49
Views
4
CrossRef citations to date
0
Altmetric
Perspective

Potential of nutrigenetics in the treatment of metabolic disorders

Pages 705-713 | Published online: 10 Jan 2014

References

  • Farooqi IS, Matarese G, Lord GM et al. Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J. Clin. Invest.110(8), 1093–1103 (2002).
  • Feero WG, Guttmacher AE, Collins FS. The genome gets personal – almost. JAMA299(11), 1351–1352 (2008).
  • Levy S, Sutton G, Ng PC et al. The diploid genome sequence of an individual human. PLoS Biol5(10), e254 (2007).
  • Janssens AC, van Duijn CM. Towards predictive genetic testing of complex diseases. Eur. J. Epidemiol.21(12), 869–870 (2006).
  • Janssens AC, Aulchenko YS, Elefante S, Borsboom GJ, Steyerberg EW, van Duijn CM. Predictive testing for complex diseases using multiple genes: fact or fiction? Genet. Med.8(7), 395–400 (2006).
  • Ordovas JM, Mooser V. Nutrigenomics and nutrigenetics. Curr. Opin. Lipidol.15, 101–108 (2004).
  • Mutch DM, Wahli W, Williamson G. Nutrigenomics and nutrigenetics: the emerging faces of nutrition. FASEB J.19, 1602–1616 (2005).
  • Marima ECM. Nutrigenomics and nutrigenetics: the “omics” revolution in nutritional science. Biotechnol. Appl. Biochem.44, 119–128 (2006).
  • Helgadottir A, Manolescu A, Helgason A et al. A variant of the gene encoding leukotriene A4 hydrolase confers ethnic-specific risk of myocardial infarction. Nat. Genet.38(1), 68–74 (2006).
  • Ordavos JM. Gender, a significant factor in the cross talk between genes, environment, and health. Gend. Med.4(Suppl. B), S111–S121 (2007).
  • Altmüller J, Palmer LJ, Fischer G, Scherb H, Wjst M. Genomewide scans of complex human diseases: true linkage is hard to find. Am. J. Hum. Genet.69, 936–950 (2001).
  • Elbein SC. Perspective: the search for genes for Type 2 diabetes in the post-genomics era. Endocrinol.143(6), 2012–2018 (2002).
  • Baier LJ, Hanson RL. Genetics studies of the etiology of Type 2 diabetes in Pima Indians – hunting for pieces of a complicated puzzle. Diabetes53, 1181–1186 (2004).
  • Freimer NB, Sabatti C. Human genetics: variants in common diseases. Nature445(7130), 828–830 (2007).
  • Frayling TM, Timpson NJ, Weedon MN et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science316(5826), 889–894 (2007).
  • Loos RJF, Lindgren CM, Li S et al. Common variants near MC4R are associated with fat mass, weight and risk of obesity. Nat. Genet.40(6), 768–775 (2008).
  • Farooqi IS, Yeo GS, Keogh JM et al. Dominant and recessive inheritance of morbid obesity associated with melanocortin 4 receptor deficiency. J. Clin. Invest.106(2), 271–279 (2000).
  • Arkadianos I, Valdes AM, Marinos E, Florou A, Gill RD, Grimaldi KA. Improved weight management using genetic information to personalize a calorie controlled diet. Nutr. J.6, 29 (2007).
  • Manolio TA, Brooks LD, Collins FS. A HapMap harvest of insights into the genetics of common disease. J. Clin. Invest.118(5), 1590–1605 (2008).
  • Willer CJ, Sanna S, Jackson AU et al. Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nat. Genet.40(2), 161–169 (2008).
  • Zeggini E, Scott LJ, Saxena R et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat. Genet.40(5), 638–645 (2008).
  • Guan W, Pluzhnikov A, Cox NJ et al. Meta-analysis of 23 Type 2 diabetes linkage studies from the International Type 2 Diabetes Linkage Analysis Consortium. Hum. Hered.66(1), 35–49 (2008).
  • Stoehr JP, Nadler ST, Schueler KL et al. Genetic obesity unmasks nonlinear interactions between murine Type 2 diabetes susceptibility loci. Diabetes49, 1946–1954 (2000).
  • Leiter EH, ReifsynderPC, Flurkey K, Partke H-J, Junger E, Herberg L. NIDDM genes in mice: deleterious synergism by both parental genomes contributes to diabetogenic thresholds. Diabetes47(8), 1287–1295 (1998).
  • Scriver CR, Kaufman S. Hyperphenylalaninemia: phenylalanine hydroxylase deficiency. In: The Metabolic and Molecular Bases of Inherited Disease (Volume 2). Scriver CR, Beaudet AL, Sly WS, Valle D (Eds). McGraw-Hill, NY, USA 1667–1724 (2001).
  • Scriver CR, Waters PJ. Monogenic traits are not simple: lessons from phenylketonuria. Trends Genet.15(7), 267–272 (1999).
  • Kutz G. Nutrigenetic testing: tests purchased from four web sites mislead consumers. GAO-06–977T, United States Government Accountability Office, Washington, DC, USA (2006).
  • Goldstein JL, Hobbs HH, Brown MS. Familial hypercholesterolemia. In: The Metabolic and Molecular Bases of Inherited Disease (Volume 2). Scriver CR, Beaudet AL, Sly WS, Valle D (Eds). McGraw-Hill, NY, USA, 2863–2913 (2001).
  • Janssens AC, Gwinn M, Bradley LA, Oostra BA, van Duijn CM, Khoury MJ. A critical appraisal of the scientific basis of commercial genomic profiles used to assess health risks and personalize health interventions. Am. J. Hum. Genet.82, 593–599 (2008).
  • Werman A, Hollenberg A, Solanes G, Bjorbaek C, Vidal-Puig AJ, Flier JS. Ligand-independent activation domain in the N-terminus of peroxisome proliferator-activated receptor γ (PPAR-γ). Differential activity of PPARγ1 and 2 isoforms and influence of insulin. J. Biol. Chem.272(32), 20230–20235 (1997).
  • Ristow M, Müller-Wieland D, Pfeiffer A, Krone W, Kahn CR. Obesity associated with a mutation in a genetic regulator of adipocyte differentiation. N. Engl. J. Med.339(14), 953–959 (1998).
  • Barroso I, Gurnell M, Crowley VEF et al. Dominant negative mutations in human PPARγ associated with severe insulin resistance, diabetes mellitus and hypertension. Nature402(6764), 880–883 (1999).
  • Savage DB, Tan GD, Acerini CL et al. Human metabolic syndrome resulting from dominant-negative mutations in the nuclear receptor peroxisome proliferator-activated receptor-γ. Diabetes52(4), 910–917 (2003).
  • Memisoglu A, Hu FB, Hankinson SE et al. Interaction between a peroxisomal proliferator-activated receptor γ gene polymorphism and dietary fat intake in relation to body mass. Hum. Mol. Genet.12, 2923–2929 (2003).
  • Semple RK, Chatterjee VK, O’Rahilly S. PPARγ and human metabolic disease. J. Clin. Invest.116(3), 581–589 (2006).
  • Meirhaeghe A, Amouyel P. Impact of genetic variation of PPARγ in humans. Mol. Genet. Metab.83(1–2), 93–102 (2004).
  • Wald DS, Wald NJ, Morris JK, Law M. Folic acid, homocysteine, and cardiovascular disease: judging causality in the face of inconclusive trial evidence. BMJ333(7578), 1114–1117 (2006).
  • Lonn E, Yusif S, Arnold MJ et al. Homocysteine lowering with folic acid and B vitamins in vascular disease. N. Engl. J. Med.354(15), 1567–1577 (2006).
  • Bailey LB, Gregory JF. Polymorphisms of methylenetetrahydrofolate reductase and other enzymes: metabolic significance, risks and impact on folate requirement. J. Nutr.129(5), 919–922 (1999).
  • Frosst P, Blom HJ, Milos R et al. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat. Genet.10, 111–113 (1995).
  • Malinow MR, Nieto FJ, Kruger WD et al. The effects of folic acid supplementation on plasma total homocysteine are modulated by multivitamin use and methylenetetrahydrofolate reductase genotypes. Arterioscler. Thromb. Vasc. Biol.17(6), 1157–1162 (1997).
  • Nelen WLDM, Blom HJ, Thomas CMG et al. Methylenetetrahydrofolate reductase polymorphism affects the change in homocysteine and folate concentrations resulting from low dose folic acid supplementation in women with unexplained recurrent miscarriages. J. Nutr.128(8), 1336–1341 (1998).
  • Brattström L, Wilcken DE, Ohrvik J, Brudin L. Common methylenetetrahydrofolate reductase gene mutation leads to hyperhomocysteinemia but not to vascular disease: the result of a meta-analysis. Circulation98(23), 2520–2526 (1998).
  • Gudnason V, Stansbie D, Scott J, Bowron A, Nicaud V, Humphries S. C677T (thermolabile alanine/valine) polymorphism in methylenetetrahydrofolate reductase (MTHFR): its frequency and impact on plasma homocysteine concentration in different European populations. EARS group. Atherosclerosis136(2), 347–354 (1998).
  • Bonna KH, Njolstad I, Ueland PM et al. Homocysteine lowering and cardiovascular events after acute myocardial infarction. N. Engl. J. Med.354(15), 1578–1588 (2006).
  • Ordovas JM, Corella D, Demissie S et al. Dietary fat intake determines the effect of a common polymorphism in the hepatic lipase gene promoter on high-density lipoprotein metabolism: evidence of a strong dose effect in this gene–nutrient interaction in the Framingham Study. Circulation106, 2315–2321 (2002).
  • Ordovas JM, Corella D, Cupples LA et al. Polyunsaturated fatty acids modulate the effects of the APOA1 G-A polymorphism on HDL-cholesterol concentrations in a sex-specific manner: the Framingham Study. Am. J. Clin. Nutr.75, 38–46 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.