48
Views
2
CrossRef citations to date
0
Altmetric
Review

Congenital adrenal hyperplasia in adults

, &
Pages 67-77 | Published online: 10 Jan 2014

References

  • New MI. Nonclassical 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab.91, 4205–4214 (2006).
  • Pang S, Clark A. Congenital adrenal hyperplasia due to 21-hydroxylase deficiency: newborn screening and its relationship to the diagnosis and treatment of the disorder. Screening2, 105–139 (1993).
  • Therrell BJ, Berenbaum S, Manter-Kapanke V et al. Results of screening 1.9 million Texas newborns for 21-hydroxylase-deficient congenital adrenal hyperplasia. Pediatrics101, 583–590 (1998).
  • Balsamo A, Cacciari E, Piazzi S et al. Congenital adrenal hyperplasia: neonatal mass screening compared with clinical diagnosis only in the Emilia-Romagna region of Italy, 1980–1995. Pediatrics98, 362–367 (1996).
  • Speiser PW, Dupont B, Rubinstein P, Piazza A, Kastelan A, New MI. High frequency of nonclassical steroid 21-hydroxylase deficiency. Am. J. Hum. Genet.37, 650–667 (1985).
  • Sherman SL, Aston CE, Morton NE, Speiser P, New MI. A segregation and linkage study of classical and nonclassical 21-hydroxylase deficiency. Am. J. Hum. Genet.42, 830–838 (1988).
  • Prader A, Gurtner HP. [The syndrome of male pseudohermaphrodism in congenital adrenocortical hyperplasia without overproduction of androgens (adrenal male pseudohermaphrodism)]. Helv. Paediatr. Acta.10, 397–412 (1955).
  • Eugster EA, Dimeglio LA, Wright JC, Freidenberg GR, Seshadri R, Pescovitz OH. Height outcome in congenital adrenal hyperplasia caused by 21-hydroxylase deficiency: a meta-analysis. J. Pediatr.138, 26–32 (2001).
  • Muirhead S, Sellers EA, Guyda H. Indicators of adult height outcome in classical 21-hydroxylase deficiency congenital adrenal hyperplasia. J. Pediatr.141, 247–252 (2002).
  • Brunelli V, Russo G, Bertelloni S et al. Final height in congenital adrenal hyperplasia due to 21-hydroxylase deficiency: the Italian experience. J. Pediatr. Endocrinol. Metab.16(Suppl. 2), 277–283 (2003).
  • Lin-Su K, Vogiatzi MG, Marshall I et al. Treatment with growth hormone and luteinizing hormone releasing hormone analog improves final adult height in children with congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab.90, 3318–3325 (2005).
  • Cabrera M, Vogiatzi M, New M. Long term outcome in adult males with classic congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab.86, 3070–3080 (2001).
  • Kuhnle U, Land M, Ulick S. Evidence for the secretion of an antimineralocorticoid in congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab.62, 934–940 (1986).
  • New MI. Extensive clinical experience: nonclassical 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab.91, 4205–4214 (2006).
  • Clayton PE, Miller WL, Oberfield SE, Ritzen EM, Sippell WG, Speiser PW. Consensus statement on 21-hydroxylase deficiency from the European Society for Paediatric Endocrinology and the Lawson Wilkins Pediatric Endocrine Society. Horm. Res.58, 188–195 (2002).
  • Wilson RC, Mercado AB, Cheng KC, New MI. Steroid 21-hydroxylase deficiency: genotype may not predict phenotype. J. Clin. Endocrinol. Metab.80, 2322–2329 (1995).
  • Dupont B, Oberfield SE, Smithwick EM, Lee TD, Levine LS. Close genetic linkage between HLA and congenital adrenal hyperplasia (21-hydroxylase deficiency). Lancet2, 1309–1312 (1977).
  • Levine LS, Zachmann M, New MI et al. Genetic mapping of the 21-hydroxylase-deficiency gene within the HLA linkage group. N. Engl. J. Med.299, 911–915 (1978).
  • Aston CE, Sherman SL, Morton NE, Speiser PW, New MI. Genetic mapping of the 21-hydroxylase locus: estimation of small recombination frequencies. Am. J. Hum. Genet.43, 304–310 (1988).
  • White PC, Grossberger D, Onufer BJ et al. Two genes encoding steroid 21-hydroxylase are located near the genes encoding the fourth component of complement in man. Proc. Natl Acad. Sci. USA82, 1089–1093 (1985).
  • Carroll MC, Campbell RD, Porter RR. The mapping of 21-hydroxylase genes adjacent to complement component C4 genes in HLA, the major histocompatibility complex in man. Proc. Natl Acad. Sci. USA82, 521–525 (1985).
  • Higashi Y, Hiromasa T, Tanae A et al. Effects of individual mutations in the P-450(C21) pseudogene on the P-450(C21) activity and their distribution in the patient genomes of congenital steroid 21-hydroxylase deficiency. J. Biochem.109, 638–644 (1991).
  • White PC, New MI, Dupont B. Structure of the human steroid 21-hydroxylase genes. Proc. Natl Acad. Sci. USA83, 5111–5115 (1986).
  • Tusie-Luna M, White P. Gene conversions and unequal crossovers between CYP21 (steroid 21-hydroxylase gene) and CYP21P involve different mechanisms. Proc. Natl Acad. Sci. USA92, 10796–10800 (1995).
  • Stenson PD, Ball EV, Mort M et al. Human Gene Mutation Database (HGMD): 2003 update. Hum. Mutat.21, 577–581 (2003).
  • Wilson RC, Wei JQ, Cheng KC, Mercado AB, New MI. Rapid deoxyribonucleic acid analysis by allele-specific polymerase chain reaction for detection of mutations in the steroid 21-hydroxylase gene. J. Clin. Endocrinol. Metab.80, 1635–1640 (1995).
  • Werkmeister JW, New MI, Dupont B, White PC. Frequent deletion and duplication of the steroid 21-hydroxylase genes. Am. J. Hum. Genet.39, 461–469 (1986).
  • White PC, Vitek A, Dupont B, New MI. Characterization of frequent deletions causing steroid 21-hydroxylase deficiency. Proc. Natl Acad. Sci. USA85, 4436–4440 (1988).
  • Rumsby G, Carroll M, Porter R, Grant D, Hjelm M. Deletion of the steroid 21-hydroxylase and complement C4 genes in congenital adrenal hyperplasia. J. Med. Genet.23, 204–209 (1986).
  • Wedell A, Ritzen EM, Haglund-Stengler B, Luthman H. Steroid 21-hydroxylase deficiency: three additional mutated alleles and establishment of phenotype–genotype relationships of common mutations. Proc. Natl Acad. Sci. USA89, 7232–7236 (1992).
  • Rodrigues NR, Dunham I, Yu CY, Carroll MC, Porter RR, Campbell RD. Molecular characterization of the HLA-linked steroid 21-hydroxylase B gene from an individual with congenital adrenal hyperplasia. EMBO J.6, 1653–1661 (1987).
  • Owerbach D, Ballard A, Draznin M. Salt-wasting congenital adrenal hyperplasia: detection and characterization of mutations in the steroid 21-hydroxylase gene, CYP21, using the polymerase chain reaction. J. Clin. Endocrinol. Metab.74, 553–558 (1992).
  • Tajima T, Fujieda K, Fujii-Kuriyama Y. de novo mutation causes steroid 21-hydroxylase deficiency in one family of HLA-identical affected and unaffected siblings. J. Clin. Endocrinol. Metab.77, 86–89 (1993).
  • Speiser PW, New MI, White PC. Molecular genetic analysis of nonclassic steroid 21-hydroxylase deficiency associated with HLA-B14,DR1. N. Engl. J. Med.319, 19–23 (1988).
  • Tusie-Luna MT, Speiser PW, Dumic M, New MI, White PC. A mutation (Pro-30 to Leu) in CYP21 represents a potential nonclassic steroid 21-hydroxylase deficiency allele. Mol. Endocrinol.5, 685–692 (1991).
  • Owerbach D, Sherman L, Ballard AL, Azziz R. Pro-453 to ser mutation in CYP21 is associated with nonclassic steroid 21-hydroxylase deficiency. Mol. Endocrinol.6, 1211–1215 (1992).
  • Wilson RC, Nimkarn S, Dumic M et al. Ethnic-specific distribution of mutations in 716 patients with congenital adrenal hyperplasia owing to 21-hydroxylase deficiency. Mol. Genet. Metab.90, 414–421 (2007).
  • Speiser PW, Dupont J, Zhu D et al. Disease expression and molecular genotype in congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J. Clin. Invest.90, 584–595 (1992).
  • Wilson RC, Mercado AB, Cheng KC, New MI. Steroid 21-hydroxylase deficiency: genotype may not predict phenotype. J. Clin. Endocrinol. Metab.80, 2322–2329 (1995).
  • Krone N, Braun A, Roscher A, Knorr D, Schwarz H. Predicting phenotype in steroid 21-hydroxylase deficiency? Comprehensive genotyping in 155 unrelated, well defined patients from southern Germany. J. Clin. Endocrinol. Metab.85, 1059–1065 (2000).
  • Chemaitilly W, Betensky BP, Marshall I, Wei JQ, Wilson RC, New MI. The natural history and genotype–phenotype nonconcordance of HLA identical siblings with the same mutations of the 21-hydroxylase gene. J. Pediatr. Endocrinol. Metab.18, 143–153 (2005).
  • Rohana AG, Ming W, Norlela S, Norazmi MK. Functioning adrenal adenoma in association with congenital adrenal hyperplasia. Med J Malaysia.62, 158–159 (2007).
  • Nimkarn S, Lin-Su K, Berglind N, Wilson RC, New MI. Aldosterone-to-renin ratio as a marker for disease severity in 21-hydroxylase deficiency congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab.92(1), 137–142 (2006).
  • Jansen M, Wit JM, van den Brande JL. Reinstitution of mineralocorticoid therapy in congenital adrenal hyperplasia. Effects on control and growth. Acta Paediatr. Scand.70, 229–233 (1981).
  • Mazziotti G, Giustina A, Canalis E, Bilezikian JP. Glucocorticoid-induced osteoporosis: clinical and therapeutic aspects. Arq. Bras. Endocrinol. Metabol.51, 1404–1412 (2007).
  • Falhammar H, Filipsson H, Holmdahl G et al. Fractures and bone mineral density in adult women with 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab.92, 4643–4649 (2007).
  • King JA, Wisniewski AB, Bankowski BJ, Carson KA, Zacur HA, Migeon CJ. Long-term corticosteroid replacement and bone mineral density in adult women with classical congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab.91, 865–869 (2006).
  • Stikkelbroeck N, Oyen W, van der Wilt G, Hermus A, Otten B. Normal bone mineral density and lean body mass, but increased fat mass, in young adult patients with congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab.88, 1036–1042 (2003).
  • Christiansen P, Molgaard C, Muller J. Normal bone mineral content in young adults with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Horm. Res.61, 133–136 (2004).
  • Cornean RE, Hindmarsh PC, Brook CG. Obesity in 21-hydroxylase deficient patients. Arch. Dis. Child.78, 261–263 (1998).
  • Charmandari E, Chrousos GP. Metabolic syndrome manifestations in classic congenital adrenal hyperplasia: do they predispose to atherosclerotic cardiovascular disease and secondary polycystic ovary syndrome? Ann. NY Acad. Sci.1083, 37–53 (2006).
  • Speiser PW, Serrat J, New MI, Gertner JM. Insulin insensitivity in adrenal hyperplasia due to nonclassical steroid 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab.75, 1421–1424 (1992).
  • Charmandari E, Weise M, Bornstein S et al. Children with classic congenital adrenal hyperplasia have elevated serum leptin concentrations and insulin resistance: potential clinical implications. J. Clin. Endocrinol. Metab.87, 2114–2120 (2002).
  • Sartorato P, Zulian E, Benedini S et al. Cardiovascular risk factors and ultrasound evaluation of intima-media thickness at common carotids, carotid bulbs, and femoral and abdominal aorta arteries in patients with classic congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab.92, 1015–1018 (2007).
  • Falhammar H, Filipsson H, Holmdahl G et al. Metabolic profile and body composition in adult women with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab.92, 110–116 (2007).
  • Roche EF, Charmandari E, Dattani MT, Hindmarsh PC. Blood pressure in children and adolescents with congenital adrenal hyperplasia (21-hydroxylase deficiency): a preliminary report. Clin. Endocrinol. (Oxford)58, 589–596 (2003).
  • Merke D, Chrousos G, Eisenhofer G et al. Adrenomedullary dysplasia and hypofunction in patients with classic 21-hydroxylase deficiency. N. Engl. J. Med.343, 1362–1368 (2000).
  • Weise M, Mehlinger SL, Drinkard B et al. Patients with classic congenital adrenal hyperplasia have decreased epinephrine reserve and defective glucose elevation in response to high-intensity exercise. J. Clin. Endocrinol. Metab.89, 591–597 (2004).
  • Green-Golan L, Yates C, Drinkard B et al. Patients with classic congenital adrenal hyperplasia have decreased epinephrine reserve and defective glycemic control during prolonged moderate-intensity exercise. J. Clin. Endocrinol. Metab.92, 3019–3024 (2007).
  • Crouch NS, Liao LM, Woodhouse CR, Conway GS, Creighton SM. Sexual function and genital sensitivity following feminizing genitoplasty for congenital adrenal hyperplasia. J. Urol.179, 634–638 (2008).
  • Gastaud F, Bouvattier C, Duranteau L et al. Impaired sexual and reproductive outcomes in women with classical forms of congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab.92, 1391–1396 (2007).
  • Nordenskjold A, Holmdahl G, Frisen L et al. Type of mutation and surgical procedure affect long-term quality of life for women with congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab.93, 380–386 (2008).
  • Hagenfeldt K, Janson PO, Holmdahl G et al. Fertility and pregnancy outcome in women with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Hum. Reprod.23, 1607–1613 (2008).
  • Bonaccorsi A, Adler I, Figueiredo J. Male infertility due to congenital adrenal hyperplasia: testicular biopsy findings, hormonal evaluation, and therapeutic results in three patients. Fertil. Steril.47, 664–670 (1987).
  • Burton PJ, Waddell BJ. Dual function of 11β-hydroxysteroid dehydrogenase in placenta: modulating placental glucocorticoid passage and local steroid action. Biol. Reprod.60, 234–240 (1999).
  • Rennick GJ. Use of systemic glucocorticosteroids in pregnancy: be alert but not alarmed. Australas. J. Dermatol.47, 34–36 (2006).
  • Carlson AD, Obeid JS, Kanellopoulou N, Wilson RC, New MI. Prenatal treatment and diagnosis of congenital adrenal hyperplasia owing to steroid 21-hydroxylase deficiency. In: Diagnosis and Treatment of the Unborn Child. New MI (Ed.). Idelson-Gnocchi Ltd, FL, USA 75–84 (1991)
  • New M, Carlson A, Obeid J et al. Update: prenatal diagnosis for congenital adrenal hyperplasia in 595 pregnancies. Endocrinologist13, 233–239 (2003).
  • Goldman A, Sharpior B, Katsumata M. Human foetal palatal corticoid receptors and teratogens for cleft palate. Nature272, 464–466 (1978).
  • Nimkarn S. Prenatal diagnosis and treatment of congenital adrenal hyperplasia owing to 21-hydroxylase deficiency. J. Paediatr. Obst. Gynecol.31, 91–96 (2005).
  • Pang S, Clark AT, Freeman LO et al. Maternal side-effects of prenatal dexamethasone therapy for fetal congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab.76, 249–253 (1992).
  • Lajic S, Wedell A, Bui T, Ritzen E, Holst M. Long-term somatic follow-up of prenatally treated children with congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab.83, 3872–3880 (1998).
  • Meyer-Bahlburg H, Dolezal C, Baker S, Carlson A, Obeid J, New M. Cognitive and motor development of children with and without congenital adrenal hyperplasia after early-prenatal dexamethasone. J. Clin. Endocrinol. Metab.89, 610–614 (2004).
  • Hirvikoski T, Nordenstrom A, Lindholm T et al. Cognitive functions in children at risk for congenital adrenal hyperplasia treated prenatally with dexamethasone. J. Clin. Endocrinol. Metab.92, 542–548 (2007).
  • Hirvikoski T, Nordenstrom A, Lindholm T, Lindblad F, Ritzen EM, Lajic S. Long-term follow-up of prenatally treated children at risk for congenital adrenal hyperplasia: does dexamethasone cause behavioural problems? Eur. J. Endocrinol.159, 309–316 (2008).
  • Kruse B, Kloehn S, Partsch C et al. Congenital adrenal hyperplasia – how to improve the transition from adolescence to adult life. Exp. Clin. Endocrinol. Diabet.112, 343–355 (2004).
  • Gmyrek G, New M, Sosa R, Poppas D. Bilateral laparoscopic adrenalectomy as a treatment for classic congenital adrenal hyperplasia attributed to 21-hydroxylase deficiency. Pediatrics109, E28 (2002).
  • Helmberg A, Tusie-Luna M-T, Tabarelli M et al. R339H and P453S: CYP21 mutations associated with nonclassic steroid 21-hydroxylase deficiency that are not apparent gene conversions. Mol. Endocrinol.6, 1318–1322 (1992).
  • White PC, New MI, Dupont B. HLA-linked congenital adrenal hyperplasia results from a defective gene encoding a cytochrome P-450 specific for steroid 21-hydroxylation. Proc. Natl Acad. Sci. USA81(23), 7505–7509 (1984).
  • Higashi Y, Tanae A, Inoue H, Hiromasa T, Fujii-Kuriyama Y. Aberrant splicing and missense mutations cause steroid 21-hydroxylase [P-450(C21)] deficiency in humans: possible gene conversion products. Proc. Natl Acad. Sci. USA85(20), 7486–7490 (1988).
  • White PC, Tusie-Luna MT, New MI, Speiser PW. Mutations in steroid 21-hydroxylase (CYP21). Hum. Mutat.3(4), 373–378 (1994).
  • Tusie-Luna M, Traktman P, White PC. Determination of functional effects of mutations in the steroid 21-hydroxylase gene (CYP21) using recombinant vaccinia virus. J. Biol. Chem.265(34), 20916–20922 (1990).
  • Amor M, Parker KL, Globerman H, New MI, White PC. Mutation in the CYP21B gene (Ile-172-Asn) causes steroid 21-hydroxylase deficiency. Proc. Natl Acad. Sci. USA85, 1600–1607 (1988).
  • Globerman H, Amor M, Parker KL, New MI, White PC. Nonsense mutation causing steroid 21-hydroxylase deficiency. J. Clin. Invest.82(1), 139–144 (1988).
  • Chiou SH, Hu MC, Chung BC. A missense mutation at Ile172----Asn or Arg356----Trp causes steroid 21-hydroxylase deficiency. J. Biol. Chem.265(6), 3549–3552 (1990).
  • Wedell A, Luthman H. Steroid 21-hydroxylase (P450c21): a new allele and spread of mutations through the pseudogene. Hum. Genet.91, 236–240 (1993).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.