112
Views
0
CrossRef citations to date
0
Altmetric
Review

Pendred syndrome

Pages 635-643 | Published online: 10 Jan 2014

References

  • Pendred V. Deaf mutism and goitre. Lancet2, 532 (1986).
  • Fraser GR. Association of congenital deafness with goitre (Pendred’s syndrome): a study of 207 families. Ann. Hum. Genet.28, 201–249 (1965).
  • Park HJ, Shaukat S, Liu XZ et al. Origins and frequencies of SLC26A4 (PDS) mutations in east and south Asians: global implications for the epidemiology of deafness. J. Med. Genet.40(4), 242–248 (2003).
  • Albert S, Blons H, Jonard L et al.SLC26A4 gene is frequently involved in nonsyndromic hearing impairment with enlarged vestibular aqueduct in Caucasian populations. Eur. J. Hum. Genet.14(6), 773–779 (2006).
  • Coyle B, Coffey R, Armour JA et al. Pendred syndrome (goitre and sensorineural hearing loss) maps to chromosome 7 in the region containing the nonsyndromic deafness gene DFNB4. Nat. Genet.12(4), 421–423 (1996).
  • Sheffield VC, Kraiem Z, Beck JC et al. Pendred syndrome maps to chromosome 7q21–34 and is caused by an intrinsic defect in thyroid iodine organification. Nat. Genet.12(4), 424–426 (1996).
  • Everett LA, Glaser B, Beck JC et al. Pendred syndrome is caused by mutations in a putative sulphate transporter gene (PDS). Nat. Genet.17, 411–422 (1997).
  • Usami S, Abe S, Weston MD, Shinkawa H, Van Camp G, Kimberling WJ. Non-syndromic hearing loss associated with enlarged vestibular aqueduct is caused by PDS mutations. Hum. Genet.104, 188–192 (1999).
  • Pryor SP, Madeo AC, Reynolds JC et al.SLC26A4/PDS genotype–phenotype correlation in hearing loss with enlargement of the vestibular aqueduct (EVA): evidence that Pendred syndrome and non-syndromic EVA are distinct clinical and genetics entities. J. Med. Genet.42, 159–165 (2005).
  • Tsukamoto K, Suzuki H, Harada D, Namba A, Abe S, Usami S. Distribution and frequencies of PDS (SLC26A4) mutations in Pendred syndrome and nonsyndromic hearing loss associated with enlarged vestibular aqueduct: a unique spectrum of mutations in Japanese. Eur. J. Hum. Genet.11(12), 916–922 (2003).
  • Azaiez H, Yang T, Prasad S et al. Genotype–phenotype correlations for SLC26A4-related deafness. Hum. Genet.122(5), 451–457 (2007).
  • Yang T, Vidarsson H, Rodrigo-Blomqvist S, Rosengren SS, Enerback S, Smith RJ. Transcriptional control of SLC26A4 is involved in Pendred syndrome and nonsyndromic enlargement of vestibular aqueduct (DFNB4). Am. J. Hum. Genet.80(6), 1055–1063 (2007).
  • Lang F, Vallon V, Knipper M, Wangemann P. Functional significance of channels and transporters expressed in the inner ear and kidney. Am. J. Physiol. Cell. Physiol.293(4), C1187–C1208 (2007).
  • Palos F, García-Rendueles ME, Araujo-Vilar D et al. Pendred syndrome in two Galician families: insights into clinical phenotypes through cellular, genetic, and molecular studies. J. Clin. Endocrinol. Metab.93(1), 267–277 (2008).
  • Royaux IE, Wall SM, Karniski LP et al. Pendrin, encoded by the Pendred syndrome gene, resides in the apical region of renal intercalated cells and mediates bicarbonate secretion. Proc. Natl Acad. Sci. USA98(7), 4221–4226 (2001).
  • Wagner CA, Finberg KE, Stehberger PA et al. Regulation of the expression of the Cl-/anion exchanger pendrin in mouse kidney by acid–base status. Kidney Int.62(6), 2109–2117 (2002).
  • Frische S, Kwon TH, Frøkiaer J, Madsen KM, Nielsen S. Regulated expression of pendrin in rat kidney in response to chronic NH4Cl or NaHCO3 loading. Am. J. Physiol. Renal Physiol.284(3), F584–F593 (2003).
  • Verlander JW, Hassell KA, Royaux IE et al. Deoxycorticosterone upregulates PDS (Slc26a4) in mouse kidney: role of pendrin in mineralocorticoid-induced hypertension. Hypertension42(3), 356–362 (2003).
  • Adler L, Efrati E, Zelikovic I. Molecular mechanisms of epithelial cell-specific expression and regulation of the human anion exchanger (Pendrin) gene. Am. J. Physiol. Cell. Physiol.294(5), C1261–C1276 (2008).
  • Royaux IE, Suzuki K, Mori A et al. Pendrin, the protein encoded by the Pendred syndrome gene (PDS), is an apical porter of iodide in the thyroid and is regulated by thyroglobulin in FRTL-5 cells. Endocrinology141(2), 839–845 (2000).
  • Dentice M, Luongo C, Elefante A et al. Pendrin is a novel in vivo downstream target gene of the TTF-1/Nkx-2.1 homeodomain transcription factor in differentiated thyroid cells. Mol. Cell. Biol.25(22), 10171–10182 (2005).
  • Porra V, Bernier-Valentin F, Trouttet-Masson S et al. Characterization and semiquantitative analyses of pendrin expressed in normal and tumoral human thyroid tissues. J. Clin. Endocrinol. Metab.87(4), 1700–1707 (2002).
  • Everett LA, Belyantseva IA, Noben-Trauth K et al. Targeted disruption of mouse Pds provides insight about the inner-ear defects encountered in Pendred syndrome. Hum. Mol. Genet.10(2), 153–161 (2001).
  • Scott DA, Wang R, Kreman TM, Sheffield VC, Karniski LP. The Pendred syndrome gene encodes a chloride–iodide transport protein. Nat. Genet.21(4), 440–443 (1999).
  • Scott DA, Karniski LP. Human pendrin expressed in Xenopus laevis oocytes mediates chloride/formate exchange. Am. J. Physiol. Cell. Physiol.278(1), C207–C211 (2000).
  • Yoshida A, Taniguchi S, Hisatome I et al. Pendrin is an iodide-specific apical porter responsible for iodide efflux from thyroid cells. J. Clin. Endocrinol. Metab.87(7), 3356–3361 (2002).
  • Yoshida A, Hisatome I, Taniguchi S et al. Mechanism of iodide/chloride exchange by pendrin. Endocrinology145(9), 4301–4308 (2004).
  • Gillam MP, Sidhaye AR, Lee EJ, Rutishauser J, Stephan CW, Kopp P. Functional characterization of pendrin in a polarized cell system. Evidence for pendrin-mediated apical iodide efflux. J. Biol. Chem.279(13), 13004–13010 (2004).
  • Dossena S, Rodighiero S, Vezzoli V et al. Fast fluorometric method for measuring pendrin (SLC26A4) Cl-/I- transport activity. Cell. Physiol. Biochem.18(1–3), 67–74 (2006).
  • van den Hove MF, Croizet-Berger K, Jouret F et al. The loss of the chloride channel, ClC-5, delays apical iodide efflux and induces a euthyroid goiter in the mouse thyroid gland. Endocrinology147(3), 1287–1296 (2006).
  • Rodriguez AM, Perron B, Lacroix L et al. Identification and characterization of a putative human iodide transporter located at the apical membrane of thyrocytes. J. Clin. Endocrinol. Metab.87(7), 3500–3503 (2002).
  • Wangemann P, Itza EM, Albrecht B et al. Loss of KCNJ10 protein expression abolishes endocochlear potential and causes deafness in Pendred syndrome mouse model. BMC Med.2, 30 (2004).
  • Wangemann P, Nakaya K, Wu T et al. Loss of cochlear HCO3- secretion causes deafness via endolymphatic acidification and inhibition of Ca2+ reabsorption in a Pendred syndrome mouse model. Am. J. Physiol. Renal Physiol.292(5), F1345–F1353 (2007).
  • Singh R, Wangemann P. Free radical stress-mediated loss of Kcnj10 protein expression in stria vascularis contributes to deafness in Pendred syndrome mouse model. Am. J. Physiol. Renal Physiol.294(1), F139–F148 (2008).
  • Wolff J. What is the role of pendrin? Thyroid15(4), 346–348 (2005).
  • Gomez-Pan A, Evered DC, Hall R. Pituitary–thyroid function in Pendred’s syndrome. BMJ2(5911), 152–153 (1974).
  • Kopp P, Arseven OK, Sabacan L et al. Phenocopies for deafness and goiter development in a large inbred Brazilian kindred with Pendred’s syndrome associated with a novel mutation in the PDS gene. J. Clin. Endocrinol. Metab.84(1), 336–341 (1999).
  • Fugazzola L, Cirello V, Dossena S et al. High phenotypic intrafamilial variability in patients with Pendred syndrome and a novel duplication in the SLC26A4 gene: clinical characterization and functional studies of the mutated SLC26A4 protein. Eur. J. Endocrinol.157(3), 331–338 (2007).
  • Reardon W, Coffey R, Chowdhury T et al. Prevalence, age of onset, and natural history of thyroid disease in Pendred syndrome. J. Med. Genet.36(8), 595–598 (1999).
  • Iwasaki S, Tsukamoto K, Usami S, Misawa K, Mizuta K, Mineta H. Association of SLC26A4 mutations with clinical features and thyroid function in deaf infants with enlarged vestibular aqueduct. J. Hum. Genet.51(9), 805–810 (2006).
  • Stinckens C, Huygen PL, Joosten FB, Van Camp G, Otten B, Cremers CW. Fluctuant, progressive hearing loss associated with Menière like vertigo in three patients with the Pendred syndrome. Int. J. Pediatr. Otorhinolaryngol.61(3), 207–215 (2001).
  • Reardon W, Coffey R, Phelps PD et al. Pendred syndrome – 100 years of underascertainment? QJM90(7), 443–447 (1997).
  • Luxon LM, Cohen M, Coffey RA et al. Neuro-otological findings in Pendred syndrome. Int. J. Audiol.42(2), 82–88 (2003).
  • Sugiura M, Sato E, Nakashima T et al. Long-term follow-up in patients with Pendred syndrome: vestibular, auditory and other phenotypes. Eur. Arch. Otorhinolaryngol.262(9), 737–743 (2005).
  • Cremers CW, Admiraal RJ, Huygen PL et al. Progressive hearing loss, hypoplasia of the cochlea and widened vestibular aqueducts are very common features in Pendred’s syndrome. Int. J. Pediatr. Otorhinolaryngol.45(2), 113–123 (1998).
  • Reardon W, O Mahoney CF, Trembath R, Jan H, Phelps PD. Enlarged vestibular aqueduct: a radiological marker of Pendred syndrome, and mutation of the PDS gene. QJM93, 99–104 (2000).
  • Goldfeld M, Glaser B, Nassir E, Gomori JM, Hazani E, Bishara N. CT of the ear in Pendred syndrome. Radiology235(2), 537–540 (2005).
  • Fugazzola L, Mannavola D, Cerutti N et al. Molecular analysis of the Pendred’s syndrome gene and magnetic resonance imaging studies of the inner ear are essential for the diagnosis of true Pendred’s syndrome. J. Clin. Endocrinol. Metab.85, 2469–2475 (2000).
  • Gonzalez Trevino O, Karamanoglu Arseven O, Ceballos CJ et al. Clinical and molecular analysis of three Mexican families with Pendred’s syndrome. Eur. J. Endocrinol.144, 585–593 (2001).
  • Blons H, Feldmann D, Duval V et al. Screening of SLC26A4 (PDS) gene in Pendred’s syndrome: a large spectrum of mutations in France and phenotypic heterogeneity. Clin. Genet.66, 333–340 (2004).
  • Meller J, Becker W. The continuing importance of thyroid scintigraphy in the era of high-resolution ultrasound. Eur. J. Nucl. Med. Mol. Imaging29(Suppl. 2), S425–S438 (2002).
  • Najjar S. Pendred’s syndrome in two families living in endemic goitre area. BMJ2(5348), 31–33 (1963).
  • Rotman-Pikielny P, Hirschberg K, Maruvada P et al. Retention of pendrin in the endoplasmic reticulum is a major mechanism for Pendred syndrome. Hum. Mol. Genet.11(21), 2625–2633 (2002).
  • Taylor JE, Metcalfe RA, Watson PE, Weetman AP, Trembath RC. Mutations of the PDS gene, encoding pendrin, are associated with protein mislocalization and loss of iodide efflux: implications for thyroid dysfunction in Pendred syndrome. J. Clin. Endocrinol. Metab.87(4), 1778–1784 (2002).
  • Van Hauwe P, Everett LA, Coucke P et al. Two frequent missense mutations in Pendred syndrome. Hum. Mol. Genet.7(7), 1099–1104 (1998).
  • Coyle B, Reardon W, Herbrick JA et al. Molecular analysis of the PDS gene in Pendred syndrome. Hum. Mol. Genet.7(7), 1105–1112 (1998).
  • Napiontek U, Borck G, Müller-Forell W et al. Intrafamilial variability of the deafness and goiter phenotype in Pendred syndrome caused by a T416P mutation in the SLC26A4 gene. J. Clin. Endocrinol. Metab.89(11), 5347–5351 (2004).
  • Prasad S, Kölln KA, Cucci RA, Trembath RC, Van Camp G, Smith RJ. Pendred syndrome and DFNB4-mutation screening of SLC26A4 by denaturing high-performance liquid chromatography and the identification of eleven novel mutations. Am. J. Med. Genet.124(1), 1–9 (2004).
  • Pera A, Villamar M, Vi˜uela A et al. A mutational analysis of the SLC26A4 gene in Spanish hearing-impaired families provides new insights into the genetic causes of Pendred syndrome and DFNB4 hearing loss. Eur. J. Hum. Genet.16(8), 888–896 (2008).
  • Borck G, Roth C, Martiné U, Wildhardt G, Pohlenz J. Mutations in the PDS gene in German families with Pendred’s syndrome: V138F is a founder mutation. J. Clin. Endocrinol. Metab.88(6), 2916–2921 (2003).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.