85
Views
9
CrossRef citations to date
0
Altmetric
Review

Tryptase as an inflammatory marker in allergic disease and asthma

, &
Pages 63-73 | Published online: 10 Jan 2014

References

  • Tattersfield AE. Asthma. Lancet 360, 1313–1322 (2002).
  • Busse WW. Asthma. N. Engl. J. Med. 344, 350–362 (2001).
  • Nicolai T. The epidemiology of asthma and allergic diseases: a comparison between Eastern and Western European countries. Pediatr. Pulmonol. S23, 27–29 (2001).
  • Djukanovic R, Roche WR, Wilson JW et al. Mucosal inflammation in asthma. Am. Rev. Respir. Dis. 142, 434–457 (1990).
  • O’Byrne PM, Inman MD, Parameswaran K. The trials and tribulations of IL-5, eosinophil and allergic asthma, J. Allergy Clin. Immunol. 108, 503–508 (2001).
  • Leong KP, Huston DP. Understanding the pathogenesis of allergic asthma using mouse models. Ann. Allergy Asthma Immunol. 87, 96–109 (2001).
  • Wills-Karp M. Immunologic basis of antigen-induced airway hyperresponsiveness. Ann. Rev. Immunol. 17, 255–281 (1999).
  • Makker HK. Investigative use of fibreoptic bronchoscopy for local airway challenge in asthma. Eur. Respir. J. 6, 1402–1408 (1993).
  • Lloyd CM. Mouse models of allergic airway disease. Adv. Immunol. 77, 263–295 (2001).
  • Wardlaw AJ. Eosinophils and mast cells in bronchoalveolar lavage in subjects with mild asthma. Relationship to bronchial hyper-reactivity. Am. Rev. Respir. Dis. 137, 62–69 (1988).
  • Broide DH, Firestein GS. Endobronchial allergen challenge in asthma. J. Clin. Invest. 88, 1048–1053 (1991).
  • Lam S. Cellular and protein changes in bronchial lavage fluid after late asthmatic reaction in patients with red cedar asthma. J. Allergy Clin. Immunol. 80, 44–50 (1987).
  • Beasley R. Cellular events in the bronchi in mild asthma and after bronchial provocation. Am. Rev. Respir. Dis. 139, 806–817 (1989).
  • De Monchy JG. Bronchoalveolar eosinophilia during allergen-induced late asthmatic reactions. Am. Rev. Respir. Dis. 131, 373–376 (1985).
  • Fukuda T. Increased numbers of hypodense eosinophils in the blood of patients with bronchial asthma. Am. Rev. Respir. Dis.132, 981–985 (1985).
  • Frick WE. The appearance of hypodense eosinophils in antigen-dependent late phase asthma. Am. Rev. Respir. Dis. 139, 1401–1406 (1989).
  • Gleich GJ. The eosinophil as a mediator of damage to respiratory epithelium, a model for bronchial hyper-reactivity. J. Allergy Clin. Immunol. 81, 776–781 (1988).
  • Walker C. Activated T-cells and eosinophilia in bronchoalveolar lavages from subjects with asthma correlated with disease severity. J. Allergy Clin. Immunol. 88, 935–942 (1991).
  • Bousquett J. Eosinophilic inflammation in asthma. N. Engl. J. Med. 323, 1033–1039 (1990).
  • Broide DH. Evidence of ongoing mast cell and eosinophil degranulation in symptomatic asthma airway. J. Allergy Clin. Immunol. 88, 637–648 (1991).
  • Bochner BS. Immunological aspects of allergic asthma. Ann. Rev. Immunol. 12, 295–335 (1994).
  • Wilson JW. The measurement of reticular basement membrane and submucosal collagen in the asthmatic airway. Clin. Exp. Allergy 27, 363–371 (1997).
  • Muro S. The pathology of chronic asthma. Clin. Chest Med. 21, 225–244 (2000).
  • Barnes PJ. New directions in allergic diseases, mechanism-based anti-inflammatory therapies. J. Allergy Clin. Immunol. 106, 5–16 (2000).
  • Broide DH. Molecular and cellular mechanisms of allergic disease. J. Allergy Clin. Immunol. 108, S65–S71 (2001).
  • Humbles AA. A role for the C3a anaphylatoxin receptor in the effector phase of asthma. Nature 406, 998–1001 (2000).
  • Temkin V. Tryptase activates the mitogen-activated protein kinase/activator protein-1 pathway in human peripheral blood eosinophils, causing cytokine production and release. J. Immunol. 169, 2662–2669 (2002).
  • Foster B, Schwartz LB, Devouassour G, Metcalfe DD, Prussin C. Characterization of mast-cell tryptase-expressing peripheral blood cells as basophils. J. Allergy Clin. Immunol. 109, 287–293 (2002).
  • Schwartz LB. Tryptase from human mast cells: biochemistry, biology and clinical utility. Monogr. Allergy 27, 90–113 (1990).
  • Abraham WM. Tryptase: potential role in airway inflammation and remodeling. Am. J. Physiol. Lung Cell Mol. Physiol. 282, L193– L196 (2002).
  • Sakai K, Ren S, Schwartz LB. A novel heparin-dependent processing pathway for human tryptase: autocatalysis followed by activation with dipeptidyl peptidase I. J. Clin. Invest. 97, 988–995 (1996).
  • Kido H, Fukusen K, Katunuma K. Chymotrypsin- and trypsin-type serine proteases in rat mast cells: properties and functions. Arch. Biochem. Biophys. 239, 436–443 (1985).
  • Fiorucci L, Erba F, Ascoli F. Bovine tryptase: purification and characterization. Biol. Chem. Hoppe Seyler 373, 483–490 (1992).
  • Caughey GH. Tryptase and chymase in dog mast cells. Monogr. Allergy 27, 67–89 (1990).
  • Bousquet J, Chanez P, Lacoste JY et al. Asthma: a disease remodeling the airways. Allergy47, 3–11 (1992).
  • Walls AF, Bennett AR, Sueiras-Diaz J, Olsson H. The kininogenase activity of human mast cell tryptase. Biochem. Soc. Trans. 20, S260 (1992).
  • Imamura T, Dubin A, Moore W, Tanaka R, Travis J. Induction of vascular permeability enhancement by human tryptase: dependence on activation of prekallikrein and direct release of bradykinin from kininogens. Lab. Invest. 74, 861–870 (1996).
  • Stack MS, Johnson DA. Human mast cell tryptase activates single-chain urinary-type plasminogen activator [pro-urokinase]. J. Biol. Chem. 269, 9416–9419 (1994).
  • Tam EK, Caughey GH. Degradation of airway neuropeptides by human lung tryptase. Am. J. Respir. Cell Mol. Biol. 3, 27–32 (1990).
  • Walls AF, Brain SD, Desai A et al. Human mast cell tryptase attenuates the vasodilator activity of calcitonina gene-related peptide. Biochem. Pharmacol. 43, 1243–1248 (1992).
  • Levi-Schaffer F, Piliponsky AM. Tryptase, a novel link between allergic inflammation and fibrosis. Trends Immunol. 24, 158–161 (2003).
  • Lan RS, Stewart GA, Henry PJ. Role of protease-activated receptors in airway function: a target for therapeutic intervention? Pharmacol. Ther. 95, 239–257 (2002).
  • Walls AF, Bennett AR, Sueiras-Diaz J, Olsson H. The kininogenase activity of human mast cell tryptase. Biochem. Soc. Trans. 20, S260 (1992).
  • He S, Peng Q, Walls AF. Potent induction of a neutrophil and eosinophil-rich infiltrate in vivo by human mast-cell tryptase: selective enhancement of eosinophil recruitment by histamine. J. Immunol. 159, 6216–6225 (1997).
  • Compton SJ, Cairns JA, Holgate ST, Walls AF. The role of mast cell tryptase in regulating endothelial cell proliferation, cytokine release, and adhesion molecule expression: tryptase induces expression of mRNA for IL-1 β and IL-8 and stimulates the selective release of IL-8 from human umbilical vein endothelial cells. J. Immunol. 161, 1939–1946 (1998).
  • Cairns JA, Walls AF. Mast cell tryptase is a mitogen for epithelial cells. Stimulation of IL-8 production and intercellular adhesion molecule-1 expression. J. Immunol. 156, 275–283 (1996).
  • Kaminska R, Helisalmi P, Harvima RJ, Naukkarinen A, Horsmanheimo M, Harvima IT. Focal dermal-epidermal separation and fibronectin cleavage in basement membrane by human mast cell tryptase. J. Invest. Dermatol. 113, 567–573 (1999).
  • Stack MS, Johnson DA. Human mast cell tryptase activates single-chain urinary-type plasminogen activator (pro-urokinase). J. Biol. Chem. 269, 9416–9419 (1994).
  • Artuc M, Steckelings UM, Henz BM. Mast cell–fibroblast interactions: human mast cells as source and inducers of fibroblast and epithelial growth factors. J. Invest. Dermatol. 118(3), 391–395 (2002).
  • Frungieri MB, Albrecht M, Raemsch R, Mayerhofer A. The action of the mast cell product tryptase on cyclooxygenase-2 (COX2) and subsequent fibroblast proliferation involves activation of the extracellular signal-regulated kinase isoforms 1 and 2 (erk1/2). Cell. Signal. 17(4), 525–33 (2005).
  • Brown JK, Jones CA, Rooney LA, Caughey GH. Mast cell tryptase activates extracellular-regulated kinases (p44/p42) in airway smooth-muscle cells: importance of proteolytic events, time course, and role in mediating mitogenesis. Am. J. Respir. Cell Mol. Biol. 24(2), 146–154 (2001).
  • Brown JK, Tyler CL, Jones CA, Ruoss SJ, Hartmann T, Caughey GH. Tryptase, the dominant secretory granular protein in human mast cells, is a potent mitogen for cultured dog tracheal smooth muscle cells. Am. J. Respir. Cell Mol. Biol. 13(2), 227–236 (1995).
  • Hartmann T, Ruoss SJ, Raymond WW, Seuwen K, Caughey GH. Human tryptase as a potent, cell-specific mitogen: role of signaling pathways in synergistic responses. Am. J. Physiol. 262(5 Pt 1), L528–L534 (1992).
  • Garbuzenko E, Nagler A, Pickholtz D et al. Human mast cells stimulate fibroblast proliferation, collagen synthesis and lattice contraction: a direct role for mast cells in skin fibrosis. Clin. Exp. Allergy 32(2), 237–246 (2002).
  • Xu X, Rivkind A, Pappo O, Pikarsky A, Levi-Schaffer F. Role of mast cells and myofibroblasts in human peritoneal adhesion formation. Ann. Surg. 236(5), 593–601 (2002).
  • Frungieri MB, Weidinger S, Meineke V, Kohn FM, Mayerhofer A. Proliferative action of mast-cell tryptase is mediated by PAR2, COX2, prostaglandins, and PPARγ: possible relevance to human fibrotic disorders. Proc. Natl Acad. Sci. USA 99(23), 15072–15077 (2002).
  • Brown JK, Jones CA, Rooney LA, Caughey GH, Hall IP. Tryptase’s potent mitogenic effects in human airway smooth muscle cells are via nonproteolytic actions. Am. J. Physiol. Lung Cell Mol. Physiol. 282(2), L197–L206 (2002).
  • Valent P, Horny HP, Escribano L et al. Diagnostic criteria and classification of mastocytosis: a consensus proposal. Leuk. Res. 25, 603–625 (2001).
  • Schwartz LB. Clinical utility of tryptase levels in systemic mastocytosis and associated hematologic disorders. Leuk. Res. 25, 553–562 (2001).
  • Akin C, Metcalfe DD. Surrogate markers of disease in mastocytosis. Int. Arch. Allergy Immunol. 127, 133–136 (2002).
  • Schwartz LB, Sakai K, Bradford TR et al. The α form of human tryptase is the predominant type present in blood at baseline in normal subjects and is elevated in those with systemic mastocytosis. J. Clin. Invest. 96, 2702–2710 (1995).
  • Sperr WR, Jordan JH, Fiegl M et al. Serum tryptase levels in patients with mastocytosis: correlation with mast cell burden and implication for defining the category of disease. Int. Arch. Allergy Immunol. 128, 136–141 (2002).
  • Sperr WR, Jordan JH, Stehberger B et al. Detection of elevated serum tryptase levels in MDS. Blood 94, 287b (1999).
  • Sperr WR, Jordan JH, Baghestanian M et al. Expression of mast cell tryptase by myeloblasts in a group of patients with acute myeloid leukemia. Blood 98, 2200–2209 (2001).
  • Deleuran B, Kristensen M, Larsen CG et al. Increased tryptase levels in suction-blister fluid from patients with urticaria. Br. J. Dermatol. 125, 14–17 (1991).
  • Irani AM, Gruber BL, Kaufman LD, Kahaleh MB, Schwartz LB. Mast cell changes in scleroderma. Presence of MCT cells in the skin and evidence of mast cell activation. Arthritis Rheum. 35, 933–939 (1992).
  • Akimoto S, Ishikawa O, Igarashi Y, Kurosawa M, Miyachi Y. Dermal mast cells in scleroderma: their skin density, tryptase/ chymase phenotypes and degranulation. Br. J. Dermatol. 138, 399–406 (1998).
  • Amon U, Menz U, Wolff HH. Investigations on plasma levels of mast cell mediators in acute atopic dermatitis. J. Dermatol. Sci. 7, 63–67 (1994).
  • Amon U, Memmel U, Stoll R, Amon S. Comparison of severity scoring of atopic dermatitis values and serum levels of eosinophil cationic protein and mast cell tryptase for routine evaluation of atopic dermatitis. Acta Derm. Venereol. 80, 284–286 (2000).
  • Dybendal T, Guttormsen AB, Elsayed S, Askeland B, Harboe T, Florvaag E. Screening for mast cell tryptase and serum IgE antibodies in 18 patients with anaphylactic shock during general anaesthesia. Acta Anaesthesiol. Scand. 47, 1211–1218 (2003).
  • Haeberli G, Bronnimann M, Hunziker T, Muller U. Elevated basal serum tryptase and hymenoptera venom allergy: relation to severity of sting reactions and to safety and efficacy of venom immunotherapy. Clin. Exp. Allergy 33, 1216–1220 (2003).
  • Alonso Diaz de Durana MD, Fernandez-Rivas M, Casas ML, Esteban E, Cuevas M, Tejedor MA. Anaphylaxis during negative penicillin skin prick testing confirmed by elevated serum tryptase. Allergy 58, 159–163 (2003).
  • Schwartz LB, Yunginger JW, Miller J, Bokhari R, Dull D. Time course of appearance and disappearance of human mast cell tryptase in the circulation after anaphylaxis. J. Clin. Invest. 83, 1551–1555 (1989).
  • Horn KD, Halsey JF, Zumwalt RE. Utilization of serum tryptase and immunoglobulin E assay in the postmortem diagnosis of anaphylaxis. Am. J. Forensic Med. Pathol. 25, 37–43 (2004).
  • Platt MS, Yunginger JW, Sekula-Perlman A et al. Involvement of mast cells in sudden infant death syndrome. J. Allergy Clin. Immunol. 94, 250–256 (2004).
  • Holgate ST, Walters C, Walls AF et al. The anaphylaxis hypothesis of sudden infant death syndrome (SIDS): mast cell degranulation in cot death revealed by elevated concentrations of tryptase in serum. Clin. Exp. Allergy 24, 1115–1122 (1994).
  • Buckley MG, Variend S, Walls AF. Elevated serum concentrations of β-tryptase, but not α-tryptase, in sudden infant death syndrome (SIDS). An investigation of anaphylactic mechanisms. Clin. Exp. Allergy 31, 1696–1704 (2001).
  • Edston E, Gidlund E, Wickman M, Ribbing H, Van Hage-Hamsten M. Increased mast cell tryptase in sudden infant death – anaphylaxis, hypoxia or artefact? Clin. Exp. Allergy 29, 1648–1654 (1999).
  • Nishio H, Suzuki K. Serum tryptase levels in sudden infant death syndrome in forensic autopsy cases. Forensic Sci. Int. 139, 57–60 (2004).
  • Benson MD, Lindberg RE. Amniotic fluid embolism, anaphylaxis, and tryptase. Am. J. Obstet. Gynecol. 175, 737 (1996).
  • Farrar SC, Gherman RB. Serum tryptase analysis in a woman with amniotic fluid embolism. A case report. J. Reprod. Med. 46, 926–928 (2001).
  • Nishio H, Matsui K, Miyazaki T, Tamura A, Iwata M, Suzuki K. A fatal case of amniotic fluid embolism with elevation of serum mast cell tryptase. Forensic Sci. Int. 126, 53–56 (2002).
  • Benson MD, Kobayashi H, Silver RK, Oi H, Greenberger PA, Terao T. Immunologic studies in presumed amniotic fluid embolism. Obstet. Gynecol. 97, 510–514 (2001).
  • He S, Aslam A, Gaca MD et al. Inhibitors of tryptase as mast cell-stabilizing agents in the human airways: effects of tryptase and other agonists of proteinase-activated receptor 2 on histamine release. J. Pharmacol. Exp. Ther. 309, 119–126 (2004).
  • Oh SW, Pae CI, Lee DK et al. Tryptase inhibition blocks airway inflammation in a mouse asthma model. J. Immunol. 168, 1992–2000 (2002).
  • Knight DA, Lim S, Scaffidi AK et al. Protease-activated receptors in human airways: upregulation of PAR-2 in respiratory epithelium from patients with asthma. J. Allergy Clin. Immunol. 108, 797–803 (2001).
  • Schmidlin F, Amadesi S, Dabbagh K et al. Protease-activated receptor 2 mediates eosinophil infiltration and hyper-reactivity in allergic inflammation of the airway. J. Immunol. 165, 5315–5321 (2002).
  • Lindner JR, Kahn ML, Coughlin SR et al. Delayed onset of inflammation in protease-activated receptor-2-deficient mice. J. Immunol. 165, 6504–6510 (2000).
  • Goldstein SM, Leong J, Schwartz LB, Cooke D. Protease composition of exocytosed human skin mast cell protease–proteoglycan complexes. Tryptase resides in a complex distinct from chymase and carboxypeptidase. J. Immunol.148, 2475–2482 (1992).
  • Alter SC, Metcalfe DD, Bradford TR, Schwartz LB. Regulation of human mast cell tryptase. Effects of enzyme concentration, ionic strength and the structure and negative charge density of polysaccharides. Biochem. J. 248, 821–827 (1987).
  • Ennis M, Turner G, Schock BC et al. Inflammatory mediators in bronchoalveolar lavage samples from children with and without asthma. Clin. Exp. Allergy 29, 362–366 (1999).
  • Schoonbrood DF, Out TA, Lutter R, Reimert CM, van Overveld FJ, Jansen HM. Plasma protein leakage and local secretion of proteins assessed in sputum in asthma and COPD. The effect of inhaled glucocorticosteroids. Clin. Chim. Acta 240, 163–178 (1995).
  • Pizzichini MM, Popov TA, Efthimiadis A et al. Spontaneous and induced sputum to measure indices of airway inflammation in asthma. Am. J. Respir. Crit. Care Med. 154, 866–869 (1996).
  • Scher H, Berman D, Weinberg EG et al. Granulocyte proteins in serum in childhood asthma: relation to spirometry and therapy. Clin. Exp. Allergy 26, 1131–1141 (1996).
  • Rao R, Frederick JM, Enander I, Gregson RK, Warner JA, Warner JO. Airway function correlates with circulating eosinophil, but not mast cell, markers of inflammation in childhood asthma. Clin. Exp. Allergy 26, 789–793 (1996).
  • Nagayama Y, Tsubaki T, Toba T, Nakayama S, Kiyofumi O. Analysis of sputum taken from wheezy and asthmatic infants and children, with special reference to respiratory infections. Pediatr. Allergy Immunol. 12, 318–326 (2001).
  • Bettiol J, Radermecker M, Sele J, Henquet M, Cataldo D, Louis R. Airway mast-cell activation in asthmatics is associated with selective sputum eosinophilia. Allergy 54, 1188–1193 (1999).
  • Louis R, Shute J, Goldring K et al. The effect of processing on inflammatory markers in induced sputum Eur. Respir. J. 13, 660–667 (1999).
  • Krawiec ME, Westcott JY, Chu HW et al. Persistent wheezing in very young children is associated with lower respiratory inflammation. Am. J. Respir. Crit. Care Med. 163, 1338–1343 (2001).
  • Klion AD, Noel P, Akin C et al. Elevated serum tryptase levels identify a subset of patients with a myeloproliferative variant of idiopathic hypereosinophilic syndrome associated with tissue fibrosis, poor prognosis, and imatinib responsiveness. Blood 101, 4660–4666 (2003).
  • Schwartz LB, Yunginger JW, Miller J, Bokhari R, Dull D. Time course of appearance and disappearance of human mast cell tryptase in the circulation after anaphylaxis. J. Clin. Invest. 83, 1551–1555 (1989).
  • Salkie ML, Mitchell I, Revers CW et al. Postmortem serum levels of tryptase and total and specific IgE in fatal asthma. Allergy Asthma Proc. 19, 131–133 (1998).
  • Taira M, Tamaoki J, Kondo M, Kawatani K, Nagai A. Serum B12 tryptase level as a marker of allergic airway inflammation in asthma. J Asthma 39, 315–322 (2002).
  • Bochenek G, Nagraba K, Nizankowska E, Szczeklik A. A controlled study of 9α,11β-PGF2 (a prostaglandin D2 metabolite) in plasma and urine of patients with bronchial asthma and healthy controls after aspirin challenge. J. Allergy Clin. Immunol. 111, 743–749 (2003).
  • Medrala W, Malolepszy J, Wolanczyk-Medrala A et al. Is mast cell activation during asthmatic reaction reflected in the circulation? J. Investig. Allergol. Clin. Immunol. 5, 343–346 (1995).
  • Gershman NH, Wong HH, Liu JT, Fahy JV. Low- and high-dose fluticasone propionate in asthma; effects during and after treatment. Eur. Respir. J.15, 11–18 (2000).
  • Lazarus SC, Boushey HA, Fahy JV et al. Asthma Clinical Research Network for the National Heart, Lung, and Blood Institute. Long-acting β2-agonist monotherapy vs. continued therapy with inhaled glucocorticosteroids in patients with persistent asthma: a randomized controlled trial. JAMA 285, 2583–2593 (2001).
  • Swystun VA, Gordon JR, Davis EB, Zhang X, Cockcroft DW. Mast cell tryptase release and asthmatic responses to allergen increase with regular use of salbutamol. J. Allergy Clin. Immunol. 106, 57–64 (2000).
  • Lai CK, Chan CH, Ho SS, Hui AC, Lai KN. Inhaled salmeterol and albuterol in asthmatic patients receiving high-dose inhaled glucocorticosteroids. Chest 108, 36–40 (1995).
  • Tabbara KF. Tear tryptase in vernal keratoconjunctivitis. Arch. Ophthalmol. 119, 338–342 (2001).
  • Swystun VA, Gordon JR, Davis EB, Zhang X, Cockroft DW. Mast cell tryptase release and asthmatic responses to allergen increase with regular use of salbutamol. J. Allergy Clin. Immunol. 106, 57–64 (2000).
  • Sulakvelidze I, Conway M, Evans S, Stetsko PI, Djuric V, Dolovich J. Clinical and nasal irrigation fluid findings in perennial allergic rhinitis. Am. J. Rhinol. 11, 435–441 (1997).
  • Klion AD, Noel P, Akin C et al. Elevated serum tryptase levels identify a subset of patients with a myeloproliferative variant of idiopathic hypereosinophilic syndrome associated with tissue fibrosis, poor prognosis, and imatinib responsiveness. Blood 101, 4660–4666 (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.