21
Views
1
CrossRef citations to date
0
Altmetric
Review

Molecular imaging of neuroendocrine tumors

Pages 739-749 | Published online: 10 Jan 2014

References

  • Blasberg RG. Imaging update: new windows, new views. Clin. Cancer Res.13, 3444–3448 (2007).
  • Kelloff GJ, Krohn KA, Larson SM et al. The progress and promise of molecular imaging probes in oncologic drug development. Clin. Cancer. Res.11, 7967–7985 (2005).
  • Mankoff DA, Krohn KA. PET imaging of response and resistance to cancer therapay. In: Drug Resistance In Cancer. Teicher B (Ed.). Humana Press, Edition Totowa, NJ, USA 105–122 (2006).
  • Janson ET, Oberg K. Malignant neuroendocrine tumors. Cancer Chemother. Biol. Response Modif.20, 463–470 (2002).
  • Rindi G, Capella C, Solcia E. Cell biology, clinicopathological profile, and classification of gastro–enteropancreatic endocrine tumors. J. Mol. Med.76, 413–420 (1998).
  • Reubi JC, Waser B, Schaer JC, Laissue JA. Somatostatin receptor sst1–sst5 expression in normal and neoplastic human tissues using receptor autoradiography with subtype-selective ligands. Eur. J. Nucl. Med.28, 836–846 (2001).
  • Reubi JC, Waser B. Concomitant expression of several peptide receptors in neuroendocrine tumours: molecular basis for in vivo multireceptor tumour targeting. Eur. J. Nucl. Med. Mol. Imaging30, 781–793 (2003).
  • Krenning EP, Bakker WH, Kooij PP et al. Somatostatin receptor scintigraphy with indium-111-DTPA-D-Phe-1-octreotide in man: metabolism, dosimetry and comparison with iodine-123-Tyr-3-octreotide. J. Nucl. Med.33, 652–658 (1992).
  • Krenning EP, Kwekkeboom DJ, Bakker WH et al. Somatostatin receptor scintigraphy with [111In-DTPA-D-Phe1]- and [123I-Tyr3]-octreotide: the Rotterdam experience with more than 1000 patients. Eur. J. Nucl. Med.20, 716–731 (1993).
  • Gibril F, Reynolds JC, Doppman JL et al. Somatostatin receptor scintigraphy: its sensitivity compared with that of other imaging methods in detecting primary and metastatic gastrinomas. A prospective study. Ann. Intern. Med.125, 26–34 (1996).
  • Lebtahi R, Cadiot G, Sarda L et al. Clinical impact of somatostatin receptor scintigraphy in the management of patients with neuroendocrine gastroenteropancreatic tumors. J. Nucl. Med.38, 853–858 (1997).
  • Kwekkeboom DJ, Kooij PP, Bakker WH et al. Comparison of 111In-DOTA-Tyr3-octreotide and 111In-DTPA-octreotide in the same patients: biodistribution, kinetics, organ and tumor uptake. J. Nucl. Med.40, 762–767 (1999).
  • Wild D, Macke HR, Waser B et al.68Ga-DOTANOC: a first compound for PET imaging with high affinity for somatostatin receptor subtypes 2 and 5. Eur. J. Nucl. Med. Mol. Imaging32, 724 (2005).
  • Ginj M, Chen J, Walter MA et al. Preclinical evaluation of new and highly potent analogues of octreotide for predictive imaging and targeted radiotherapy. Clin. Cancer Res.11, 1136–1145 (2005).
  • Hubalewska-Dydejczyk A, Fross-Baron K, Mikolajczak R et al.99mTc-EDDA/HYNIC-octreotate scintigraphy, an efficient method for the detection and staging of carcinoid tumours: results of 3 years’ experience. Eur. J. Nucl. Med. Mol. Imaging33, 1123–1133 (2006).
  • Storch D, Behe M, Walter MA et al. Evaluation of [99mTc/EDDA/HYNIC0]octreotide derivatives compared with [111In–DOTA0,Tyr3, Thr8]octreotide and [111In–DTPA0]octreotide: does tumor or pancreas uptake correlate with the rate of internalization? J. Nucl. Med.46, 1561–1569 (2005).
  • Gabriel M, Decristoforo C, Donnemiller E et al. An intrapatient comparison of 99mTc–EDDA/HYNIC-TOC with 111In–DTPA–octreotide for diagnosis of somatostatin receptor-expressing tumors. J. Nucl. Med.44, 708–716 (2003).
  • Gabriel M, Decristoforo C, Maina T et al.99mTc-N4-[Tyr3]octreotate versus 99mTc-EDDA/HYNIC-[Tyr3]octreotide: an intrapatient comparison of two novel Technetium-99m labeled tracers for somatostatin receptor scintigraphy. Cancer Biother. Radiopharm.19, 73–79 (2004).
  • Decristoforo C, Maina T, Nock B et al.99mTc-demotate 1: first data in tumour patients-results of a pilot/Phase I study. Eur. J. Nucl. Med. Mol. Imaging30, 1211–1219 (2003).
  • Kwekkeboom DJ, Teunissen JJ, Bakker WH et al. Radiolabeled somatostatin analog [177Lu–DOTA0,Tyr3]octreotate in patients with endocrine gastroenteropancreatic tumors. J. Clin. Oncol.23, 2754–2762 (2005).
  • Esser JP, Krenning EP, Teunissen JJ et al. Comparison of [177Lu-DOTA(0),Tyr(3)]octreotate and [177Lu-DOTA(0),Tyr(3)]octreotide: which peptide is preferable for PRRT? Eur. J. Nucl. Med. Mol. Imaging33, 1346–1351 (2006).
  • Bombardieri E, Aktolun C, Baum RP et al.111In-pentetreotide scintigraphy: procedure guidelines for tumour imaging. Eur. J. Nucl. Med. Mol. Imaging30, BP140–147 (2003).
  • Schillaci O, Scopinaro F, Angeletti S et al. SPECT improves accuracy of somatostatin receptor scintigraphy in abdominal carcinoid tumors. J. Nucl. Med.37, 1452–1456 (1996).
  • Oberg K, Kvols L, Caplin M et al. Consensus report on the use of somatostatin analogs for the management of neuroendocrine tumors of the gastroenteropancreatic system. Ann. Oncol.15, 966–973 (2004).
  • Granberg D, Sundin A, Janson ET et al. Octreoscan in patients with bronchial carcinoid tumours. Clin. Endocrinol. (Oxf.)59, 793–799 (2003).
  • de Herder WW, Kwekkeboom DJ, Valkema R et al. Neuroendocrine tumors and somatostatin: imaging techniques. J. Endocrinol. Invest.28, 132–136 (2005).
  • Dromain C, de Baere T, Lumbroso J et al. Detection of liver metastases from endocrine tumors: a prospective comparison of somatostatin receptor scintigraphy, computed tomography, and magnetic resonance imaging. J. Clin. Oncol.23, 70–78 (2005).
  • Termanini B, Gibril F, Reynolds JC et al. Value of somatostatin receptor scintigraphy: a prospective study in gastrinoma of its effect on clinical management. Gastroenterology112, 335–347 (1997).
  • Lebtahi R, Le Cloirec J, Houzard C et al. Detection of neuroendocrine tumors: 99mTc-P829 scintigraphy compared with 111In-pentetreotide scintigraphy. J. Nucl. Med.43, 889–895 (2002).
  • Kwekkeboom D, Krenning EP, de Jong M. Peptide receptor imaging and therapy. J. Nucl. Med.41, 1704–1713 (2000).
  • Janson ET, Westlin JE, Eriksson B et al. [111In-DTPA-D-Phe1]octreotide scintigraphy in patients with carcinoid tumours: the predictive value for somatostatin analogue treatment. Eur. J. Endocrinol.131, 577–581 (1994).
  • Reubi JC, Macke HR, Krenning EP. Candidates for peptide receptor radiotherapy today and in the future. J. Nucl. Med.46(Suppl. 1), 67S–75S (2005).
  • Hattner RS, Huberty JP, Engelstad BL et al. Localization of m-iodo(131I)benzylguanidine in neuroblastoma. AJR Am. J. Roentgenol.143, 373–374 (1984).
  • Nakajo M, Shapiro B, Copp J et al. The normal and abnormal distribution of the adrenomedullary imaging agent m-[I-131]iodobenzylguanidine (I-131 MIBG) in man: evaluation by scintigraphy. J. Nucl. Med.24, 672–682 (1983).
  • Shapiro B, Copp JE, Sisson JC et al. Iodine-131 metaiodobenzylguanidine for the locating of suspected pheochromocytoma: experience in 400 cases. J. Nucl. Med.26, 576–585 (1985).
  • Kaltsas G, Korbonits M, Heintz E et al. Comparison of somatostatin analog and meta-iodobenzylguanidine radionuclides in the diagnosis and localization of advanced neuroendocrine tumors. J. Clin. Endocrinol. Metab.86, 895–902 (2001).
  • Ezziddin S, Logvinski T, Yong-Hing C et al. Factors predicting tracer uptake in somatostatin receptor and MIBG scintigraphy of metastatic gastroenteropancreatic neuroendocrine tumors. J. Nucl. Med.47, 223–233 (2006).
  • Mukherjee JJ, Kaltsas GA, Islam N et al. Treatment of metastatic carcinoid tumours, phaeochromocytoma, paraganglioma and medullary carcinoma of the thyroid with 131I-meta-iodobenzylguanidine [131I-mIBG]. Clin. Endocrinol. (Oxf.)55, 47–60 (2001).
  • Buscombe JR, Cwikla JB, Caplin ME, Hilson AJ. Long-term efficacy of low activity meta-[131I]iodobenzylguanidine therapy in patients with disseminated neuroendocrine tumours depends on initial response. Nucl. Med. Commun.26, 969–976 (2005).
  • Rufini V, Calcagni ML, Baum RP. Imaging of neuroendocrine tumors. Semin. Nucl. Med.36, 228–247 (2006).
  • Phelps ME, Hoffman EJ, Mullani NA, Ter-Pogossian MM. Application of annihilation coincidence detection to transaxial reconstruction tomography. J. Nucl. Med.16, 210–224 (1975).
  • Zasadny KR, Wahl RL. Standardized uptake values of normal tissues at PET with 2-[fluorine-18]-fluoro-2-deoxy-D-glucose: variations with body weight and a method for correction. Radiology189, 847–850 (1993).
  • von Schulthess GK, Steinert HC, Hany TF. Integrated PET/CT: current applications and future directions. Radiology238, 405–422 (2006).
  • Gambhir SS, Czernin J, Schwimmer J et al. A tabulated summary of the FDG PET literature. J. Nucl. Med.42, 1S–93S (2001).
  • Bunyaviroch T, Coleman RE. PET evaluation of lung cancer. J. Nucl. Med.47, 451–469 (2006).
  • Chin BB, Wahl RL. 18F-fluoro-2-deoxyglucose positron emission tomography in the evaluation of gastrointestinal malignancies. Gut52(Suppl. 4), iv23–iv29 (2003).
  • Esteves FP, Schuster DM, Halkar RK. Gastrointestinal tract malignancies and positron emission tomography: an overview. Semin. Nucl. Med.36, 169–181 (2006).
  • Juweid ME, Cheson BD. Role of positron emission tomography in lymphoma. J. Clin. Oncol.23, 4577–4580 (2005).
  • Kapoor V, Fukui MB, McCook BM. Role of 18FFDG PET/CT in the treatment of head and neck cancers: principles, technique, normal distribution, and initial staging. AJR Am. J. Roentgenol.184, 579–587 (2005).
  • Adams S, Baum R, Rink T et al. Limited value of fluorine-18 fluorodeoxyglucose positron emission tomography for the imaging of neuroendocrine tumours. Eur. J. Nucl. Med.25, 79–83 (1998).
  • Pasquali C, Rubello D, Sperti C et al. Neuroendocrine tumor imaging: can 18F-fluorodeoxyglucose positron emission tomography detect tumors with poor prognosis and aggressive behavior? World J. Surg.22, 588–592 (1998).
  • Foidart-Willems J, Depas G, Vivegnis D. Positron emission tomography and radio labeled octreotide scintigraphy in carcinoid tumors. Eur. J. Nucl. Med.22, 635–638 (1995).
  • Jadvar H, Segall GM. False-negative fluorine-18-FDG PET in metastatic carcinoid. J. Nucl. Med.38, 1382–1383 (1997).
  • Pearse AG. The APUD concept and hormone production. Clin. Endocrinol. Metab.9, 211–222 (1980)
  • Ahlstrom H, Eriksson B, Bergstrom M et al. Pancreatic neuroendocrine tumors: diagnosis with PET. Radiology195, 333–337 (1995).
  • Hoegerle S, Altehoefer C, Ghanem N et al. Whole-body 18F DOPA PET for detection of gastrointestinal carcinoid tumors. Radiology220, 373–380 (2001).
  • Becherer A, Szabo M, Karanikas G et al. Imaging of advanced neuroendocrine tumors with 18F-FDOPA PET. J. Nucl. Med.45, 1161–1167 (2004).
  • Koopmans KP, de Vries EG, Kema IP et al. Staging of carcinoid tumours with 18F-DOPA PET: a prospective, diagnostic accuracy study. Lancet Oncol.7, 728–734 (2006).
  • Montravers F, Grahek D, Kerrou K et al. Can fluorodihydroxyphenylalanine PET replace somatostatin receptor scintigraphy in patients with digestive endocrine tumors? J. Nucl. Med.47, 1455–1462 (2006).
  • Hoegerle S, Altehoefer C, Ghanem N et al.18F-DOPA positron emission tomography for tumour detection in patients with medullary thyroid carcinoma and elevated calcitonin levels. Eur. J. Nucl. Med.28, 64–71 (2001).
  • Nanni C, Rubello D, Fanti S. 18F-DOPA PET/CT and neuroendocrine tumours. Eur. J. Nucl. Med. Mol. Imaging33, 509–513 (2006).
  • Orlefors H, Sundin A, Ahlstrom H et al. Positron emission tomography with 5-hydroxytryprophan in neuroendocrine tumors. J. Clin. Oncol.16, 2534–2541 (1998).
  • Orlefors H, Sundin A, Lu L et al. Carbidopa pretreatment improves image interpretation and visualisation of carcinoid tumours with 11C-5-hydroxytryptophan positron emission tomography. Eur. J. Nucl. Med. Mol. Imaging33, 60–65 (2006).
  • Brown WD, Oakes TR, DeJesus OT et al. Fluorine-18-fluoro-L-DOPA dosimetry with carbidopa pretreatment. J. Nucl. Med.39, 1884–1891 (1998).
  • Orlefors H, Sundin A, Garske U et al. Whole-body (11)C-5-hydroxytryptophan positron emission tomography as a universal imaging technique for neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and computed tomography. J. Clin. Endocrinol. Metab.90, 3392–3400 (2005).
  • Hofmann M, Maecke H, Borner R et al. Biokinetics and imaging with the somatostatin receptor PET radioligand (68)Ga-DOTATOC: preliminary data. Eur. J. Nucl. Med.28, 1751–1757 (2001).
  • Kowalski J, Henze M, Schuhmacher J et al. Evaluation of positron emission tomography imaging using [68Ga]-DOTA-D Phe(1)-Tyr(3)-octreotide in comparison to [111In]-DTPAOC SPECT. First results in patients with neuroendocrine tumors. Mol. Imaging Biol.5, 42–48 (2003).
  • Koukouraki S, Strauss LG, Georgoulias V et al. Evaluation of the pharmacokinetics of 68Ga-DOTATOC in patients with metastatic neuroendocrine tumours scheduled for 90Y-DOTATOC therapy. Eur. J. Nucl. Med. Mol Imaging33, 460–466 (2006).
  • Win Z, Rahman L, Murrell J et al. The possible role of 68Ga-DOTATATE PET in malignant abdominal paraganglioma. Eur. J. Nucl. Med. Mol Imaging33, 506 (2006).
  • Gabriel M, Decristoforo C, Kendler D et al.68Ga-DOTA-Tyr3-octreotide PET in neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and CT. J. Nucl. Med.48, 508–518 (2007).
  • Kayani I, Bomanji JB, Groves A et al. Functional imaging of neuroendocrine tumors with combined PET/CT using (68)Ga-DOTATATE (DOTA-DPhe(1),Tyr(3)-octreotate) and (18)F-FDG. Cancer112, 2447–2455 (2008).
  • Rajendran JG, Krohn KA. Imaging hypoxia and angiogenesis in tumors. Radiol. Clin. North Am.43, 169–187 (2005).
  • Haubner R, Wester HJ, Burkhart F et al. Glycosylated RGD-containing peptides: tracer for tumor targeting and angiogenesis imaging with improved biokinetics. J. Nucl. Med.42, 326–336 (2001).
  • Dehdashti F, Grigsby PW, Mintun MA et al. Assessing tumor hypoxia in cervical cancer by positron emission tomography with 60Cu-ATSM: relationship to therapeutic response – a preliminary report. Int. J. Radiat. Oncol. Biol. Phys.55, 1233–1238 (2003).
  • Rajendran JG, Schwartz DL, O’Sullivan J et al. Tumor hypoxia imaging with [F-18] fluoromisonidazole positron emission tomography in head and neck cancer. Clin. Cancer Res.12, 5435–5441 (2006).
  • Krohn KA, Link JM, Mason RP. Molecular imaging of hypoxia. J. Nucl. Med.49(Suppl. 2), 129S–148S (2008).
  • Hendrikse NH, de Vries EG, Eriks-Fluks L et al. A new in vivo method to study P-glycoprotein transport in tumors and the blood–brain barrier. Cancer Res.59, 2411–2416 (1999).
  • Sasongko L, Link JM, Muzi M et al. Imaging P-glycoprotein transport activity at the human blood–brain barrier with positron emission tomography. Clin. Pharmacol. Ther.77, 503–514 (2005).
  • Mankoff DA, Shields AF, Krohn KA. PET imaging of cellular proliferation. Radiol. Clin. North Am.43, 153–167 (2005).
  • Grierson JR, Shields AF. Radiosynthesis of 3´-deoxy-3´-[(18)F]fluorothymidine: [(18)F]FLT for imaging of cellular proliferation in vivo. Nucl. Med. Biol.27, 143–156 (2000).
  • Bading JR, Shields AF. Imaging of cell proliferation: status and prospects. J. Nucl. Med.49(Suppl. 2), 64S–80S (2008).
  • Blankenberg FG, Katsikis PD, Tait JF et al. Imaging of apoptosis (programmed cell death) with 99mTc annexin V. J. Nucl. Med.40, 184–191 (1999).
  • Wicki A, Wild D, Storch D et al. [Lys40(Ahx-DTPA-111In)NH2]-exendin-4 is a highly efficient radiotherapeutic for glucagon-like peptide-1 receptor-targeted therapy for insulinoma. Clin. Cancer Res.13, 3696–3705 (2007).
  • Modlin IM, Latich I, Zikusoka M et al. Gastrointestinal carcinoids: the evolution of diagnostic strategies. J. Clin. Gastroenterol.40, 572–582 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.