).
  • Tsukiyama K, Yamada Y, Yamada C et al. Gastric inhibitory polypeptide as an endogenous factor promoting new bone formation after food ingestion. Mol. Endocrinol.20(7), 1644–1651 (2006).
  • Sawakami K, Robling AG, Ai M et al. The Wnt co-receptor LRP5 is essential for skeletal mechanotransduction but not for the anabolic bone response to parathyroid hormone treatment. J. Biol. Chem.281(33), 23698–23711 (2006).
  • Glocker MO, Guthke R, Kekow J et al. Rheumatoid arthritis, a complex multifactorial disease: on the way toward individualized medicine. Med. Res. Rev.26(1), 63–87 (2006).
  • Oertelt S, Selmi C, Invernizzi P et al. Genes and goals: an approach to microarray analysis in autoimmunity. Autoimmun. Rev.4(7), 414–422 (2005).
  • Tampoia M, Brescia V, Fontana A et al. Proteomic: new advances in the diagnosis of rheumatoid arthritis. Clin. Chim. Acta357(2), 219–225 (2005).
  • Shen F, Ruddy MJ, Plamondon P et al. Cytokines link osteoblasts and inflammation: microarray analysis of interleukin-17- and TNF-α-induced genes in bone cells. J. Leukoc. Biol.77(3), 388–399 (2005).
  • Kalajzic I, Staal A, Yang WP et al. Expression profile of osteoblast lineage at defined stages of differentiation. J. Biol. Chem.280(26), 24618–24626 (2005).
  • Ishida N, Hayashi K, Hattori A et al. CCR1 acts downstream of NFAT2 in osteoclastogenesis and enhances cell migration. J. Bone Miner. Res.21(1), 48–57 (2006).
  • Yang M, Mailhot G, MacKay CA et al. Chemokine and chemokine receptor expression during colony stimulating factor-1-induced osteoclast differentiation in the toothless osteopetrotic rat: a key role for CCL9 (MIP-1γ) in osteoclastogenesis in vivo and in vitro.Blood107(6), 2262–2270 (2006).
  • Yang M, Mailhot G, Birnbaum MJ et al. Expression of and role for ovarian cancer G-protein-coupled receptor 1 (OGR1) during osteoclastogenesis. J. Biol. Chem.281(33), 23598–23605 (2006).
  • Gaasch JA, Bolwahnn AB, Lindsey JS. Hepatocyte growth factor-regulated genes in differentiated RAW 264.7 osteoclast and undifferentiated cells. Gene369, 142–152 (2006).
  • Meadows NA, Sharma SM, Faulkner GJ et al. The expression of Clcn7 and Ostm1 in osteoclasts is coregulated by microphthalmia transcription factor. J. Biol. Chem.282(3), 1891–1904 (2007).
  • Liu D, Wise GE. A DNA microarray analysis of chemokine and receptor genes in the rat dental follicle – role of secreted frizzled-related protein-1 in osteoclastogenesis. Bone41(2), 266–272 (2007).
  • Xiao P, Chen Y, Jiang H et al.In vivo Genome-wide expression study on human circulating B cells suggests a novel ESR1 and MAPK3 network for postmenopausal osteoporosis. J. Bone Miner. Res. (2007). (In Press).
  • Schilling T, Kuffner R, Klein-Hitpass L et al. Microarray analyses of transdifferentiated mesenchymal stem cells. J. Cell. Biochem.103(2), 416–433 (2007).
  • Beak JY, Kang HS, Kim YS et al. Kruppel-like zinc finger protein Glis3 promotes osteoblast differentiation by regulating FGF18 expression. J. Bone Miner. Res.22(8), 1234–1244 (2007).
  • Kulterer B, Friedl G, Jandrositz A et al. Gene expression profiling of human mesenchymal stem cells derived from bone marrow during expansion and osteoblast differentiation. BMC Genomics8, 70 (2007).
  • Xiao Y, Fu H, Prasadam I et al. Gene expression profiling of bone marrow stromal cells from juvenile, adult, aged and osteoporotic rats: with an emphasis on osteoporosis. Bone40(3), 700–715 (2007).
  • Cho JY, Lee WB, Kim HJ et al. Bone-related gene profiles in developing calvaria. Gene372, 71–81 (2006).
  • Ichikawa T, Horie-Inoue K, Ikeda K et al. Steroid and xenobiotic receptor SXR mediates vitamin K2-activated transcription of extracellular matrix-related genes and collagen accumulation in osteoblastic cells. J. Biol. Chem.281(25), 16927–16934 (2006).
  • Pochampally RR, Ylostalo J, Penfornis P et al. Histamine receptor h1 and dermatopontin: new downstream targets of the vitamin d receptor. J. Bone Miner. Res.22(9), 1338–1349 (2007).
  • Reppe S, Stilgren L, Olstad OK et al. Gene expression profiles give insight into the molecular pathology of bone in primary hyperparathyroidism. Bone39(1), 189–198 (2006).
  • Onyia JE, Helvering LM, Gelbert L et al. Molecular profile of catabolic versus anabolic treatment regimens of parathyroid hormone (PTH) in rat bone: an analysis by DNA microarray. J. Cell. Biochem.95(2), 403–418 (2005).
  • Ducy P, Amling M, Takeda S et al. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell100(2), 197–207 (2000).
  • Lee NK, Sowa H, Hinoi E et al. Endocrine regulation of energy metabolism by the skeleton. Cell130(3), 456–469 (2007).
  • Kindblom JM, Gevers EF, Skrtic SM et al. Increased adipogenesis in bone marrow but decreased bone mineral density in mice devoid of thyroid hormone receptors. Bone36(4), 607–616 (2005).
  • Lu NZ, Collins JB, Grissom SF et al. Selective regulation of bone cell apoptosis by translational isoforms of the glucocorticoid receptor. Mol. Cell. Biol.27(20), 7143–7160 (2007).
  • Miki Y, Suzuki T, Hatori M et al. Effects of aromatase inhibitors on human osteoblast and osteoblast-like cells: a possible androgenic bone protective effects induced by exemestane. Bone40(4), 876–887 (2007).
  • Govoni KE, Lee SK, Chadwick RB et al. Whole genome microarray analysis of growth hormone-induced gene expression in bone: T-box3, a novel transcription factor, regulates osteoblast proliferation. Am. J. Physiol. Endocrinol. Metab.291(1), E128–E136 (2006).
  • Little RD, Carulli JP, Del Mastro RG et al. A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am. J. Hum. Genet.70(1), 11–19 (2002).
  • Vaes BL, Dechering KJ, van Someren EP et al. Microarray analysis reveals expression regulation of Wnt antagonists in differentiating osteoblasts. Bone36(5), 803–811 (2005).
  • Lau KH, Kapur S, Kesavan C et al. Up-regulation of the Wnt, estrogen receptor, insulin-like growth factor-I, and bone morphogenetic protein pathways in C57BL/6J osteoblasts as opposed to C3H/HeJ osteoblasts in part contributes to the differential anabolic response to fluid shear. J. Biol. Chem.281(14), 9576–9588 (2006).
  • Clines GA, Mohammad KS, Bao Y et al. Dickkopf homolog 1 mediates endothelin-1-stimulated new bone formation. Mol. Endocrinol.21(2), 486–498 (2007).
  • Patel MJ, Liu W, Sykes MC et al. Identification of mechanosensitive genes in osteoblasts by comparative microarray studies using the rotating wall vessel and the random positioning machine. J. Cell. Biochem.101(3), 587–599 (2007).
  • Pardo SJ, Patel MJ, Sykes MC et al. Simulated microgravity using the Random Positioning Machine inhibits differentiation and alters gene expression profiles of 2T3 preosteoblasts. Am. J. Physiol. Cell Physiol.288(6), C1211–C1221 (2005).
  • Lee YH, Nahm DS, Jung YK et al. Differential gene expression of periodontal ligament cells after loading of static compressive force. J. Periodontol.78(3), 446–452 (2007).
  • James MJ, Jarvinen E, Wang XP et al. Different roles of Runx2 during early neural crest-derived bone and tooth development. J. Bone Miner. Res.21(7), 1034–1044 (2006).
  • Ishijima M, Ezura Y, Tsuji K et al. Osteopontin is associated with nuclear factor kB gene expression during tail-suspension-induced bone loss. Exp. Cell Res.312(16), 3075–3083 (2006).
  • Aalami OO, Nacamuli RP, Salim A et al. Differential transcriptional expression profiles of juvenile and adult calvarial bone. Plast. Reconstr. Surg.115(7), 1986–1994 (2005).
  • Komatsu DE, Bosch-Marce M, Semenza GL et al. Enhanced bone regeneration associated with decreased apoptosis in mice with partial HIF-1a deficiency. J. Bone Miner. Res.22(3), 366–374 (2007).
  • Fang TD, Salim A, Xia W et al. Angiogenesis is required for successful bone induction during distraction osteogenesis. J. Bone Miner. Res.20(7), 1114–1124 (2005).
  • Li X, Wang H, Touma E, Rousseau E, Quigg RJ, Ryaby JT. Genetic network and pathway analysis of differentially expressed proteins during critical cellular events in fracture repair. J. Cell. Biochem.100(2), 527–543 (2007).
  • Nacamuli RP, Fong KD, Lenton KA et al. Expression and possible mechanisms of regulation of BMP3 in rat cranial sutures. Plast. Reconstr. Surg.116(5), 1353–1362 (2005).
  • Narita Y, Nomura J, Ohta S et al. Royal jelly stimulates bone formation: physiologic and nutrigenomic studies with mice and cell lines. Biosci. Biotechnol. Biochem.70(10), 2508–2514 (2006).
  • Pie JE, Park JH, Park YH et al. Effect of genistein on the expression of bone metabolism genes in ovariectomized mice using a cDNA microarray. J. Nutr. Biochem.17(3), 157–164 (2006).
  • Rundle CH, Wang H, Yu H et al. Microarray analysis of gene expression during the inflammation and endochondral bone formation stages of rat femur fracture repair. Bone38(4), 521–529 (2006).
  • Niikura T, Hak DJ, Reddi AH. Global gene profiling reveals a downregulation of BMP gene expression in experimental atrophic nonunions compared to standard healing fractures. J. Orthop. Res.24(7), 1463–1471 (2006).
  • Ganno T, Yamada S, Ohara N et al. Early gene expression analyzed by cDNA microarray and real-time PCR in osteoblasts cultured with chitosan monomer. J. Biomed. Mater. Res. A82(1), 188–194 (2007).
  • Sollazzo V, Palmieri A, Pezzetti F et al. Genetic effect of anatase on osteoblast-like cells. J. Biomed. Mater. Res. B Appl. Biomater. DOI: 10.1002/jbm.b.30912 (2007) (Epub ahead of print).
  • Ikeda R, Yoshida K, Tsukahara S et al. The promyelotic leukemia zinc finger promotes osteoblastic differentiation of human mesenchymal stem cells as an upstream regulator of CBFA1. J. Biol. Chem.280(9), 8523–8530 (2005).
  • Inoue I, Ikeda R, Tsukahara S. Current topics in pharmacological research on bone metabolism: promyelotic leukemia zinc finger (PLZF) and tumor necrosis factor-a-stimulated gene 6 (TSG-6) identified by gene expression analysis play roles in the pathogenesis of ossification of the posterior longitudinal ligament. J. Pharmacol. Sci.100(3), 205–210 (2006).
  • Naot D, Bava U, Matthews B et al. Differential gene expression in cultured osteoblasts and bone marrow stromal cells from patients with Paget’s disease of bone. J. Bone Miner. Res.22(2), 298–309 (2007).
  • Carinci F, Palmieri A, Perrotti V et al. Genetic effects of Medpor on osteoblast-like cells. J. Craniofac. Surg.17(6), 1243–1250 (2006).
  • Centola M, Frank MB, Bolstad AI et al. Genome-scale assessment of molecular pathology in systemic autoimmune diseases using microarray technology: a potential breakthrough diagnostic and individualized therapy-design tool. Scand. J. Immunol.64(3), 236–242 (2006).
  • Brennan F, Beech J. Update on cytokines in rheumatoid arthritis. Curr. Opin. Rheumatol.19(3), 296–301 (2007).
  • Abbott A. A post-genomic challenge: learning to read patterns of protein synthesis. Nature402(6763), 715–720 (1999).
  • Anderson L, Seilhamer J. A comparison of selected mRNA and protein abundances in human liver. Electrophoresis18(3–4), 533–537 (1997).
  • Gygi SP, Rochon Y, Franza BR et al. Correlation between protein and mRNA abundance in yeast. Mol. Cell. Biol.19(3), 1720–1730 (1999).
  • Ward DF Jr, Salasznyk RM, Klees RF et al. Mechanical strain enhances extracellular matrix-induced gene focusing and promotes osteogenic differentiation of human mesenchymal stem cells through an extracellular-related kinase-dependent pathway. Stem Cells Dev.16(3), 467–480 (2007).
  • Kadri T, Lataillade JJ, Doucet C et al. Proteomic study of galectin-1 expression in human mesenchymal stem cells. Stem Cells Dev.14(2), 204–212 (2005).
  • Salasznyk RM, Westcott AM, Klees RF et al. Comparing the protein expression profiles of human mesenchymal stem cells and human osteoblasts using gene ontologies. Stem Cells Dev.14(4), 354–366 (2005).
  • Kratchmarova I, Blagoev B, Haack-Sorensen M et al. Mechanism of divergent growth factor effects in mesenchymal stem cell differentiation. Science308(5727), 1472–1477 (2005).
  • Sun HJ, Bahk YY, Choi YR et al. A proteomic analysis during serial subculture and osteogenic differentiation of human mesenchymal stem cell. J. Orthop. Res.24(11), 2059–2071 (2006).
  • Ye NS, Chen J, Luo GA et al. Proteomic profiling of rat bone marrow mesenchymal stem cells induced by 5-azacytidine. Stem Cells Dev.15(5), 665–676 (2006).
  • Ryu J, Kim H, Lee SK et al. Proteomic identification of the TRAF6 regulation of vacuolar ATPase for osteoclast function. Proteomics5(16), 4152–4160 (2005).
  • Xiao Z, Camalier CE, Nagashima K et al. Analysis of the extracellular matrix vesicle proteome in mineralizing osteoblasts. J. Cell. Physiol.210(2), 325–335 (2007).
  • Czupalla C, Mansukoski H, Riedl T et al. Proteomic analysis of lysosomal acid hydrolases secreted by osteoclasts: implications for lytic enzyme transport and bone metabolism. Mol. Cell. Proteomics5(1), 134–143 (2006).
  • Spreafico A, Frediani B, Capperucci C et al. A proteomic study on human osteoblastic cells proliferation and differentiation. Proteomics6(12), 3520–3532 (2006).
  • Liu XD, Zeng BF, Xu JG et al. Proteomic analysis of the cerebrospinal fluid of patients with lumbar disk herniation. Proteomics6(3), 1019–1028 (2006).
  • Tan X, Cai D, Wu Y et al. Comparative analysis of serum proteomes: discovery of proteins associated with osteonecrosis of the femoral head. Transl. Res.148(3), 114–119 (2006).
  • Noben JP, Dumont D, Kwasnikowska N et al. Lumbar cerebrospinal fluid proteome in multiple sclerosis: characterization by ultrafiltration, liquid chromatography, and mass spectrometry. J. Proteome Res.5(7), 1647–1657 (2006).
  • Scuderi GJ, Brusovanik GV, Anderson DG et al. Cytokine assay of the epidural space lavage in patients with lumbar intervertebral disk herniation and radiculopathy. J. Spinal Disord. Tech.19(4), 266–269 (2006).
  • Lee WY, Rhee EJ, Oh KW et al. Identification of adiponectin and its receptors in human osteoblast-like cells and association of T45G polymorphism in exon 2 of adiponectin gene with lumbar spine bone mineral density in Korean women. Clin. Endocrinol. (Oxford)65(5), 631–637 (2006).
  • Wang CY, Nguyen ND, Morrison NA et al. B3-adrenergic receptor gene, body mass index, bone mineral density and fracture risk in elderly men and women: the Dubbo Osteoporosis Epidemiology Study (DOES). BMC Med. Genet.7, 57 (2006).
  • Lei SF, Zhang YY, Deng FY et al. Bone mineral density and five prominent candidate genes in Chinese men: associations, interaction effects and their implications. Maturitas51(2), 199–206 (2005).
  • Yang YJ, Wang YB, Lei SF et al. AHSG gene polymorphisms are associated with bone mineral density in Caucasian nuclear families. Eur. J. Epidemiol.22(8), 527–532 (2007).
  • Deng FY, Long JR, Lei SF et al. Potential effect of inter-genic action on peak bone mass (PBM) in Chinese females. Yi Chuan Xue Bao32(10), 1003–1010 (2005).
  • Yamada Y, Ando F, Shimokata H. Association of candidate gene polymorphisms with bone mineral density in community-dwelling Japanese women and men. Int. J. Mol. Med.19(5), 791–801 (2007).
  • Yamaguchi J, Hasegawa Y, Kawasaki M et al. ALDH2 polymorphisms and bone mineral density in an elderly Japanese population. Osteoporos. Int.17(6), 908–913 (2006).
  • Foroud T, Ichikawa S, Koller D et al. Association studies of ALOX5 and bone mineral density in healthy adults. Osteoporos. Int. DOI: 10.1007/s00198-007-0484-z (2007) (Epub ahead of print).
  • Ichikawa S, Koller DL, Johnson ML et al. Human ALOX12, but not ALOX15, is associated with BMD in white men and women. J. Bone Miner. Res.21(4), 556–564 (2006).
  • Mullin BH, Spector TD, Curtis CC et al. Polymorphisms in ALOX12, but not ALOX15, are significantly associated with BMD in postmenopausal women. Calcif. Tissue Int.81(1), 10–17 (2007).
  • Urano T, Shiraki M, Fujita M et al. Association of a single nucleotide polymorphism in the lipoxygenase ALOX15 5´-flanking region (-5229G/A) with bone mineral density. J. Bone Miner. Metab.23(3), 226–230 (2005).
  • Cheung CL, Chan V, Kung AW. A differential association of ALOX15 polymorphisms with bone mineral density in pre- and post-menopausal women. Hum. Hered.65(1), 1–8 (2008).
  • Wong SY, Lau EM, Li M et al. The prevalence of Apo E4 genotype and its relationship to bone mineral density in Hong Kong Chinese. J. Bone Miner. Metab.23(3), 261–265 (2005).
  • Valimaki VV, Piippo K, Valimaki S et al. The relation of the XbaI and PvuII polymorphisms of the estrogen receptor gene and the CAG repeat polymorphism of the androgen receptor gene to peak bone mass and bone turnover rate among young healthy men. Osteoporos. Int.16(12), 1633–1640 (2005).
  • Yamada Y, Ando F, Niino N et al. Association of polymorphisms of the androgen receptor and klotho genes with bone mineral density in Japanese women. J. Mol. Med.83(1), 50–57 (2005).
  • Kenny AM, McGee D, Joseph C et al. Lack of association between androgen receptor polymorphisms and bone mineral density or physical function in older men. Endocr. Res.31(4), 285–293 (2005).
  • Retornaz F, Paris F, Lumbroso S et al. Association between androgen receptor gene polymorphism and bone density in older women using hormone replacement therapy. Maturitas55(4), 325–333 (2006).
  • Jiang DK, Xu FH, Liu MY et al. No evidence of association of the osteocalcin gene HindIII polymorphism with bone mineral density in Chinese women. J. Musculoskelet. Neuronal Interact.7(2), 149–154 (2007).
  • Ramesh BL, Wilson SG, Dick IM et al. Bone mass effects of a BMP4 gene polymorphism in postmenopausal women. Bone36(3), 555–561 (2005).
  • Oh B, Kim SY, Kim DJ et al. Associations of catalase gene polymorphisms with bone mineral density and bone turnover markers in postmenopausal women. J. Med. Genet.44(1), E62 (2007).
  • Drummond FJ, Mackrill JJ, O’Sullivan K et al. CD38 is associated with premenopausal and postmenopausal bone mineral density and postmenopausal bone loss. J. Bone Miner. Metab.24(1), 28–35 (2006).
  • Kornak U, Ostertag A, Branger S et al. Polymorphisms in the CLCN7 gene modulate bone density in postmenopausal women and in patients with autosomal dominant osteopetrosis type II. J. Clin. Endocrinol. Metab.91(3), 995–1000 (2006).
  • Pettersson U, Albagha OM, Mirolo M et al. Polymorphisms of the CLCN7 gene are associated with BMD in women. J. Bone Miner. Res.20(11), 1960–1967 (2005).
  • Karsak M, Cohen-Solal M, Freudenberg J et al. Cannabinoid receptor type 2 gene is associated with human osteoporosis. Hum. Mol. Genet.14(22), 3389–3396 (2005).
  • Stewart TL, Jin H, McGuigan FE et al. Haplotypes defined by promoter and intron 1 polymorphisms of the COLIA1 gene regulate bone mineral density in women. J. Clin. Endocrinol. Metab.91(9), 3575–3583 (2006).
  • Nguyen TV, Esteban LM, White CP et al. Contribution of the collagen I α1 and vitamin D receptor genes to the risk of hip fracture in elderly women. J. Clin. Endocrinol. Metab.90(12), 6575–6579 (2005).
  • Todhunter CE, Sutherland-Craggs A, Bartram SA et al. Influence of IL-6, COL1A1, and VDR gene polymorphisms on bone mineral density in Crohn’s disease. Gut54(11), 1579–1584 (2005).
  • Bandres E, Pombo I, Gonzalez-Huarriz M et al. Association between bone mineral density and polymorphisms of the VDR, ERα, COL1A1 and CTR genes in Spanish postmenopausal women. J. Endocrinol. Invest.28(4), 312–321 (2005).
  • Stewart TL, Roschger P, Misof BM et al. Association of COLIA1 Sp1 alleles with defective bone nodule formation in vitro and abnormal bone mineralization in vivo. Calcif. Tissue Int.77(2), 113–118 (2005).
  • Weichetova M, Stepan JJ, Haas T et al. The risk of Colles’ fracture is associated with the collagen I α1 Sp1 polymorphism and ultrasound transmission velocity in the calcaneus only in heavier postmenopausal women. Calcif. Tissue Int.76(2), 98–106 (2005).
  • Lei SF, Deng FY, Xiao SM et al. Association and haplotype analyses of the COL1A2 and ER-α gene polymorphisms with bone size and height in Chinese. Bone36(3), 533–541 (2005).
  • Lei SF, Deng FY, Dvornyk V et al. The (GT)n polymorphism and haplotype of the COL1A2 gene, but not the (AAAG)n polymorphism of the PTHR1 gene, are associated with bone mineral density in Chinese. Hum. Genet.116(3), 200–207 (2005).
  • Stolk L, van Meurs JB, Jhamai M et al. The catechol-O-methyltransferase Met158 low-activity allele and association with nonvertebral fracture risk in elderly men. J. Clin. Endocrinol. Metab.92(8), 3206–3212 (2007).
  • Lorentzon M, Eriksson AL, Nilsson S et al. Association between physical activity and BMD in young men is modulated by catechol-O-methyltransferase (COMT) genotype: the GOOD study. J. Bone Miner. Res.22(8), 1165–1172 (2007).
  • Magana JJ, Gomez R, Cisneros B et al. Association of the CT gene (CA) polymorphism with BMD in osteoporotic Mexican women. Clin. Genet.70(5), 402–408 (2006).
  • Chen HY, Chen WC, Hsu CM et al. Tumor necrosis factor α, CYP 17, urokinase, and interleukin 10 gene polymorphisms in postmenopausal women: correlation to bone mineral density and susceptibility to osteoporosis. Eur. J. Obstet. Gynecol. Reprod. Biol.122(1), 73–78 (2005).
  • Yamada Y, Ando F, Shimokata H. Association of polymorphisms in CYP17A1, MTP, and VLDLR with bone mineral density in community-dwelling Japanese women and men. Genomics86(1), 76–85 (2005).
  • Enjuanes A, Garcia-Giralt N, Supervia A et al. A new SNP in a negative regulatory region of the CYP19A1 gene is associated with lumbar spine BMD in postmenopausal women. Bone38(5), 738–743 (2006).
  • Riancho JA, Zarrabeitia MT, Valero C et al. Aromatase gene and osteoporosis: relationship of ten polymorphic loci with bone mineral density. Bone36(5), 917–925 (2005).
  • Kastelan D, Grubic Z, Kraljevic I et al. Decreased peak bone mass is associated with a 3-bp deletion/insertion of the CYP19 intron 4 polymorphism: preliminary data from the GOOS study. J. Endocrinol. Invest.30(6), 465–469 (2007).
  • Napoli N, Villareal DT, Mumm S et al. Effect of CYP1A1 gene polymorphisms on estrogen metabolism and bone density. J. Bone Miner. Res.20(2), 232–239 (2005).
  • Bacsi K, Kosa JP, Borgulya G et al.CYP3A7*1C polymorphism, serum dehydroepiandrosterone sulfate level, and bone mineral density in postmenopausal women. Calcif. Tissue Int.80(3), 154–159 (2007).
  • Ongphiphadhanakul B, Chanprasertyothin S, Saetung S et al. A specific haplotype in the 3´ end of estrogen-receptor α gene is associated with low bone mineral density in premenopausal women and increased risk of postmenopausal osteoporosis. Osteoporos. Int.16(10), 1233–1238 (2005).
  • Dennison E, Syddall H, Fall C et al. Evidence of sexual dimorphism in relationships between estrogen receptor polymorphisms and bone mass: the Hertfordshire study. J. Rheumatol.32(12), 2400–2404 (2005).
  • Nam HS, Shin MH, Kweon SS et al. Association of estrogen receptor-α gene polymorphisms with bone mineral density in postmenopausal Korean women. J. Bone Miner. Metab.23(1), 84–89 (2005).
  • Jian WX, Yang YJ, Long JR et al. Estrogen receptor α gene relationship with peak bone mass and body mass index in Chinese nuclear families. J. Hum. Genet.50(9), 477–482 (2005).
  • Yahata T, Quan J, Tamura N et al. Association between single nucleotide polymorphisms of estrogen receptor a gene and efficacy of HRT on bone mineral density in post-menopausal Japanese women. Hum. Reprod.20(7), 1860–1866 (2005).
  • Yim CH, Choi JT, Choi HA et al. Association of estrogen receptor α gene microsatellite polymorphism with annual changes in bone mineral density in Korean women with hormone replacement therapy. J. Bone Miner. Metab.23(5), 395–400 (2005).
  • Binh TQ, Shinka T, Khan NC et al. Association of estrogen receptor a gene polymorphisms and lifestyle factors with calcaneal quantitative ultrasound and osteoporosis in postmenopausal Vietnamese women. J. Hum. Genet.51(11), 1022–1029 (2006).
  • Cusack S, Molgaard C, Michaelsen KF et al. Vitamin D and estrogen receptor-a genotype and indices of bone mass and bone turnover in Danish girls. J. Bone Miner. Metab.24(4), 329–336 (2006).
  • Lau HH, Ng MY, Cheung WM et al. Assessment of linkage and association of 13 genetic loci with bone mineral density. J. Bone Miner. Metab.24(3), 226–234 (2006).
  • Cepollaro C, Lauretani F, Gozzini A et al. Relationship of volumetric bone mineral density and structural parameters with ERα gene polymorphisms. Calcif. Tissue Int.80(5), 307–315 (2007).
  • Ivanova JT, Doukova PB, Boyanov MA et al. PvuII and XbaI polymorphisms of the estrogen receptor gene and bone mineral density in a Bulgarian population sample. Hormones (Athens)6(1), 36–43 (2007).
  • Valero C, Zarrabeitia MT, Hernandez JL et al. Bone mass in young adults: relationship with gender, weight and genetic factors. J. Intern. Med.258(6), 554–562 (2005).
  • Moron FJ, Mendoza N, Vazquez F et al. Multilocus analysis of estrogen-related genes in Spanish postmenopausal women suggests an interactive role of ESR1, ESR2 and NRIP1 genes in the pathogenesis of osteoporosis. Bone39(1), 213–221 (2006).
  • Laflamme N, Giroux S, Loredo-Osti JC et al. A frequent regulatory variant of the estrogen-related receptor α gene associated with BMD in French–Canadian premenopausal women. J. Bone Miner. Res.20(6), 938–944 (2005).
  • Koh JM, Oh B, Lee JY et al. Association of FLT3 polymorphisms with low BMD and risk of osteoporotic fracture in postmenopausal women. J. Bone Miner. Res.22(11), 1752–1758 (2007).
  • Yamada Y, Ando F, Shimokata H. Association of polymorphisms in forkhead box C2 and perilipin genes with bone mineral density in community-dwelling Japanese individuals. Int. J. Mol. Med.18(1), 119–127 (2006).
  • Lories RJ, Boonen S, Peeters J et al. Evidence for a differential association of the Arg200Trp single-nucleotide polymorphism in FRZB with hip osteoarthritis and osteoporosis. Rheumatology (Oxford)45(1), 113–114 (2006).
  • Kinoshita H, Nakagawa K, Narusawa K et al. A functional single nucleotide polymorphism in the vitamin-K-dependent γ-glutamyl carboxylase gene (Arg325Gln) is associated with bone mineral density in elderly Japanese women. Bone40(2), 451–456 (2007).
  • Kenth G, Shao Z, Cole DE et al. Relationship of the human growth hormone receptor exon 3 genotype with final adult height and bone mineral density. J. Clin. Endocrinol. Metab.92(2), 725–728 (2007).
  • Douroudis K, Tarassi K, Athanassiades T et al. HLA alleles as predisposal factors for postmenopausal osteoporosis in a Greek population. Tissue Antigens69(6), 592–596 (2007).
  • Jiang DK, Shen H, Li MX et al. No major effect of the insulin-like growth factor I gene on bone mineral density in premenopausal Chinese women. Bone36(4), 694–699 (2005).
  • Kim SY, Lee JY, Kim HY et al. Association of KIT gene polymorphisms with bone mineral density in postmenopausal Korean women. J. Hum. Genet.52(6), 502–509 (2007).
  • Mullin BH, Wilson SG, Islam FM et al.Klotho gene polymorphisms are associated with osteocalcin levels but not bone density of aged postmenopausal women. Calcif. Tissue Int.77(3), 145–151 (2005).
  • Riancho JA, Valero C, Hernandez JL et al. Association of the F352V variant of the Klotho gene with bone mineral density. Biogerontology8(2), 121–127 (2006).
  • Fairbrother UL, Tanko LB, Walley AJ et al. Leptin receptor genotype at Gln223Arg is associated with body composition, BMD, and vertebral fracture in postmenopausal Danish women. J. Bone Miner. Res.22(4), 544–550 (2007).
  • Ferrari SL, Deutsch S, Baudoin C et al. LRP5 gene polymorphisms and idiopathic osteoporosis in men. Bone37(6), 770–775 (2005).
  • Zhang ZL, Qin YJ, He JW et al. Association of polymorphisms in low-density lipoprotein receptor-related protein 5 gene with bone mineral density in postmenopausal Chinese women. Acta Pharmacol. Sin.26(9), 1111–1116 (2005).
  • Koay MA, Tobias JH, Leary SD et al. The effect of LRP5 polymorphisms on bone mineral density is apparent in childhood. Calcif. Tissue Int.81(1), 1–9 (2007).
  • Ezura Y, Nakajima T, Urano T et al. Association of a single-nucleotide variation (A1330V) in the low-density lipoprotein receptor-related protein 5 gene (LRP5) with bone mineral density in adult Japanese women. Bone40(4), 997–1005 (2007).
  • Saarinen A, Valimaki VV, Valimaki MJ et al. The A1330V polymorphism of the low-density lipoprotein receptor-related protein 5 gene (LRP5) associates with low peak bone mass in young healthy men. Bone40(4), 1006–1012 (2007).
  • Li Y, Sun CH, Yin H et al. Association of polymorphism of low density lipoprotein receptor-related protein 5 Q89R, A1330V with bone mineral density in premenopausal northern Chinese women. Wei Sheng Yan Jiu35(5), 576–579 (2006).
  • Zhang ZL, He JW, Qin YJ et al. Association between myostatin gene polymorphisms and peak BMD variation in Chinese nuclear families. Osteoporos. Int.19(1), 39–47 (2007).
  • Valero C, Alonso MA, Zarrabeitia MT et al.MTHFR C677T polymorphism and osteoporotic fractures. Horm. Metab. Res.39(8), 543–547 (2007).
  • Baines M, Kredan MB, Usher J et al. The association of homocysteine and its determinants MTHFR genotype, folate, vitamin B12 and vitamin B6 with bone mineral density in postmenopausal British women. Bone40(3), 730–736 (2007).
  • Taylor BC, Schreiner PJ, Zmuda JM et al. Association of endothelial nitric oxide synthase genotypes with bone mineral density, bone loss, hip structure, and risk of fracture in older women: the SOF study. Bone39(1), 174–180 (2006).
  • Vidal C, Brincat M, Xuereb AA. TNFRSF11B gene variants and bone mineral density in postmenopausal women in Malta. Maturitas53(4), 386–395 (2006).
  • Kim GS, Koh JM, Chang JS et al. Association of the OSCAR promoter polymorphism with BMD in postmenopausal women. J. Bone Miner. Res.20(8), 1342–1348 (2005).
  • Ohlendorff SD, Tofteng CL, Jensen JE et al. Single nucleotide polymorphisms in the P2X7 gene are associated to fracture risk and to effect of estrogen treatment. Pharmacogenet. Genomics17(7), 555–567 (2007).
  • Reneland RH, Mah S, Kammerer S et al. Association between a variation in the phosphodiesterase 4D gene and bone mineral density. BMC Med. Genet.6, 9 (2005).
  • Tasker PN, Macdonald H, Fraser WD et al. Association of PLOD1 polymorphisms with bone mineral density in a population-based study of women from the UK. Osteoporos. Int.17(7), 1078–1085 (2006).
  • Hwang JY, Lee JY, Park MH et al. Association of PLXNA2 polymorphisms with vertebral fracture risk and bone mineral density in postmenopausal Korean population. Osteoporos. Int.17(11), 1592–1601 (2006).
  • Sudo Y, Ezura Y, Kajita M et al. Association of single nucleotide polymorphisms in the promoter region of the pro-opiomelanocortin gene (POMC) with low bone mineral density in adult women. J. Hum. Genet.50(5), 235–240 (2005).
  • Rhee EJ, Oh KW, Lee WY et al. The effects of C161–>T polymorphisms in exon 6 of peroxisome proliferator-activated receptor-g gene on bone mineral metabolism and serum osteoprotegerin levels in healthy middle-aged women. Am. J. Obstet. Gynecol.192(4), 1087–1093 (2005).
  • Zhang ZL, He JW, Qin YJ et al. Association between SNP and haplotypes in PPARGC1 and adiponectin genes and bone mineral density in Chinese nuclear families. Acta Pharmacol. Sin.28(2), 287–295 (2007).
  • Liu PY, Zhang YY, Lu Y et al. A survey of haplotype variants at several disease candidate genes: the importance of rare variants for complex diseases. J. Med. Genet.42(3), 221–227 (2005).
  • Zhang YY, Liu PY, Lu Y et al. Tests of linkage and association of PTH/PTHrP receptor type 1 gene with bone mineral density and height in Caucasians. J. Bone Miner. Metab.24(1), 36–41 (2006).
  • Vilarino-Guell C, Miles LJ, Duncan EL et al.PTHR1 polymorphisms influence BMD variation through effects on the growing skeleton. Calcif. Tissue Int.81(4), 270–278 (2007).
  • Huang QY, Kung AW. The association of common polymorphisms in the QPCT gene with bone mineral density in the Chinese population. J. Hum. Genet.52(9), 757–762 (2007).
  • Mencej S, Prezelj J, Kocijancic A et al. Association of TNFSF11 gene promoter polymorphisms with bone mineral density in postmenopausal women. Maturitas55(3), 219–226 (2006).
  • Ermakov S, Malkin I, Keter M et al. Family-based association study of ROR2 polymorphisms with an array of radiographic hand bone strength phenotypes. Osteoporos. Int.18(12), 1683–1692 (2007).
  • Bustamante M, Nogues X, Agueda L et al. Promoter 2 -1025 T/C polymorphism in the RUNX2 gene is associated with femoral neck BMD in Spanish postmenopausal women. Calcif. Tissue Int.81(4), 327–332 (2007).
  • Lee SA, Choi JY, Shin CS et al.SULT1E1 genetic polymorphisms modified the association between phytoestrogen consumption and bone mineral density in healthy Korean women. Calcif. Tissue Int.79(3), 152–159 (2006).
  • Huang QY, Shen H, Deng HY et al. CA repeat polymorphism of the TNFR2 gene is not associated with bone mineral density in two independent Caucasian populations. J. Bone Miner. Metab.24(2), 132–137 (2006).
  • Goseki-Sone M, Sogabe N, Fukushi-Irie M et al. Functional analysis of the single nucleotide polymorphism (787T>C) in the tissue-nonspecific alkaline phosphatase gene associated with BMD. J. Bone Miner. Res.20(5), 773–782 (2005).
  • Ivanova J, Doukova P, Boyanov M et al. FokI and BsmI polymorphisms of the vitamin D receptor gene and bone mineral density in a random Bulgarian population sample. Endocrine29(3), 413–418 (2006).
  • Gentil P, Lima RM, Lins TC et al. Physical activity, Cdx-2 genotype, and BMD. Int. J. Sports Med.28(12), 151–162 (2007).
  • Fang Y, van Meurs JB, Rivadeneira F et al. Vitamin D receptor gene haplotype is associated with body height and bone size. J. Clin. Endocrinol. Metab.92(4), 1491–1501 (2007).
  • Xia CW, Qiu Y, Sun X et al. [Vitamin D receptor gene polymorphisms in female adolescent idiopathic scoliosis patients]. Zhonghua Yi Xue Za Zhi87(21), 1465–1469 (2007).
  • Xu H, Xiong DH, Xu FH et al. Association between VDR ApaI polymorphism and hip bone mineral density can be modified by body mass index: a study on postmenopausal Chinese women. Acta Biochim. Biophys. Sin. (Shanghai)37(1), 61–67 (2005).
  • Remes T, Vaisanen SB, Mahonen A et al. Bone mineral density, body height, and vitamin D receptor gene polymorphism in middle-aged men. Ann. Med.37(5), 383–392 (2005).
  • Garnero P, Munoz F, Borel O et al. Vitamin D receptor gene polymorphisms are associated with the risk of fractures in postmenopausal women, independently of bone mineral density. J. Clin. Endocrinol. Metab.90(8), 4829–4835 (2005).
  • Zajickova K, Zofkova I, Hill M. Vitamin D receptor polymorphisms, bone ultrasound and mineral density in post-menopausal women. Aging Clin. Exp. Res.17(2), 121–124 (2005).
  • Rabon-Stith KM, Hagberg JM, Phares DA et al. Vitamin D receptor FokI genotype influences bone mineral density response to strength training, but not aerobic training. Exp. Physiol.90(4), 653–661 (2005).
  • Falkiewicz K, Bidzinska B, Demissie M et al. Influence of vitamin D receptor gene polymorphisms on secondary hyperparathyroidism and bone density after kidney transplantation. Transplant. Proc.37(2), 1023–1025 (2005).
  • Morita A, Iki M, Dohi Y et al. Effects of the Cdx-2 polymorphism of the vitamin D receptor gene and lifestyle factors on bone mineral density in a representative sample of Japanese women: the Japanese Population-based Osteoporosis (JPOS) Study. Calcif. Tissue Int.77(6), 339–347 (2005).
  • Bolu SE, Orkunoglu Suer FE, Deniz F et al. The vitamin D receptor fokI start codon polymorphism and bone mineral density in male hypogonadotrophic hypogonadism. J. Endocrinol. Invest.28(9), 810–814 (2005).
  • Abrams SA, Griffin IJ, Hawthorne KM et al. Vitamin D receptor Fok1 polymorphisms affect calcium absorption, kinetics, and bone mineralization rates during puberty. J. Bone Miner. Res.20(6), 945–953 (2005).
  • Horst-Sikorska W, Wawrzyniak A, Celczynska-Bajew L et al. Polymorphism of VDR gene – the most effective molecular marker of osteoporotic bone fractures risk within postmenopausal women from Wielkopolska region of Poland. Endokrynol. Pol.56(3), 233–239 (2005).
  • Kim TH, Hong JM, Lee JY et al. Promoter polymorphisms of the vascular endothelial growth factor gene is associated with an osteonecrosis of the femoral head in the Korean population. Osteoarthritis Cartilage DOI: 10.1016/j.joca.2007.06.017 (2007).
  • Dempfle A, Wudy SA, Saar K et al. Evidence for involvement of the vitamin D receptor gene in idiopathic short stature via a genome-wide linkage study and subsequent association studies. Hum. Mol. Genet.15(18), 2772–2783 (2006).
  • Hsu YH, Xu X, Terwedow HA et al. Large-scale genome-wide linkage analysis for loci linked to BMD at different skeletal sites in extreme selected sibships. J. Bone Miner. Res.22(2), 184–194 (2007).
  • Ioannidis JP, Ng MY, Sham PC et al. Meta-analysis of genome-wide scans provides evidence for sex- and site-specific regulation of bone mass. J. Bone Miner. Res.22(2), 173–183 (2007).
  • Qin W, He JX, Shi J et al. [Mutation detection of COL1A1 gene in a pedigree with osteogenesis imperfecta]. Yi Chuan Xue Bao32(3), 248–252 (2005).
  • Vidal C, Galea R, Brincat M et al. Linkage to chromosome 11p12 in two Maltese families with a highly penetrant form of osteoporosis. Eur. J. Hum. Genet.15(7), 800–809 (2007).
  • Lee SH, Gupta MK, Han DW et al. Development of transgenic chickens expressing human parathormone under the control of a ubiquitous promoter by using a retrovirus vector system. Poult. Sci.86(10), 2221–2227 (2007).
  • Akhter MP, Jung LK. Decreased bone strength in HLA-B27 transgenic rat model of spondyloarthropathy. Rheumatology (Oxford)46(8), 1258–1262 (2007).
  • Ono N, Nakashima K, Schipani E et al. Constitutively active parathyroid hormone receptor signaling in cells in osteoblastic lineage suppresses mechanical unloading-induced bone resorption. J. Biol. Chem.282(35), 25509–25516 (2007).
  • Merciris D, Marty C, Collet C et al. Overexpression of the transcriptional factor Runx2 in osteoblasts abolishes the anabolic effect of parathyroid hormone in vivo. Am. J. Pathol.170(5), 1676–1685 (2007).
  • Hiramatsu K, Asaba Y, Takeshita S et al. Overexpression of γ-glutamyltransferase in transgenic mice accelerates bone resorption and causes osteoporosis. Endocrinology148(6), 2708–2715 (2007).
  • Forlino A, Gualeni B, Pecora F et al. Insights from a transgenic mouse model on the role of SLC26A2 in health and disease. Novartis Found. Symp.273, 193–206 (2006).
  • Iqbal J, Sun L, Kumar TR et al. Follicle-stimulating hormone stimulates TNF production from immune cells to enhance osteoblast and osteoclast formation. Proc. Natl Acad. Sci. USA103(40), 14925–14930 (2006).
  • Wei S, Dai XM, Stanley ER. Transgenic expression of CSF-1 in CSF-1 receptor-expressing cells leads to macrophage activation, osteoporosis, and early death. J. Leukoc. Biol.80(6), 1445–1453 (2006).
  • Merciris D, Schiltz C, Legoupil N et al. Over-expression of TIMP-1 in osteoblasts increases the anabolic response to PTH. Bone40(1), 75–83 (2007).
  • Qin X, Wergedal JE, Rehage M et al. Pregnancy-associated plasma protein-A increases osteoblast proliferation in vitro and bone formation in vivo. Endocrinology147(12), 5653–5661 (2006).
  • Onodera S, Sasaki S, Ohshima S et al. Transgenic mice overexpressing macrophage migration inhibitory factor (MIF) exhibit high-turnover osteoporosis. J. Bone Miner. Res.21(6), 876–885 (2006).
  • Winslow MM, Pan M, Starbuck M et al. Calcineurin/NFAT signaling in osteoblasts regulates bone mass. Dev. Cell10(6), 771–782 (2006).
  • Richard S, Torabi N, Franco GV et al. Ablation of the Sam68 RNA binding protein protects mice from age-related bone loss. PLoS Genet1(6), E74 (2005).
  • Masuda H, Chikuda H, Suga T et al. Regulation of multiple ageing-like phenotypes by inducible klotho gene expression in klotho mutant mice. Mech. Ageing Dev.126(12), 1274–1283 (2005).
  • Miao D, He B, Jiang Y et al. Osteoblast-derived PTHrP is a potent endogenous bone anabolic agent that modifies the therapeutic efficacy of administered PTH 1–34. J. Clin. Invest.115(9), 2402–2411 (2005).
  • Pantschenko AG, Zhang W, Nahounou M et al. Effect of osteoblast-targeted expression of bcl-2 in bone: differential response in male and female mice. J. Bone Miner. Res.20(8), 1414–1429 (2005).
  • Forlino A, Piazza R, Tiveron C et al. A diastrophic dysplasia sulfate transporter (SLC26A2) mutant mouse: morphological and biochemical characterization of the resulting chondrodysplasia phenotype. Hum. Mol. Genet.14(6), 859–871 (2005).
  • Salih DA, Mohan S, Kasukawa Y et al. Insulin-like growth factor-binding protein-5 induces a gender-related decrease in bone mineral density in transgenic mice. Endocrinology146(2), 931–940 (2005).
  • Aoki Y, Ichimura S, Kikuchi T et al. Overexpression of the human interleukin 1a gene causes osteopenia in mice. J. Rheumatol.32(2), 320–324 (2005).
  • Rubin CJ, Lindberg J, Fitzsimmons C et al. Differential gene expression in femoral bone from red junglefowl and domestic chicken, differing for bone phenotypic traits. BMC Genomics8, 208 (2007).
  • Conrads KA, Yi M, Simpson KA et al. A combined proteome and microarray investigation of inorganic phosphate-induced pre-osteoblast cells. Mol. Cell. Proteomics4(9), 1284–1296 (2005).
  • Kahai S, Vary CP, Gao Y et al. Collagen, type V, α1 (COL5A1) is regulated by TGF-β in osteoblasts. Matrix Biol.23(7), 445–455 (2004).
  • Waters KM, Tan R, Genetos DC et al. DNA microarray analysis reveals a role for lysophosphatidic acid in the regulation of anti-inflammatory genes in MC3T3-E1 cells. Bone41(5), 833–841 (2007).
  • Young DW, Pratap J, Javed A et al. SWI/SNF chromatin remodeling complex is obligatory for BMP2-induced, Runx2-dependent skeletal gene expression that controls osteoblast differentiation. J. Cell. Biochem.94(4), 720–730 (2005).
  • Hishiya A, Ikeda K, Watanabe K. A RANKL-inducible gene Znf216 in osteoclast differentiation. J. Recept. Signal Transduct. Res.25(3), 199–216 (2005).
  • Vaes BL, Ducy P, Sijbers AM et al. Microarray analysis on Runx2-deficient mouse embryos reveals novel Runx2 functions and target genes during intramembranous and endochondral bone formation. Bone39(4), 724–738 (2006).
  • Liu T, Gao Y, Sakamoto K et al. BMP-2 promotes differentiation of osteoblasts and chondroblasts in Runx2-deficient cell lines. J. Cell. Physiol.211(3), 728–735 (2007).
  • Fulzele K, Digirolamo DJ, Liu Z et al. Disruption of the insulin-like growth factor type 1 receptor in osteoblasts enhances insulin signaling and action. J. Biol. Chem.282(35), 25649–25658 (2007).
  • Chen XD, Bian X, Teslovich TM et al. Dissection of the sets of genes that control the behavior of biglycan-deficient pre-osteoblasts using oligonucleotide microarrays. Bone37(2), 192–203 (2005).
  • Fukuoka H, Aoyama M, Miyazawa K et al. Hypoxic stress enhances osteoclast differentiation via increasing IGF2 production by non-osteoclastic cells. Biochem. Biophys. Res. Commun.328(4), 885–894 (2005).
  • Kawashima N, Shindo K, Sakamoto K et al. Molecular and cell biological properties of mouse osteogenic mesenchymal progenitor cells, Kusa. J. Bone Miner. Metab.23(2), 123–133 (2005).
  • Matsusaki T, Aoyama T, Nishijo K et al. Expression of the cadherin-11 gene is a discriminative factor between articular and growth plate chondrocytes. Osteoarthritis Cartilage14(4), 353–366 (2006).
  • Watters JW, Cheng C, Pickarski M et al. Inverse relationship between matrix remodeling and lipid metabolism during osteoarthritis progression in the STR/ORT mouse. Arthritis Rheum.56(9), 2999–3009 (2007).
  • Ninomiya K, Miyamoto T, Imai JI et al. Osteoclastic activity induces osteomodulin expression in osteoblasts. Biochem. Biophys. Res. Commun.362(2), 460–466 (2007).
  • Armstrong VJ, Muzylak M, Sunters A et al. Wnt/β-catenin signaling is a component of osteoblastic bone cell early responses to load-bearing and requires estrogen receptor α. J. Biol. Chem.282(28), 20715–20727 (2007).
  • James CG, Ulici V, Tuckermann J et al. Expression profiling of dexamethasone-treated primary chondrocytes identifies targets of glucocorticoid signalling in endochondral bone development. BMC Genomics8, 205 (2007).
  • Wan DC, Aalami OO, Wang Z et al. Differential gene expression between juvenile and adult dura mater: a window into what genes play a role in the regeneration of membranous bone. Plast. Reconstr. Surg.118(4), 851–861 (2006).
  • De BA, Van HP, Bakkus M et al. Migration of culture-expanded human mesenchymal stem cells through bone marrow endothelium is regulated by matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-3. Haematologica92(4), 440–449 (2007).
  • Huttunen MM, Pekkinen M, Ahlstrom ME et al. Effects of bioactive peptides isoleucine-proline-proline (IPP), valine-proline-proline (VPP) and leucine-lysine-proline (LKP) on gene expression of osteoblasts differentiated from human mesenchymal stem cells. Br. J. Nutr.98(4), 780–788 (2007).
  • Lietman SA, Ding C, Cooke DW et al. Reduction in Gsα induces osteogenic differentiation in human mesenchymal stem cells. Clin. Orthop. Relat. Res.434, 231–238 (2005).
  • Tang Z, Sahu SN, Khadeer MA et al. Overexpression of the ZIP1 zinc transporter induces an osteogenic phenotype in mesenchymal stem cells. Bone38(2), 181–198 (2006).
  • Lecka-Czernik B, ckert-Bicknell C, Adamo ML et al. Activation of peroxisome proliferator-activated receptor γ (PPARγ) by rosiglitazone suppresses components of the insulin-like growth factor regulatory system in vitro and in vivo. Endocrinology148(2), 903–911 (2007).
  • Chen S, Santos L, Wu Y et al. Altered gene expression in human cleidocranial dysplasia dental pulp cells. Arch. Oral Biol.50(2), 227–236 (2005).
  • Hanagata N, Takemura T, Monkawa A et al. Phenotype and gene expression pattern of osteoblast-like cells cultured on polystyrene and hydroxyapatite with pre-adsorbed type-I collagen. J. Biomed. Mater. Res. A83(2), 362–371(2007).
  • Yamada S, Ganno T, Ohara N et al. Chitosan monomer accelerates alkaline phosphatase activity on human osteoblastic cells under hypofunctional conditions. J. Biomed. Mater. Res. A83(2), 290–295 (2007).
  • Malizia AP, Vioreanu MH, Doran PP et al. HIV1 protease inhibitors selectively induce inflammatory chemokine expression in primary human osteoblasts. Antiviral Res.74(1), 72–76 (2007).
  • Christodoulou I, Buttery LD, Tai G et al. Characterization of human fetal osteoblasts by microarray analysis following stimulation with 58S bioactive gel-glass ionic dissolution products. J. Biomed. Mater. Res. B Appl. Biomater.77(2), 431–446 (2006).
  • Finkenzeller G, Arabatzis G, Geyer M et al. Gene expression profiling reveals platelet-derived growth factor receptor α as a target of cell contact-dependent gene regulation in an endothelial cell-osteoblast co-culture model. Tissue Eng.12(10), 2889–2903 (2006).
  • Hurson CJ, Butler JS, Keating DT et al. Gene expression analysis in human osteoblasts exposed to dexamethasone identifies altered developmental pathways as putative drivers of osteoporosis. BMC Musculoskelet. Disord.8, 12 (2007).
  • Malizia AP, Cotter E, Chew N et al. HIV protease inhibitors selectively induce gene expression alterations associated with reduced calcium deposition in primary human osteoblasts. AIDS Res. Hum. Retroviruses23(2), 243–250 (2007).
  • Carinci F, Piattelli A, Guida L et al. Effects of Emdogain on osteoblast gene expression. Oral Dis.12(3), 329–342 (2006).
  • Carinci F, Piattelli A, Degidi M et al. Genetic effects of anorganic bovine bone (Bio-Oss) on osteoblast-like MG63 cells. Arch. Oral Biol.51(2), 154–163 (2006).
  • Kim CS, Sohn SH, Jeon SK et al. Effect of various implant coatings on biological responses in MG63 using cDNA microarray. J. Oral Rehabil.33(5), 368–379 (2006).
  • Sollazzo V, Palmieri A, Pezzetti F et al. Genetic effect of zirconium oxide coating on osteoblast-like cells. J. Biomed. Mater. Res. B Appl. Biomater.84(2), 550–558 (2007).
  • Tsukahara S, Ikeda R, Goto S et al. Tumour necrosis factor a-stimulated gene-6 inhibits osteoblastic differentiation of human mesenchymal stem cells induced by osteogenic differentiation medium and BMP-2. Biochem. J.398(3), 595–603 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.