41
Views
5
CrossRef citations to date
0
Altmetric
Review

Hormonal abnormalities leading to disorders of sexual development

&
Pages 161-172 | Published online: 10 Jan 2014

References

  • Lee PA, Houk CP, Ahmed SF, Hughes IA. Consensus statement on management of interesex disorders. Pediatrics1118, e488–e500 (2006).
  • Jost A. A new look at the mechanisms controlling sex differentiation in mammals. Johns Hopkins Med. J.130, 38–53 (1972).
  • Blecher SR, Erickson RP. Genetics of sexual development: a new paradigm. Am. J. Med. Genet.143A, 3054–3068 (2007).
  • Hanley NA, Arlt W. The human fetal adrenal cortex and the window of sexual differentiation. Trends Endocrinol. Metab.17(10), 391–397 (2006).
  • Cotinot C, Pailhoux E, Jaubert F, Fellous M. Molecular genetics of sex determination. Semin. Reprod. Med.20(3), 157–167 (2002).
  • Kim Y, Capel B. Balancing the bipotential gonad between alternative organ fates: a new perspective on an old problem. Dev. Dyn.235, 2292–2300 (2006).
  • DiNapoli L, Capel B. SRY and the standoff in sexual determination. Mol. Endocrinol.22(1), 1–9 (2008).
  • Parma P, Radi O, Vidal V et al. R-spondin1 is essential in sex determination, skin differentiation and malignancy. Nat. Genetics38(11), 1304–1309 (2006).
  • Ostrer H. Sexual differentiation. Semin. Reprod. Med.18(1), 41–49 (2000).
  • Miyamoto Y, Taniguchi H, Hamel F, Silversides DW, Viger RS. A GATA4/WT1 cooperation regulates transcription of genes required for mammalian sex determination and differentiation. BMC Mol. Biol.9(9), 44 (2008).
  • di Clemente N, Belville C. Anti-Müllerian hormone receptor defect. Best Pract. Res. Clin. Endocrinol. Metabol.20(4), 599–610 (2006).
  • Salhi I, Cambon-Roques S, Lamarre I et al. The anti-Müllerian hormone type II receptor: insights into the binding domains recognized by a monoclonal antibody and the natural ligand. Biochem. J.379, 785–793 (2004).
  • Hannema SE, Hughes IA. Regulation of wolffian duct development. Horm. Res.67(3), 142–151 (2007).
  • Siiteri PK, Wilson JD. Testosterone formation and metabolism during male sexual differentiation in the human embryo. J. Clin. Endocrinol. Metabol.38, 113–125 (1974).
  • Goto M, Piper HK, Marcos J et al. In humans, early cortisol biosynthesis provides a mechanism to safeguard female sexual development. J. Clin. Invest.116, 953–960 (2006).
  • Krone N, Hanley NA, Arlt W. Age-specific changes in sex steroid biosynthesis and sex development. Best Pract. Res. Clin. Endocrinol. Metabol.21(3), 393–401 (2007).
  • Auchus RJ. The backdoor pathway to dihydrotestosterone. Trends Endocrinol. Metab.19, 432–438 (2004).
  • Sobel V, Zhu YS, Imperato-McGinley J. Fetal hormones and sexual differentiation. Obstet. Gynecol. Clin. N. Am.31, 837–856 (2004).
  • Bardoni B, Zanaria E, Guioli S et al. A dosage sensitive locus at Xp21is involved in male to female sex reversal. Nat Genet.7(4), 497–501 (1994).
  • Wilhelm D, Palmer S, Koopman P. Sex determination and gonadal development in mammals. Physiol. Rev.87, 1–28 (2007).
  • Cohen-Haguenauer O, Picard JY, Mattéi MG et al. Mapping of the gene for anti-müllerian hormone to the short arm of human chromosome 19. Cytogenet. Cell. Genet.44(1), 2–6 (1987).
  • Knebelmann B, Boussin L, Guerrier D et al. Anti-Mullerian hormone Bruxelles: a nonsense mutation associated with the persistent mullerian duct syndrome. Proc. Natl Acad. Sci. USA88(9), 3767–3771 (1991).
  • Di Clemente N, Wilson C, Faure E et al. Cloning, expression, and alternative splicing of the receptor for anti-mullerian hormone. Mol. Endocrinol.8, 1006–1020 (1994).
  • Imbeaud S, Belville C, Messika-Zeitoun L et al. A 27 base-pair deletion of the anti-mullerian type II receptor gene is the most common cause of the persistent mullerian duct syndrome. Hum. Mol. Genet.5, 1269–1277 (1996).
  • Laue L, Wu SM, Kudo M et al. A nonsense mutation of the human luteinizing hormone receptor gene in Leydig cell hypoplasia. Hum. Mol. Genet.8, 1429–1433 (1995).
  • Laue L, Chan WY, Hsueh AJ et al. Genetic heterogeneity of constitutively activating mutations of the human luteinizing hormone receptor in familial male-limited precocious puberty. Proc. Natl Acad. Sci. USA92(6), 1906–1910 (1995).
  • Berthezene F, Forest MG, Grimaud JA et al. Leydig cell agenesis: a cause of male pseudohermaphroditism. N. Engl. J. Med.295, 969–972 (1976).
  • Berube D, Luu-The V, La Chance Y et al. Assignment of the human 3α-hydroxysteroid dehydrogenase gene (HSDα3) to the p13 band of chromosome 1. Cytogenet. Cell Genet.52, 199–200 (1989).
  • Rheaume E, La Chance Y, Zhao H-F et al. Structure and expression of a new complementary DNA encoding the almost exclusive 3α-hydroxysteroid dehydrogenase/5-4 isomerase gene in human adrenals and gonads. Mol. Endocrinol.5, 1147–1157 (1991).
  • Simard J, Rheaume E, Mebarki F et al. Molecular basis of human 3αdehydrogenase deficiency. J. Steroid Biochem. Mol. Biol.53, 127–138 (1995).
  • Rheaume E, Simard J, Morel Y et al. Congenital adrenal hyperplasia due to point mutations in the type II 3α-hydroxysteroid dehydrogenase gene. Nat. Genet.1, 239–245 (1992).
  • Miura K, Yasuda K, Yanase K et al. Mutation of cytochrome P-45017α gene (CYP17) in a Japanese patient previously reported as having glucocorticoid-responsive hyperaldosteronism: with a review of Japanese patients with mutations of CYP17. J. Clin. Endocrinol. Metab.81, 3797–3801 (1996).
  • Yanase T, Simpson ER, Waterman MR. 17α-hydroxylase deficiency: from clinical investigation to molecular definition. Endocr. Rev.12, 91–108 (1991).
  • Yanase T. 17α-hydroxylase/17,20-lyase defects. J. Steroid Biochem. Mol. Biol.53, 153–157 (1995).
  • Oshiro C, Takasu N, Wakugami T et al. Seventeen α-hydroxylase deficiency with one base pair deletion of the cytochrome P450c17 (CYP17) gene. J. Clin. Endocrinol. Metab.80, 2526–2529 (1995).
  • Geller DH, Auchus RJ, Mendonca BB et al. The genetic and functional basis of isolated 17,20-lyase deficiency. Nat. Genet.17, 201–205 (1997).
  • Luu-The V. Analysis and characteristics of multiple types of human 17β hydroxysteroid dehydrogenase. J. Steroid Biochem. Mol. Biol.76, 143–151 (2001).
  • Geissler WM, Davis DL, Wu I et al. Male pseudohermaphroditism caused by mutations of testicular 17α-hydroxysteroid dehydrogenase 3. Nat. Genet.7, 34–39 (1994).
  • Bangsboll S, Qvist I, Lebech PE, Lewinsky M. Testicular feminization syndrome and associated gonadal tumors in Denmark. Acta Obstet. Gynecol. Scand.71, 63–66 (1992).
  • Lubahn DR, Joseph DR, Sar M et al. The human androgen receptor: complementary deoxyribonucleic acid cloning, sequence analysis, and gene expression in prostate. Mol. Endocrinol.2, 1265–1275 (1988).
  • Edwards A, Hammond HA, Jin L et al. Genetic variation at five trimeric and tetrameric tandem repeat loci in four human population groups. Genomics12, 241–253 (1992).
  • La Spada AR, Wilson EM, Lubahn DB et al. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature352, 77–79 (1991).
  • Kazemi-Esfarjani P, Trifiro MA, Pinsky L. Evidence for a repressive function of the long polyglutamine tract in the human androgen receptor: possible pathogenetic relevance for the (CAG)n-expanded neuronopathies. Hum. Mol. Genet.4, 523–527 (1995).
  • Chamberlain NL, Driver ED, Miesfeld RL. The length and location of CAG trinucleotide repeats in the androgen receptor N-terminal domain affect transactivation function. Nucleic Acids Res.22, 3181–3186 (1994).
  • Batch JA, Williams, DM, Davies HR et al. Androgen receptor gene mutations identified by SSCP in fourteen subjects with androgen insensitivity syndrome. Hum. Mol. Genet.1, 497–503 (1992).
  • Patterson MN, McPhaul MJ, Hughes IA. Androgen insensitivity syndrome. Baillieres Clin. Endocrinol. Metab.8, 379–404 (1994).
  • MacLean HE, Warne GL, Zajac JD. Defects of androgen receptor function: from sex reversal to motor neurone disease. Mol. Cell. Endocrinol.112, 133–141 (1995).
  • McPhaul MJ, Marcelli M, Zoppi S et al. Mutations in the ligand-binding domain of the androgen receptor cluster in two regions of the gene. J. Clin. Invest.90, 2096–2101 (1992).
  • Russell DW, Wilson JD. Steroid 5α-reductase: two genes/two enzymes. Ann. Rev. Biochem.63, 25–61 (1994).
  • Boudon C, Lobaccaro JM, Lumbroso S et al. A new deletion of 5a-reductase type 2 gene in a Turkish family with 5α-reductase deficiency. Clin. Endocrinol.43, 183–188 (1995).
  • Vilchis F, Valdez E, Ramos L, Garcia R, Gomez R, Chavez B. Novel compound heterozygous mutations in the SRD5A2 gene from 46,XY infants with ambiguous external genitalia. J. Hum. Genet.53, 401–406 (2008).
  • New MI. Congenital adrenal hyperplasia. In: Endocrinology (3rd Edition) De Groot L (Ed.). WB Saunders, PA, USA 1813–1835 (1995).
  • Thompson R, Seargent L, Winter JSD. Screening for congenital adrenal hyperplasia: distribution of 17α-hydroxyprogesterone concentrations in neonatal blood spot specimens. J. Pediatr.114, 400–404 (1989).
  • Godo B, Visser HKA, Degenhart JH. Plasma 17OH-progesterone in full-term and preterm infants at birth and during the early neonatal period. Horm. Res.15, 65–71 (1981).
  • Miller WL. Genetics, diagnosis and management of 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab.78, 241–246 (1994).
  • New MI, White PC. Genetic disorders of steroid hormone synthesis and metabolism. Baillieres Clin. Endocrinol. Metab.9, 525–554 (1995).
  • Speiser PW, Dupont J, Zhu D et al. Disease expression and molecular genotype in congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J. Clin. Invest.90, 584–595 (1992).
  • Kolon TF, Lamb DJ. Gene transcription and translation. Cont. Urol.10(11), 42–67 (1998).
  • Tusie-Luna M-T, Traktmon P, White PC. Determination of functional effects of mutations in the steroid 21-hydroxylase gene (CYP21) using recombinant vaccinia virus. J. Biol. Chem.265, 20916–20922 (1990).
  • Pang S, Wallace MA, Hofman L et al. Worldwide experience in newborn screening for congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Pediatrics81, 866–874 (1988).
  • Pollack M, Levine LS, Duchon M et al. Prenatal diagnosis of CAH due to 21-hydroxylase deficiency by HLA typing of cultured amniotic fluid cells. Pediatr. Res.13, 384A (1979).
  • Nimkarn S, New MI. Prenatal diagnosis and treatment of congenital adrenal hyperplasia. Horm. Res.67, 53–60 (2006).
  • Mornet E, Dupont J, Vitek et al. Characterization of two genes encoding human steroid 11 α-hydroxylase (P45011B). J. Biol. Chem.264, 20961–20967 (1989).
  • Chua SC, Szabo P, Vitek A et al. Cloning of cDNA encoding steroid 11α-hydroxylase (P450c11). Proc. Natl Acad. Sci. USA84, 7193–7197 (1987).
  • White PC, Speiser PW. Steroid 11α-hydroxylase deficiency and related disorders. Endocrinol. Metab. Clin. North Am.23, 325–339 (1994).
  • Nakagawa Y, Yamada M, Ogawa H et al. Missense mutation in CYP11B1 (CGA [Arg384] α GGA [Gly]) causes steroid 11 α-hydroxylase deficiency. Eur. J. Endocrinol.132, 286–289 (1995).
  • Rosler A, Lieberman A. Enzymatic defects of steroidogenesis: 11 α-hydroxylase deficiency congenital adrenal hyperplasia. In: Adrenal Diseases in Childhood: Pediatric Adolescent Endocrinology (Volume 13). New MI, Levine LS (Eds). Karger, Basel, Switzerland 47–71 (1984).
  • Ulick S, Wang JZ, Morton DH. The biochemical phenotypesof two inborn errors in the biosynthesis of aldostereone. J. Clin. Endocrinol. Metab.74, 1415–1420 (1992).
  • Pang S, Levine LS, Lorenzen F et al. Hormonal studies in obligate heterozygotes and siblings of siblings with 11α-hydroxylase deficiency congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab.50, 586–589 (1980).
  • Schumert Z, Rosenmann A, Landau H et al. 11-deoxycortisol in amniotic fluid: prenatal diagnosis of congenital adrenal hyperplasia due to 11 α-hydroxylase deficiency. Clin. Endocrinol.12, 257–260 (1980).
  • Rosler A, Lieberman E, Rosenmann A et al.: Prenatal diagnosis of 11α-hydroxylase deficiency congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab.49, 546–551 (1979).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.