44
Views
1
CrossRef citations to date
0
Altmetric
Review

Function of HNF1 in the pathogenesis of diabetes

&
Pages 391-403 | Published online: 10 Jan 2014

References

  • Fajans SS, Bell GI, Polonsky KS. Molecular mechanisms and clinical pathophysiology of maturity-onset diabetes of the young. N. Engl. J. Med.345, 971–980 (2001).
  • Vaxillaire M, Froguel P. Genetic basis of maturity-onset diabetes of the young. Endocrinol. Metab. Clin. North Am.35, 371–384 (2006).
  • Gupta RK, Kaestner KH. HNF-4α: from MODY to late-onset Type 2 diabetes. Trends. Mol. Med.10, 521–524 (2004).
  • Bonnycastle LL, Willer CJ, Conneely KN et al. Common variants in maturity-onset diabetes of the young genes contribute to risk of Type 2 diabetes in Finns. Diabetes55, 2534–2540 (2006).
  • Shaat N, Karlsson E, Lernmark A et al. Common variants in MODY genes increase the risk of gestational diabetes mellitus. Diabetologia49, 1545–1551 (2006).
  • Yamagata K, Furuta H, Oda N et al. Mutations in the hepatocyte nuclear factor-4α gene in maturity-onset diabetes of the young (MODY1). Nature384, 458–460 (1996).
  • Chen WS, Manova K, Weinstein DC et al. Disruption of the HNF-4 gene, expressed in visceral endoderm, leads to cell death in embryonic ectoderm and impaired gastrulation of mouse embryos. Genes Dev.8, 2466–2477 (1994).
  • Froguel P, Zouali H, Vionnet N et al. Familial hyperglycemia due to mutations in glucokinase. Definition of a subtype of diabetes mellitus. N. Engl. J. Med.328, 697–702 (1993).
  • Grupe A, Hultgren B, Ryan A, Ma YH, Bauer M, Stewart TA. Transgenic knockouts reveal a critical requirement for pancreatic β cell glucokinase in maintaining glucose homeostasis. Cell83, 69–78 (1995).
  • Terauchi Y, Sakura H, Yasuda K et al. Pancreatic β-cell-specific targeted disruption of glucokinase gene. Diabetes mellitus due to defective insulin secretion to glucose. J. Biol. Chem.270, 30253–30256 (1995).
  • Yamagata K, Oda N, Kaisaki PJ et al. Mutations in the hepatocyte nuclear factor-1α gene in maturity-onset diabetes of the young (MODY3). Nature384, 455–458 (1996).
  • Lee YH, Sauer B, Gonzalez FJ. Laron dwarfism and non-insulin-dependent diabetes mellitus in the Hnf-1α knockout mouse. Mol. Cell. Biol.18, 3059–3068 (1998).
  • Stoffers DA, Ferrer J, Clarke WL, Habener JF. Early-onset Type-II diabetes mellitus (MODY4) linked to IPF1. Nat. Genet.17, 138–139 (1997).
  • Jonsson J, Carlsson L, Edlund T, Edlund H. Insulin-promoter-factor 1 is required for pancreas development in mice. Nature371, 606–609 (1994).
  • Horikawa Y, Iwasaki N, Hara M et al. Mutation in hepatocyte nuclear factor-1β gene (TCF2) associated with MODY. Nat. Genet.17, 384–385 (1997).
  • Barbacci E, Reber M, Ott MO, Breillat C, Huetz F, Cereghini S. Variant hepatocyte nuclear factor 1 is required for visceral endoderm specification. Development126, 4795–4805 (1999).
  • Coffinier C, Thepot D, Babinet C, Yaniv M, Barra J. Essential role for the homeoprotein vHNF1/HNF1β in visceral endoderm differentiation. Development126, 4785–4794 (1999).
  • Malecki MT, Jhala US, Antonellis A et al. Mutations in NEUROD1 are associated with the development of Type 2 diabetes mellitus. Nat. Genet.23, 323–328 (1999).
  • Liu M, Pleasure SJ, Collins AE et al. Loss of BETA2/NeuroD leads to malformation of the dentate gyrus and epilepsy. Proc. Natl Acad. Sci. USA97, 865–780 (2000).
  • Huang HP, Chu K, Nemoz-Gaillard E, Elberg D, Tsai MJ. Neogenesis of β-cells in adult BETA2/NeuroD-deficient mice. Mol. Endocrinol.16, 541–551 (2002).
  • Hattersley AT, Pearson ER. Minireview: pharmacogenetics and beyond: the interaction of therapeutic response, β-cell physiology, and genetics in diabetes. Endocrinology147, 2657–2663 (2006).
  • Schuit FC, Huypens P, Heimberg H, Pipeleers DG. Glucose sensing in pancreatic β-cells: a model for the study of other glucose-regulated cells in gut, pancreas, and hypothalamus. Diabetes50, 1–11 (2001).
  • Navas MA, EJ Munoz-Elias Kim J, Shih D, Stoffel M. Functional characterization of the MODY1 gene mutations HNF4(R127W), HNF4(V255M), and HNF4(E276Q). Diabetes48, 1459–1465 (1999).
  • Vaxillaire M, Abderrahmani A, Boutin P et al. Anatomy of a homeoprotein revealed by the analysis of human MODY3 mutations. J. Biol. Chem.274, 35639–35646 (1999).
  • Tomura H, Nishigori H, Sho K, Yamagata K, Inoue I, Takeda J. Loss-of-function and dominant-negative mechanisms associated with hepatocyte nuclear factor-1β mutations in familial Type 2 diabetes mellitus. J. Biol. Chem.274, 12975–12978 (1999).
  • Furuta H, Furuta M, Sanke T et al. Nonsense and missense mutations in the human hepatocyte nuclear factor-1β gene (TCF2) and their relation to Type 2 diabetes in Japanese. J. Clin. Endocrinol. Metab.87, 3859–3863 (2002).
  • Neve B, ME Fernandez-Zapico V Ashkenazi-Katalan et al. Role of transcription factor KLF11 and its diabetes-associated gene variants in pancreatic β cell function. Proc. Natl Acad. Sci. USA102, 4807–4812 (2005).
  • Raeder H, Johansson S, Holm PI et al. Mutations in the CEL VNTR cause a syndrome of diabetes and pancreatic exocrine dysfunction. Nat. Genet.38, 54–62 (2006).
  • Mendel DB, Crabtree GR. HNF-1, a member of a novel class of dimerizing homeodomain proteins. J. Biol. Chem.266, 677–680 (1991).
  • Cereghini S, Raymondjean M, Carranca AG, Herbomel P, Yaniv M. Factors involved in control of tissue-specific expression of albumin gene. Cell50, 627–638 (1987).
  • Courtois G, Baumhueter S, Crabtree GR. Purified hepatocyte nuclear factor 1 interacts with a family of hepatocyte-specific promoters. Proc. Natl Acad. Sci. USA85, 7937–7941 (1988).
  • Frain M, Swart G, Monaci P et al. The liver-specific transcription factor LF-B1 contains a highly diverged homeobox DNA binding domain. Cell59, 145–157 (1989).
  • De Simone V, De Magistris L, Lazzaro D et al. LFB3, a heterodimer-forming homeoprotein of the LFB1 family, is expressed in specialized epithelia. EMBO J.10, 1435–1443 (1991).
  • Bach I, Mattei MG, Cereghini S, Yaniv M. Two members of an HNF1 homeoprotein family are expressed in human liver. Nucleic Acids Res.19, 3553–3559 (1991).
  • Mendel DB, Hansen LP, Graves MK, Conley PB, Crabtree GR. Hnf-1α and HNF-1β (vHNF-1) share dimerization and homeo domains, but not activation domains, and form heterodimers in vitro. Genes Dev.5, 1042–1056 (1991).
  • Nicosia A, Monaci P, Tomei L et al. A myosin-like dimerization helix and an extra-large homeodomain are essential elements of the tripartite DNA binding structure of LFB1. Cell61, 1225–1236 (1990).
  • Rey-Campos J, Chouard T, Yaniv M, Cereghini S. vHNF1 is a homeoprotein that activates transcription and forms heterodimers with HNF1. EMBO J.10, 1445–1457 (1991).
  • Ringeisen F, J Rey-Campos Yaniv M. The transactivation potential of variant hepatocyte nuclear factor 1 is modified by alternative splicing. J. Biol. Chem.268, 25706–25711 (1993).
  • Serfas MS, Tyner AL. Hnf-1α and HNF-1β expression in mouse intestinal crypts. Am. J. Physiol.265, G506–G513 (1993).
  • Miquerol L, Lopez S, Cartier N, Tulliez M, Raymondjean M, Kahn A. Expression of the L-type pyruvate kinase gene and the hepatocyte nuclear factor 4 transcription factor in exocrine and endocrine pancreas. J. Biol. Chem.269, 8944–8951 (1994).
  • Cereghini S. Liver-enriched transcription factors and hepatocyte differentiation. FASEB J.10, 267–282 (1996).
  • Hagenfeldt-Johansson KA, Herrera PL, Wang H, Gjinovci A, Ishihara H, Wollheim CB. β-cell-targeted expression of a dominant-negative hepatocyte nuclear factor-1α induces a maturity-onset diabetes of the young (MODY)3- like phenotype in transgenic mice. Endocrinology142, 5311–5320 (2001).
  • Maestro MA, Boj SF, Luco RF et al. Hnf6 and Tcf2 (MODY5) are linked in a gene network operating in a precursor cell domain of the embryonic pancreas. Hum. Mol. Genet.12, 3307–3314 (2003).
  • Sirbu IO, Gresh L, Barra J, Duester G. Shifting boundaries of retinoic acid activity control hindbrain segmental gene expression. Development132, 2611–2622 (2005).
  • Vaulont S, Kahn A. Transcriptional control of metabolic regulation genes by carbohydrates. FASEB J.8, 28–35 (1994).
  • Tronche F, Ringeisen F, Blumenfeld M, Yaniv M, Pontoglio M. Analysis of the distribution of binding sites for a tissue-specific transcription factor in the vertebrate genome. J. Mol. Biol.266, 231–245 (1997).
  • Baumhueter S, Courtois G, Morgan JG, Crabtree GR. The role of HNF-1 in liver-specific gene expression. Ann. NY Acad. Sci.557, 272–279 (1989).
  • Pontoglio M, Pausa M, Doyen A, Viollet B, Yaniv M, Tedesco F. Hepatocyte nuclear factor 1α controls the expression of terminal complement genes. J. Exp. Med.194, 1683–1689 (2001).
  • Sakaguchi T, Gu X, Golden HM, Suh E, Rhoads DB, Reinecker HC. Cloning of the human claudin-2 5´-flanking region revealed a TATA-less promoter with conserved binding sites in mouse and human for caudal-related homeodomain proteins and hepatocyte nuclear factor-1α. J. Biol. Chem.277, 21361–21370 (2002).
  • Koffler LD, Fernstrom MJ, Akiyama TE, Gonzalez FJ, Ruch RJ. Positive regulation of connexin32 transcription by hepatocyte nuclear factor-1α. Arch. Biochem. Biophys.407, 160–167 (2002).
  • Torres-Padilla ME, Fougere-Deschatrette C, Weiss MC. Expression of HNF4α isoforms in mouse liver development is regulated by sequential promoter usage and constitutive 3´ end splicing. Mech. Dev.109, 183–193 (2001).
  • Hatzis P, Talianidis I. Regulatory mechanisms controlling human hepatocyte nuclear factor 4α gene expression. Mol. Cell. Biol.21, 7320–7330 (2001).
  • Zhong W, Sladek FM, Darnell JE Jr. The expression pattern of a Drosophila homolog to the mouse transcription factor HNF-4 suggests a determinative role in gut formation. EMBO J.12, 537–544 (1993).
  • Poll AV, Pierreux CE, Lokmane L et al. A vHNF1/TCF2-HNF6 cascade regulates the transcription factor network that controls generation of pancreatic precursor cells. Diabetes55, 61–69 (2006).
  • Hay CW, Docherty K. Comparative analysis of insulin gene promoters: implications for diabetes research. Diabetes55, 3201–3213 (2006).
  • Pontoglio M. Hepatocyte nuclear factor 1, a transcription factor at the crossroads of glucose homeostasis. J. Am. Soc. Nephrol.11(Suppl. 16), S140–S143 (2000).
  • Wang H, K Hagenfeldt-Johansson Otten LA, Gauthier BR, Herrera PL, Wollheim CB. Experimental models of transcription factor-associated maturity-onset diabetes of the young. Diabetes51(Suppl. 3), S333–S342 (2002).
  • Giuffrida FM, Reis AF. Genetic and clinical characteristics of maturity-onset diabetes of the young. Diabetes Obes. Metab.7, 318–326 (2005).
  • Timsit J, C Bellanne-Chantelot D Dubois-Laforgue Velho G. Diagnosis and management of maturity-onset diabetes of the young. Treat. Endocrinol.4, 9–18 (2005).
  • Olek K. Maturity-onset diabetes of the young: an update. Clin. Lab.52, 593–598 (2006).
  • Ellard S, Colclough K. Mutations in the genes encoding the transcription factors hepatocyte nuclear factor 1α (HNF1A) and 4α (HNF4A) in maturity-onset diabetes of the young. Hum. Mutat.27, 854–869 (2006).
  • Lindner TH, Njolstad PR, Horikawa Y, Bostad L, Bell GI, Sovik O. A novel syndrome of diabetes mellitus, renal dysfunction and genital malformation associated with a partial deletion of the pseudo-POU domain of hepatocyte nuclear factor-1β. Hum. Mol. Genet.8, 2001–2008 (1999).
  • Cereghini S, Ott MO, Power S, Maury M. Expression patterns of vHNF1 and HNF1 homeoproteins in early postimplantation embryos suggest distinct and sequential developmental roles. Development116, 783–797 (1992).
  • Ueda H, Ikegami H, Kawaguchi Y et al. Genetic analysis of late-onset Type 2 diabetes in a mouse model of human complex trait. Diabetes48, 1168–1174 (1999).
  • Herr W, Cleary MA. The POU domain: versatility in transcriptional regulation by a flexible two-in-one DNA-binding domain. Genes Dev.9, 1679–1693 (1995).
  • Sourdive DJ, Chouard T, Yaniv M. The HNF1 C-terminal domain contributes to transcriptional activity and modulates nuclear localisation. C. R. Acad. Sci. III.316, 385–394 (1993).
  • Chouard T, Blumenfeld M, Bach I, Vandekerckhove J, Cereghini S, Yaniv M. A distal dimerization domain is essential for DNA-binding by the atypical HNF1 homeodomain. Nucleic Acids Res.18, 5853–5863 (1990).
  • Rose RB, Bayle JH, Endrizzi JA, Cronk JD, Crabtree GR, Alber T. Structural basis of dimerization, coactivator recognition and MODY3 mutations in Hnf-1α. Nat. Struct. Biol.7, 744–748 (2000).
  • Narayana N, Hua Q, Weiss MA. The dimerization domain of Hnf-1α: structure and plasticity of an intertwined four-helix bundle with application to diabetes mellitus. J. Mol. Biol.310, 635–658 (2001).
  • Mendel DB, Khavari PA, Conley PB et al. Characterization of a cofactor that regulates dimerization of a mammalian homeodomain protein. Science254, 1762–1767 (1991).
  • Citron BA, Davis MD, Milstien S et al. Identity of 4a-carbinolamine dehydratase, a component of the phenylalanine hydroxylation system, and DCoH, a transregulator of homeodomain proteins. Proc. Natl Acad. Sci. USA89, 11891–11894 (1992).
  • Pomerantz JL, Sharp PA. Homeodomain determinants of major groove recognition. Biochemistry33, 10851–10858 (1994).
  • Ceska TA, Lamers M, Monaci P, Nicosia A, Cortese R, Suck D. The x-ray structure of an atypical homeodomain present in the rat liver transcription factor LFB1/HNF1 and implications for binding DNA. EMBO J.12, 1805–1810 (1993).
  • Tomei L, Cortese R, De Francesco R. A POU-A related region dictates DNA binding specificity of LFB1/HNF1 by orienting the two XL-homeodomains in the dimer. EMBO J.11, 4119–4129 (1992).
  • Chi YI, Frantz JD, Oh BC, Hansen L, Dhe-Paganon S, Shoelson SE. Diabetes mutations delineate an atypical POU domain in Hnf-1α. Mol. Cell10, 1129–1137 (2002).
  • Lu P, Rha GB, Chi YI. Structural basis of disease-causing mutations in hepatocyte nuclear factor 1β. Biochemistry46, 12071–12080 (2007).
  • Deleage G, Combet C, Blanchet C, Geourjon C. ANTHEPROT: an integrated protein sequence analysis software with client/server capabilities. Comput. Biol. Med.31, 259–267 (2001).
  • Sigler PB. Transcriptional activation. Acid blobs and negative noodles. Nature333, 210–212 (1988).
  • Bjorkhaug L, Bratland A, Njolstad PR, Molven A. Functional dissection of the Hnf-1α transcription factor: a study on nuclear localization and transcriptional activation. DNA Cell Biol.24, 661–669 (2005).
  • Sock E, Enderich J, Rosenfeld MG, Wegner M. Identification of the nuclear localization signal of the POU domain protein Tst-1/Oct6. J. Biol. Chem.271, 17512–17518 (1996).
  • Holloway JM, Szeto DP, Scully KM, Glass CK, Rosenfeld MG. Pit-1 binding to specific DNA sites as a monomer or dimer determines gene-specific use of a tyrosine-dependent synergy domain. Genes Dev.9, 1992–2006 (1995).
  • Mullis PE. Genetics of growth hormone deficiency. Endocrinol. Metab. Clin. North Am.36, 17–36 (2007).
  • Soutoglou E, Viollet B, Vaxillaire M, Yaniv M, Pontoglio M, Talianidis I. Transcription factor-dependent regulation of CBP and P/CAF histone acetyltransferase activity. EMBO J.20, 1984–1992 (2001).
  • Carriere V, Lacasa M, Rousset M. Activity of hepatocyte nuclear factor 1α and hepatocyte nuclear factor 1β isoforms is differently affected by the inhibition of protein phosphatases 1/2A. Biochem. J.354, 301–308. (2001).
  • Bach I, Yaniv M. More potent transcriptional activators or a transdominant inhibitor of the HNF1 homeoprotein family are generated by alternative RNA processing. EMBO J.12, 4229–4242 (1993).
  • Harries LW, Ellard S, Stride A, Morgan NG, Hattersley AT. Isomers of the TCF1 gene encoding hepatocyte nuclear factor-1α show differential expression in the pancreas and define the relationship between mutation position and clinical phenotype in monogenic diabetes. Hum. Mol. Genet.15, 2216–2224 (2006).
  • Smale ST. Transcription initiation from TATA-less promoters within eukaryotic protein-coding genes. Biochim. Biophys. Acta1351, 73–88 (1997).
  • Miura N, Tanaka K. Analysis of the rat hepatocyte nuclear factor (HNF) 1 gene promoter: synergistic activation by HNF4 and HNF1 proteins. Nucleic Acids Res.21, 3731–3736 (1993).
  • Jung D, GA Kullak-Ublick. Hepatocyte nuclear factor 1α: a key mediator of the effect of bile acids on gene expression. Hepatology37, 622–631 (2003).
  • Godart F, Bellanne-Chantelot C, Clauin S et al. Identification of seven novel nucleotide variants in the hepatocyte nuclear factor-1α (TCF1) promoter region in MODY patients. Hum. Mutat.15, 173–180 (2000).
  • Lockwood CR, Bingham C, Frayling TM. In silico searching of human and mouse genome data identifies known and unknown HNF1 binding sites upstream of β-cell genes. Mol. Genet. Metab.78, 145–151 (2003).
  • Power SC, Cereghini S. Positive regulation of the vHNF1 promoter by the orphan receptors COUP-TF1/Ear3 and COUP-TFII/Arp1. Mol. Cell Biol.16, 778–791 (1996).
  • Gragnoli C, Lindner T, Cockburn BN et al. Maturity-onset diabetes of the young due to a mutation in the hepatocyte nuclear factor-4α binding site in the promoter of the hepatocyte nuclear factor-1α gene. Diabetes46, 1648–1651 (1997).
  • Yoshiuchi I, Yamagata K, Yoshimoto M et al. Analysis of a non-functional Hnf-1α (TCF1) mutation in Japanese subjects with familial Type 1 diabetes. Hum. Mutat.18, 345–351 (2001).
  • Thomas H, Badenberg B, Bulman M et al. Evidence for haploinsufficiency of the human HNF1α gene revealed by functional characterization of MODY3-associated mutations. Biol. Chem.383, 1691–1700 (2002).
  • Stern E, Strihan C, Potievsky O et al. Four novel mutations, including the first gross deletion in TCF1, identified in HNF-4α, GCK and TCF1 in patients with MODY in Israel. J. Pediatr. Endocrinol. Metab.20, 909–921 (2007).
  • Ellard S, Thomas K, Edghill EL et al. Partial and whole gene deletion mutations of the GCK and HNF1A genes in maturity-onset diabetes of the young. Diabetologia50, 2313–2317 (2007).
  • Bellanne-Chantelot C, Clauin S, Chauveau D et al. Large genomic rearrangements in the hepatocyte nuclear factor-1β (TCF2) gene are the most frequent cause of maturity-onset diabetes of the young Type 5. Diabetes54, 3126–3132 (2005).
  • Edghill EL, Oram RA, Owens M et al. Hepatocyte nuclear factor-1β gene deletions a common cause of renal disease. Nephrol. Dial. Transplant23(2), 627–635 (2007).
  • Harries LW, Hattersley AT, Ellard S. Messenger RNA transcripts of the hepatocyte nuclear factor-1α gene containing premature termination codons are subject to nonsense-mediated decay. Diabetes53, 500–504 (2004).
  • Iwasaki N, Oda N, Ogata M et al. Mutations in the hepatocyte nuclear factor-1α/MODY3 gene in Japanese subjects with early- and late-onset NIDDM. Diabetes46, 1504–1508 (1997).
  • Bjorkhaug L, Sagen JV, Thorsby P, Sovik O, Molven A, Njolstad PR. Hepatocyte nuclear factor-1α gene mutations and diabetes in Norway. J. Clin. Endocrinol. Metab.88, 920–931 (2003).
  • Stride A, Ellard S, Clark P et al. β-cell dysfunction, insulin sensitivity, and glycosuria precede diabetes in hepatocyte nuclear factor-1α mutation carriers. Diabetes Care28, 1751–1756 (2005).
  • Vesterhus M, Raeder H, Johansson S, Molven A, Njolstad PR. Pancreatic exocrine dysfunction in MODY3. Diabetes Care31(2), 306–310 (2007).
  • Vaxillaire M, Rouard M, Yamagata K et al. Identification of nine novel mutations in the hepatocyte nuclear factor 1α gene associated with maturity-onset diabetes of the young (MODY3). Hum. Mol. Genet.6, 583–586 (1997).
  • Bingham C, Ellard S, Nicholls AJ et al. The generalized aminoaciduria seen in patients with hepatocyte nuclear factor-1α mutations is a feature of all patients with diabetes and is associated with glucosuria. Diabetes50, 2047–2052 (2001).
  • Pearson ER, Liddell WG, Shepherd M, Corrall RJ, Hattersley AT. Sensitivity to sulphonylureas in patients with hepatocyte nuclear factor-1α gene mutations. Evidence for pharmacogenetics in diabetes. Diabet. Med.17, 543–545 (2000).
  • Tack CJ, Ellard S, Hattersley AT. A severe clinical phenotype results from the co-inheritance of type 2 susceptibility genes and a hepatocyte nuclear factor-1α mutation. Diabetes Care23, 424–425 (2000).
  • Malecki MT, Skupien J, Gorczynska-Kosiorz S et al. Renal malformations may be linked to mutations in the hepatocyte nuclear factor-1α (MODY3) gene. Diabetes Care28, 2774–2776 (2005).
  • Nishigori H, Yamada S, Kohama T et al. Frameshift mutation A263fsinsGG, in the hepatocyte nuclear factor-1β gene associated with diabetes and renal dysfunction. Diabetes47, 1354–1355 (1998).
  • Kolatsi-Joannou M, Bingham C, Ellard S et al. Hepatocyte nuclear factor-1β: a new kindred with renal cysts and diabetes and gene expression in normal human development. J. Am. Soc. Nephrol.12, 2175–2180 (2001).
  • Bingham C, Bulman MP, Ellard S et al. Mutations in the hepatocyte nuclear factor-1β gene are associated with familial hypoplastic glomerulocystic kidney disease. Am. J. Hum. Genet.68, 219–224 (2001).
  • Bellanne-Chantelot C, Chauveau D, Gautier JF et al. Clinical spectrum associated with hepatocyte nuclear factor-1β mutations. Ann. Intern. Med.140, 510–517 (2004).
  • Edghill EL, Bingham C, Ellard S, Hattersley AT. Mutations in hepatocyte nuclear factor-1β and their related phenotypes. J. Med. Genet.43, 84–90 (2006).
  • Carette C, Vaury C, Barthelemy A et al. Exonic duplication of the hepatocyte nuclear factor-1β gene (transcription factor 2, hepatic) as a cause of maturity onset diabetes of the young type 5. J. Clin. Endocrinol. Metab.92, 2844–2847 (2007).
  • Edghill EL, Bingham C, Slingerland AS et al. Hepatocyte nuclear factor-1β mutations cause neonatal diabetes and intrauterine growth retardation: support for a critical role of HNF-1β in human pancreatic development. Diabet. Med.23, 1301–1306 (2006).
  • Haumaitre C, Fabre M, Cormier S, Baumann C, Delezoide AL, Cereghini S. Severe pancreas hypoplasia and multicystic renal dysplasia in two human fetuses carrying novel HNF1β/MODY5 mutations. Hum. Mol. Genet.15, 2363–2375 (2006).
  • Kitanaka S, Miki Y, Hayashi Y, Igarashi T. Promoter-specific repression of hepatocyte nuclear factor (HNF)-1β and Hnf-1α transcriptional activity by an HNF-1β missense mutant associated with Type 5 maturity-onset diabetes of the young with hepatic and biliary manifestations. J. Clin. Endocrinol. Metab.89, 1369–1378 (2004).
  • Yoshiuchi I, Yamagata K, Zhu Q et al. Identification of a gain-of-function mutation in the HNF-1β gene in a Japanese family with MODY. Diabetologia45, 154–155 (2002).
  • Sovik O, Sagen J, Njolstad PR, Nyland H, Myhr KM. Contributions to the MODY5 phenotype. J. Inherit. Metab. Dis.25, 597–598 (2002).
  • Pearson ER, Badman MK, Lockwood CR et al. Contrasting diabetes phenotypes associated with hepatocyte nuclear factor-1α and -1β mutations. Diabetes Care27, 1102–1107 (2004).
  • Ek J, Grarup N, Urhammer SA et al. Studies of the variability of the hepatocyte nuclear factor-1β (HNF-1β/TCF2) and the dimerization cofactor of HNF-1 (DCoH/PCBD) genes in relation to Type 2 diabetes mellitus and β-cell function. Hum. Mutat.18, 356–357 (2001).
  • Manduchi E, Grant GR, He H et al. RAD and the RAD Study-Annotator: an approach to collection, organization and exchange of all relevant information for high-throughput gene expression studies. Bioinformatics20, 452–459 (2004).
  • Bayle JH, Randazzo F, Johnen G et al. Hyperphenylalaninemia and impaired glucose tolerance in mice lacking the bifunctional DCoH gene. J. Biol. Chem.277, 28884–28891 (2002).
  • Rose RB, Pullen KE, Bayle JH, Crabtree GR, Alber T. Biochemical and structural basis for partially redundant enzymatic and transcriptional functions of DCoH and DCoH2. Biochemistry43, 7345–7355 (2004).
  • Ott MO, Rey-Campos J, Cereghini S, Yaniv M. vHNF1 is expressed in epithelial cells of distinct embryonic origin during development and precedes HNF1 expression. Mech. Dev.36, 47–58 (1991).
  • Coffinier C, Barra J, Babinet C, Yaniv M. Expression of the vHNF1/HNF1β homeoprotein gene during mouse organogenesis. Mech. Dev.89, 211–213 (1999).
  • Nammo T, Yamagata K, Hamaoka R et al. Expression profile of MODY3/Hnf-1α protein in the developing mouse pancreas. Diabetologia45, 1142–1153 (2002).
  • Offield MF, Jetton TL, Labosky PA et al. PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development122, 983–995 (1996).
  • Ahlgren U, Jonsson J, Jonsson L, Simu K, Edlund H. β-cell-specific inactivation of the mouse Ipf1/Pdx1 gene results in loss of the β-cell phenotype and maturity onset diabetes. Genes Dev.12, 1763–1768 (1998).
  • Schwitzgebel VM, Scheel DW, Conners JR et al. Expression of neurogenin3 reveals an islet cell precursor population in the pancreas. Development127, 3533–3542 (2000).
  • Gradwohl G, Dierich A, LeMeur M, Guillemot F. Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc. Natl Acad. Sci. USA97, 1607–1611 (2000).
  • Gu G, Dubauskaite J, Melton DA. Direct evidence for the pancreatic lineage. NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development129, 2447–2457 (2002).
  • Haumaitre C, Reber M, Cereghini S. Functions of HNF1 family members in differentiation of the visceral endoderm cell lineage. J. Biol. Chem.278, 40933–40942 (2003).
  • Wang L, Coffinier C, Thomas MK et al. Selective deletion of the Hnf1β (MODY5) gene in β cells leads to altered gene expression and defective insulin release. Endocrinology145, 3941–3949 (2004).
  • Welters HJ, Senkel S, Klein-Hitpass L et al. Conditional expression of hepatocyte nuclear factor-1β, the maturity-onset diabetes of the young-5 gene product, influences the viability and functional competence of pancreatic β-cells. J. Endocrinol.190, 171–181 (2006).
  • Pontoglio M, Sreenan S, Roe M et al. Defective insulin secretion in hepatocyte nuclear factor 1α-deficient mice. J. Clin. Invest.101, 2215–2222 (1998).
  • Dukes ID, Sreenan S, Roe MW et al. Defective pancreatic β-cell glycolytic signaling in hepatocyte nuclear factor-1α-deficient mice. J. Biol. Chem.273, 24457–24464 (1998).
  • Yamagata K, Nammo T, Moriwaki M et al. Overexpression of dominant-negative mutant hepatocyte nuclear factor-1α in pancreatic β-cells causes abnormal islet architecture with decreased expression of E-cadherin, reduced β-cell proliferation, and diabetes. Diabetes51, 114–123 (2002).
  • Ferrer J. A genetic switch in pancreatic β-cells: implications for differentiation and haploinsufficiency. Diabetes51, 2355–2362 (2002).
  • Servitja JM, Ferrer J. Transcriptional networks controlling pancreatic development and β cell function. Diabetologia47, 597–613 (2004).
  • Furuta H, Iwasaki N, Oda N et al. Organization and partial sequence of the hepatocyte nuclear factor-4α/MODY1 gene and identification of a missense mutation R127W, in a Japanese family with MODY. Diabetes46, 1652–1657 (1997).
  • Nakhei H, Lingott A, Lemm I, Ryffel GU. An alternative splice variant of the tissue specific transcription factor HNF4α predominates in undifferentiated murine cell types. Nucleic Acids Res.26, 497–504 (1998).
  • Kritis AA, Ktistaki E, Barda D, Zannis VI, Talianidis I. An indirect negative autoregulatory mechanism involved in hepatocyte nuclear factor-1 gene expression. Nucleic Acids Res.21, 5882–5889 (1993).
  • Boj SF, Parrizas M, Maestro MA, Ferrer J. A transcription factor regulatory circuit in differentiated pancreatic cells. Proc. Natl Acad. Sci. USA98, 14481–14486 (2001).
  • Bingham C, Ellard S, Allen L et al. Abnormal nephron development associated with a frameshift mutation in the transcription factor hepatocyte nuclear factor-1β. Kidney Int.57, 898–907 (2000).
  • Iwasaki N, Okabe I, Momoi MY, Ohashi H, Ogata M, Iwamoto Y. Splice site mutation in the hepatocyte nuclear factor-1β gene IVS2nt + 1G > A, associated with maturity-onset diabetes of the young, renal dysplasia and bicornuate uterus. Diabetologia44, 387–388 (2001).
  • Carbone I, Cotellessa M, Barella C et al. A novel hepatocyte nuclear factor-1β (MODY-5) gene mutation in an Italian family with renal dysfunctions and early-onset diabetes. Diabetologia45, 153–154 (2002).
  • Bingham C, Ellard S, Cole TR et al. Solitary functioning kidney and diverse genital tract malformations associated with hepatocyte nuclear factor-1β mutations. Kidney Int.61, 1243–1251 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.