29
Views
2
CrossRef citations to date
0
Altmetric
Review

Human PAF complexes in endocrine tumors and pancreatic cancer

, , , &
Pages 557-565 | Published online: 10 Jan 2014

References

  • Moniaux N, Nemos C, Schmied BM et al. The human homologue of the RNA polymerase II-associated factor 1 (hPaf1), localized on the 19q13 amplicon, is associated with tumorigenesis. Oncogene25, 3247–3257 (2006).
  • Zhang C, Kong D, Tan MH et al. Parafibromin inhibits cancer cell growth and causes G1 phase arrest. Biochem. Biophys. Res. Commun.350, 17–24 (2006).
  • Krogan NJ, Kim M, Ahn SH et al. RNA polymerase II elongation factors of Saccharomyces cerevisiae: a targeted proteomics approach. Mol. Cell. Biol.22, 6979–6992 (2002).
  • Pavri R, Zhu B, Li G et al. Histone H2B monoubiquitination functions cooperatively with FACT to regulate elongation by RNA polymerase II. Cell19(125), 703–717 (2006).
  • Rozenblatt-Rosen O, Hughes CM, Nannepaga SJ et al. The parafibromin tumor suppressor protein is part of a human Paf1 complex. Mol. Cell. Biol.25, 612–620 (2005).
  • Cheng JQ, Ruggeri B, Klein WM et al. Amplification of AKT2 in human pancreatic cells and inhibition of AKT2 expression and tumorigenicity by antisense RNA. Proc. Natl Acad. Sci. USA93, 3636–3641 (1996).
  • Woodard GE, Lin L, Zhang JH et al. Parafibromin, product of the hyperparathyroidism–jaw tumor syndrome gene HRPT2, regulates cyclin D1/PRAD1 expression. Oncogene24, 1272–1276 (2005).
  • Bradley KJ, Bowl MR, Williams SE et al. Parafibromin is a nuclear protein with a functional monopartite nuclear localization signal. Oncogene26, 1213–1221 (2007).
  • Parada LA, Hallen M, Tranberg KG et al. Frequent rearrangements of chromosomes 1, 7, and 8 in primary liver cancer. Genes Chromosomes Cancer23, 26–35 (1998).
  • Stange DE, Radlwimmer B, Schubert F et al. High-resolution genomic profiling reveals association of chromosomal aberrations on 1q and 16p with histologic and genetic subgroups of invasive breast cancer. Clin.Cancer Res.12, 345–352 (2006).
  • Selvarajan S, Sii LH, Lee A et al. Parafibromin expression in breast cancer: a novel marker for prognostication? J. Clin. Pathol.61, 64–67 (2008).
  • Korshunov A, Sycheva R, Gorelyshev S et al. Clinical utility of fluorescence in situ hybridization (FISH) in nonbrainstem glioblastomas of childhood. Mod. Pathol.18, 1258–1263 (2005).
  • Chang MC, Chang YT, Tien YW et al. Distinct chromosomal aberrations of ampulla of Vater and pancreatic head cancers detected by laser capture microdissection and comparative genomic hybridization. Oncol. Rep.14, 867–872 (2005).
  • Mosimann C, Hausmann G, Basler K. Parafibromin/hyrax activates wnt/wg target gene transcription by direct association with b-catenin/armadillo. Cell125, 327–341 (2006).
  • Camps J, Armengol G, del Rey J et al. Genome-wide differences between microsatellite stable and unstable colorectal tumors. Carcinogenesis27, 419–428 (2006).
  • Tarkkanen M, Larramendy ML, Bohling T et al. Malignant fibrous histiocytoma of bone: analysis of genomic imbalances by comparative genomic hybridisation and C-MYC expression by immunohistochemistry. Eur. J. Cancer42(8), 1172–1180 (2006).
  • Nathrath MH, Kuosaite V, Rosemann M et al. Two novel tumor suppressor gene loci on chromosome 6q and 15q in human osteosarcoma identified through comparative study of allelic imbalances in mouse and man. Oncogene21, 5975–5980 (2002).
  • Redeker E, Alders M, Hoovers JM et al. Physical mapping of 3 candidate tumor suppressor genes relative to Beckwith–Wiedemann syndrome associated chromosomal breakpoints at 11p15.3. Cytogenet. Cell Genet.68, 222–225 (1995).
  • Bashyam MD, Bair R, Kim YH et al. Array-based comparative genomic hybridization identifies localized DNA amplifications and homozygous deletions in pancreatic cancer. Neoplasia7, 556–562 (2005).
  • Zhu B, Mandal SS, Pham AD et al. The human PAF complex coordinates transcription with events downstream of RNA synthesis. Genes Dev.19, 1668–1673 (2005).
  • Chaudhary K, Deb S, Moniaux N et al. Human RNA polymerase II-associated factor complex: dysregulation in cancer. Oncogene26, 7499–7507 (2007).
  • Birkenkamp-Demtroder K, Christensen LL, Olesen SH et al. Gene expression in colorectal cancer. Cancer Res.62, 4352–4363 (2002).
  • Mao X, Lillington D, Child F et al. Comparative genomic hybridization analysis of primary cutaneous B-cell lymphomas: identification of common genomic alterations in disease pathogenesis. Genes Chromosomes. Cancer35, 144–155 (2002).
  • Risbridger GP, Schmitt JF, Robertson DM. Activins and inhibins in endocrine and other tumors. Endocr. Rev.22, 836–858 (2001).
  • Grimelius L, Johansson H. Pathology of parathyroid tumors. Semin. Surg. Oncol.13, 142–154 (1997).
  • Iacobone M, Lumachi F, Favia G. Up-to-date on parathyroid carcinoma: analysis of an experience of 19 cases. J. Surg.Oncol.88, 223–228 (2004).
  • Bradley KJ, Hobbs MR, Buley ID et al. Uterine tumours are a phenotypic manifestation of the hyperparathyroidism–jaw tumour syndrome. J. Intern. Med.257, 18–26 (2005).
  • Howell VM, Haven CJ, Kahnoski K et al.HRPT2 mutations are associated with malignancy in sporadic parathyroid tumours. J. Med. Genet.40, 657–663 (2003).
  • Shattuck TM, Valimaki S, Obara T et al. Somatic and germ-line mutations of the HRPT2 gene in sporadic parathyroid carcinoma.N. Engl. J. Med.349, 1722–1729 (2003).
  • Wang P, Bowl MR, Bender S et al. Parafibromin, a component of the human PAF complex, regulates growth factors and is required for embryonic development and survival in adult mice. Mol. Cell. Biol.28, 2930–2940 (2008).
  • Murre C, McCaw PS, Baltimore D. A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell56, 777–783 (1989).
  • Perry RR, Vinik AI. Endocrine tumors of the gastrointestinal tract. Annu. Rev. Med.47, 57–68 (1996).
  • Stabile BE, Morrow DJ, Passaro E Jr. The gastrinoma triangle: operative implications. Am. J. Surg.147, 25–31 (1984).
  • Curtis LJ, Li Y, Gerbault-Seureau M et al. Amplification of DNA sequences from chromosome 19q13.1 in human pancreatic cell lines. Genomics53, 42 –55 (1998).
  • Schleger C, Arens N, Zentgraf H et al. Identification of frequent chromosomal aberrations in ductal adenocarcinoma of the pancreas by comparative genomic hybridization (CGH). J. Pathol.191, 27–32 (2000).
  • Bepler G, Koehler A. Multiple chromosomal aberrations and 11p allelotyping in lung cancer cell lines. Cancer Genet. Cytogenet.84, 39–45 (1995).
  • Armengol G, Knuutila S, Lluis F et al. DNA copy number changes and evaluation of MYC, IGF1R, and FES amplification in xenografts of pancreatic adenocarcinoma. Cancer Genet. Cytogenet.116, 133–141 (2000).
  • Breedlove G, Busenhart C. Screening and detection of ovarian cancer. J. Midwifery Womens Health50, 51–54 (2005).
  • Hightower RD, Nguyen HN, Averette HE et al. National survey of ovarian carcinoma. IV: patterns of care and related survival for older patients. Cancer73, 377–383 (1994).
  • de la CR, Maestro ML, Solana J et al. Tissue quantification of CA 125 in epithelial ovarian cancer. Int. J. Biol. Markers14, 106–114 (1999).
  • Jemal A, Siegel R, Ward E et al. Cancer statistics, 2007. CA Cancer J. Clin.57, 43–66 (2007).
  • Thompson FH, Nelson MA, Trent JM et al. Amplification of 19q13.1–q13.2 sequences in ovarian cancer. G-band, FISH, and molecular studies. Cancer Genet. Cytogenet.87, 55–62 (1996).
  • Guan XY, Cargile CB, Anzick SL et al. Chromosome microdissection identifies cryptic sites of DNA sequence amplification in human ovarian carcinoma. Cancer Res.55, 3380–3385 (1995).
  • Panani AD, Roussos C. Non-random structural chromosomal changes in ovarian cancer: i(5p) a novel recurrent abnormality. Cancer Lett.235, 130–135 (2006).
  • Panani AD. Preferential involvement of chromosome 11 as add(11)(p15) in ovarian cancer: is it a common cytogenetic abnormality in cancer? Cancer Lett.258, 262–267 (2007).
  • Cavalli LR, Urban CA, Dai D et al. Genetic and epigenetic alterations in sentinel lymph nodes metastatic lesions compared with their corresponding primary breast tumors. Cancer Genet.Cytogenet.146, 33–40 (2003).
  • Batra SK, Metzgar RS, Hollingsworth MA. Molecular cloning and sequence analysis of the human ribosomal protein S16. J. Biol. Chem.266, 6830–6838 (1991).
  • Heidenblad M, Lindgren D, Veltman JA et al. Microarray analyses reveal strong influence of DNA copy number alterations on the transcriptional patterns in pancreatic cancer: implications for the interpretation of genomic amplifications. Oncogene24, 1794–1801 (2005).
  • Mahlamaki EH, Kauraniemi P, Monni O et al. High-resolution genomic and expression profiling reveals 105 putative amplification target genes in pancreatic cancer. Neoplasia6, 432–439 (2004).
  • Carpten JD, Robbins CM, Villablanca A et al.HRPT2, encoding parafibromin, is mutated in hyperparathyroidism–jaw tumor syndrome. Nat. Genet.32, 676–680 (2002).
  • Lin L, Czapiga M, Nini L et al. Nuclear localization of the parafibromin tumor suppressor protein implicated in the hyperparathyroidism–jaw tumor syndrome enhances its proapoptotic function. Mol. Cancer Res.5, 183–193 (2007).
  • Bradley KJ, Cavaco BM, Bowl MR et al. Parafibromin mutations in hereditary hyperparathyroidism syndromes and parathyroid tumours. Clin. Endocrinol. (Oxf.)64, 299–306 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.