82
Views
23
CrossRef citations to date
0
Altmetric
Review

Hemopoietic progenitors: the role of eosinophil/basophil progenitors in allergic airway inflammation

&
Pages 87-101 | Published online: 10 Jan 2014

References

  • Szilvassy SJ, Hoffman R. Enriched hematopoietic stem cells: basic biology and clinical utility. Biol. Blood Marrow Transplant1(1), 3–17 (1995).
  • Metcalf D. Hemopoietic Colonies. In Vitro Cloning of Normal and Leukemic Cells. Springer-Verlag, Berlin, Germany (1977).
  • Mayani H, Guilbert LJ, Janowska-Wieczorek A. Biology of the hemopoietic microenvironment. Eur. J. Haematol.49(5), 225–233 (1992).
  • Healy L, May G, Gale K, Grosveld F, Greaves M, Enver T. The stem cell antigen CD34 functions as a regulator of hemopoietic cell adhesion. Proc. Natl Acad. Sci. USA92(26), 12240–12244 (1995).
  • Strauss LC, Rowley SD, La Russa VF, Sharkis SJ, Stuart RK, Civin CI. Antigenic analysis of hematopoiesis. V. Characterization of My-10 antigen expression by normal lymphohematopoietic progenitor cells. Exp. Hematol.14(9), 878–886 (1986).
  • Sutherland DR, Keating A. The CD34 antigen: structure, biology, and potential clinical applications. J. Hematother.1(2), 115–129 (1992).
  • Charbord P. Mediators involved in the control of hamatopoiesis by the microenvironment. In: Hematopoiesis: A Developmental Approach. Zon LI (Ed.), Oxford University Press, Oxford, UK, 70, 2–17 (2001).
  • O’Farrel AM, Kinoshita T, Miyajima A. The hematopoietic cytokine receptors. In: Blood Cell Biochemistry: Hematopoietic Cell Growth Factors and Their Receptors. Whetton AD, Gordon J (Eds), Plenum Press, NY, USA, 1–40 (1996).
  • Mayani H, Alvarado-Moreno JA, Flores-Guzman P. Biology of human hematopoietic stem and progenitor cells present in circulation. Arch. Med. Res.34(6),476–488 (2003).
  • Denburg JA, Woolley M, Leber B, Linden M, O’Byrne P. Basophil and eosinophil differentiation in allergic reactions. J. Allergy Clin. Immunol. 94(6 Pt 2), 1135–1141 (1994).
  • Morrison SJ, Shah NM, Anderson DJ. Regulatory mechanisms in stem cell biology. Cell88(3), 287–298 (1997).
  • Metcalf D. Lineage commitment of hemopoietic progenitor cells in developing blast cell colonies: influence of colony-stimulating factors. Proc. Natl Acad. Sci. USA88(24), 11310–11314 (1991).
  • Broxmeyer HE, Kim CH, Cooper SH, Hangoc G, Hromas R, Pelus LM. Effects of CC, CXC, C, and CX3C chemokines on proliferation of myeloid progenitor cells, and insights into SDF-1-induced chemotaxis of progenitors. Ann. NY Acad. Sci.872, 142–162 (1999).
  • Rothenberg ME, MacLean JA, Pearlman E, Luster AD, Leder P. Targeted disruption of the chemokine eotaxin partially reduces antigen-induced tissue eosinophilia. J. Exp. Med.185(4),785–790 (1997).
  • Duhrsen U, Knieling G, Beecken W, Neumann S, Hossfeld DK. Chimaeric cultures of human marrow stroma and murine leukaemia cells: evidence for abnormalities in the haemopoietic microenvironment in myeloid malignancies and other infiltrating marrow disorders. Br. J. Haematol.90(3), 502–511 (1995).
  • Denburg JA. Microenvironmental influences on inflammatory cell differentiation. Allergy50(25 Suppl.), 25–28 (1995).
  • O’Byrne PM, Dolovich J, Hargreave FE. Late asthmatic responses. Am. Rev. Respir. Dis.136(3), 740–751 (1987).
  • Aalbers R, de Monchy JG, Kauffman HF et al. Dynamics of eosinophil infiltration in the bronchial mucosa before and after the late asthmatic reaction. Eur. Respir. J.6(6), 840–847 (1993).
  • Aalbers R, Kauffman HF, Vrugt B, Koeter GH, de Monchy JG. Allergen-induced recruitment of inflammatory cells in lavage 3 and 24 h after challenge in allergic asthmatic lungs. Chest103(4), 1178–1184 (1993).
  • Aalbers R, Kauffman HF, Vrugt B et al. Bronchial lavage and bronchoalveolar lavage in allergen-induced single early and dual asthmatic responders. Am. Rev. Respir. Dis.147(1), 76–81 (1993).
  • Gauvreau GM, Watson RM, O’Byrne PM. Kinetics of allergen-induced airway eosinophilic cytokine production and airway inflammation. Am. J. Respir. Crit. Care Med. 160(2), 640–647 (1999).
  • Gauvreau GM, Lee JM, Watson RM, Irani AM, Schwartz LB, O’Byrne PM. Increased numbers of both airway basophils and mast cells in sputum after allergen inhalation challenge of atopic asthmatics. Am. J. Respir. Crit. Care Med.161(5), 1473–1478 (2000).
  • Gibson PG, Manning PJ, O’Byrne PM et al. Allergen-induced asthmatic responses. Relationship between increases in airway responsiveness and increases in circulating eosinophils, basophils, and their progenitors. Am. Rev. Respir. Dis.143(2), 331–335 (1991).
  • Wood LJ, Inman MD, Denburg JA, O’Byrne PM. Allergen challenge increases cell traffic between bone marrow and lung. Am. J. Respir. Cell Mol. Biol.18(6), 759–767 (1998).
  • Herzog EL, Chai L, Krause DS. Plasticity of marrow-derived stem cells. Blood102(10), 3483–3493 (2003).
  • Denburg JA, Telizyn S, Belda A, Dolovich J, Bienenstock J. Increased numbers of circulating basophil progenitors in atopic patients. J. Allergy Clin. Immunol.76(3), 466–472 (1985).
  • Otsuka H, Dolovich J, Richardson M, Bienenstock J, Denburg JA. Metachromatic cell progenitors and specific growth and differentiation factors in human nasal mucosa and polyps. Am. Rev. Respir. Dis.136(3), 710–717 (1987).
  • Sehmi R, Howie K, Sutherland DR, Schragge W, O’Byrne PM, Denburg JA. Increased levels of CD34+ hemopoietic progenitor cells in atopic subjects. Am. J. Respir. Cell Mol. Biol.15(5), 645–655 (1996).
  • Wang CH, Hsieh WY, Shih LY et al. Increased progenitor cell proliferation in the peripheral blood of patients with bronchial asthma: the role of nitric oxide. J. Allergy Clin. Immunol.104(4 Pt 1), 803–810 (1999).
  • Gauvreau GM, O’Byrne PM, Moqbel R et al. Enhanced expression of GM-CSF in differentiating eosinophils of atopic and atopic asthmatic subjects. Am. J. Respir. Cell Mol. Biol.19(1), 55–62 (1998).
  • Gauvreau GM, Wood LJ, Sehmi R et al. The effects of inhaled budesonide on circulating eosinophil progenitors and their expression of cytokines after allergen challenge in subjects with atopic asthma. Am. J. Respir. Crit. Care Med.162(6),2139–2144 (2000).
  • Dorman SC, Sehmi R, Gauvreau GM et al. Kinetics of bone marrow eosinophilopoiesis and associated cytokines after allergen inhalation. Am. J. Respir. Crit. Care Med.169(5),565–572 (2004).
  • Wood LJ, Inman MD, Watson RM, Foley R, Denburg JA, O’Byrne PM. Changes in bone marrow inflammatory cell progenitors after inhaled allergen in asthmatic subjects. Am. J. Respir. Crit. Care Med.157(1), 99–105 (1998).
  • Robinson DS, Damia R, Zeibecoglou K et al. CD34(+)/interleukin-5Rα messenger RNA+ cells in the bronchial mucosa in asthma: potential airway eosinophil progenitors. Am. J. Respir. Cell Mol. Biol.20(1), 9–13 (1999).
  • Sehmi R, Wood LJ, Watson R et al. Allergen-induced increases in IL-5 receptor α-subunit expression on bone marrow-derived CD34+ cells from asthmatic subjects. A novel marker of progenitor cell commitment towards eosinophilic differentiation. J. Clin. Invest.100(10), 2466–2475 (1997).
  • Sehmi R, Dorman S, Baatjes A et al. Allergen-induced fluctuation in CC chemokine receptor 3 expression on bone marrow CD34+ cells from asthmatic subjects: significance for mobilization of haemopoietic progenitor cells in allergic inflammation. Immunology109(4), 536–546 (2003).
  • Wood LJ, Sehmi R, Gauvreau GM et al. An inhaled corticosteroid, budesonide, reduces baseline but not allergen-induced increases in bone marrow inflammatory cell progenitors in asthmatic subjects. Am. J. Respir. Crit. Care Med.159(5 Pt 1), 1457–1463 (1999).
  • Kim YK, Uno M, Hamilos DL et al. Immunolocalization of CD34 in nasal polyposis. Effect of topical corticosteroids. Am. J. Respir. Cell Mol. Biol.20(3),388–397 (1999).
  • Sergejeva S, Malmhall C, Lotvall J, Pullerits T. Increased number of CD34 cells in nasal mucosa of allergic rhinitis patients: inhibition by a local corticosteroid. Clin. Exp. Allergy35(1), 34–38 (2005).
  • Linden M, Svensson C, Andersson M et al. Circulating eosinophil/basophil progenitors and nasal mucosal cytokines in seasonal allergic rhinitis. Allergy54(3), 212–219 (1999).
  • Otsuka H, Dolovich J, Befus AD, Telizyn S, Bienenstock J, Denburg JA. Basophilic cell progenitors, nasal metachromatic cells, and peripheral blood basophils in ragweed-allergic patients. J. Allergy Clin. Immunol.78(2), 365–371 (1986).
  • Cyr MM, Baatjes AJ, Hayes LM, Crawford L, Denburg JA. The effect of desloratodine on eosinophil/basophil progenitors and other inflammatory markers in seasonal allergic rhinitis: a placebo-controlled randomized study. J. Allergy Clin. Immunol.109, S117 (2002).
  • Gibson PG, Dolovich J, Girgis-Gabardo A et al. The inflammatory response in asthma exacerbation: changes in circulating eosinophils, basophils and their progenitors. Clin. Exp. Allergy20(6), 661–668 (1990).
  • Terashima T, Wiggs B, English D, Hogg JC, van Eeden SF. Polymorphonuclear leukocyte transit times in bone marrow during streptococcal pneumonia. Am. J. Physiol.271(4 Pt 1), L587–L592 (1996).
  • Tomaki M, Zhao LL, Lundahl J et al. Eosinophilopoiesis in a murine model of allergic airway eosinophilia: involvement of bone marrow IL-5 and IL-5 receptor α. J. Immunol.165(7), 4040–4050 (2000).
  • Goto Y, Hogg JC, Whalen B, Shih CH, Ishii H, van Eeden SF. Monocyte recruitment into the lungs in pneumococcal pneumonia. Am. J. Respir. Cell Mol. Biol.30(5), 620–626 (2004).
  • Elsas PX, Maximiano ES, Vargaftig BB, Elsas MI. The effects of allergen and anti-allergic drugs on murine hemopoietic cells: moving targets, unusual mechanisms, and changing paradigms. Curr. Drug Targets Inflamm. Allergy2(4), 329–337 (2003).
  • Johansson AK, Sergejeva S, Sjostrand M, Lee JJ, Lotvall J. Allergen-induced traffic of bone marrow eosinophils, neutrophils and lymphocytes to airways. Eur. J. Immunol.34(11), 3135–3145 (2004).
  • Collins PD, Marleau S, Griffiths-Johnson DA, Jose PJ, Williams TJ. Co-operation between interleukin-5 and the chemokine eotaxin to induce eosinophil accumulation in vivo. J. Exp. Med.182(4), 1169–1174 (1995).
  • Mould AW, Matthaei KI, Young IG, Foster PS. Relationship between interleukin-5 and eotaxin in regulating blood and tissue eosinophilia in mice. J. Clin. Invest.99(5),1064–1071 (1997).
  • Palframan RT, Collins PD, Williams TJ, Rankin SM. Eotaxin induces a rapid release of eosinophils and their progenitors from the bone marrow. Blood91(7), 2240–2248 (1998).
  • Radinger M, Johansson AK, Sitkauskiene B, Sjostrand M, Lotvall J. Eotaxin-2 regulates newly produced and CD34 airway eosinophils after allergen exposure. J. Allergy Clin. Immunol.113(6), 1109–1116 (2004).
  • Lamkhioued B, Abdelilah SG, Hamid Q, Mansour N, Delespesse G, Renzi PM. The CCR3 receptor is involved in eosinophil differentiation and is upregulated by Th2 cytokines in CD34+ progenitor cells. J. Immunol.170(1), 537–547 (2003).
  • Zeibecoglou K, Ying S, Yamada T et al. Increased mature and immature CCR3 messenger RNA+ eosinophils in bone marrow from patients with atopic asthma compared with atopic and nonatopic control subjects. J. Allergy Clin. Immunol.103(1 Pt 1), 99–106 (1999).
  • Robinson DS, North J, Zeibecoglou K et al. Eosinophil development and bone marrow and tissue eosinophils in atopic asthma. Int. Arch. Allergy Immunol.118(2–4),98–100 (1999).
  • Gulbenkian AR, Egan RW, Fernandez X et al. Interleukin-5 modulates eosinophil accumulation in allergic guinea pig lung. Am. Rev. Respir. Dis.146(1), 263–266 (1992).
  • Wang J, Palmer K, Lotvall J et al. Circulating, but not local lung, IL-5 is required for the development of antigen-induced airways eosinophilia. J. Clin. Invest.102(6), 1132–1141 (1998).
  • Hamelmann E, Oshiba A, Loader J et al. Anti interleukin-5 antibody prevents airway hyperresponsiveness in a murine model of airway sensitization. Am. J. Respir. Crit. Care Med.155(3),819–825 (1997).
  • Hogan SP, Mould A, Kikutani H, Ramsay AJ, Foster PS. Aeroallergen-induced eosinophilic inflammation, lung damage, and airways hyper-reactivity in mice can occur independently of IL-4 and allergen-specific immunoglobulins. J. Clin. Invest.99(6), 1329–1339 (1997).
  • Kung TT, Stelts D, Zurcher JA et al. Mechanisms of allergic pulmonary eosinophilia in the mouse. J. Allergy Clin. Immunol.94(6 Pt 2),1217–1224 (1994).
  • Kung TT, Stelts DM, Zurcher JA et al. Involvement of IL-5 in a murine model of allergic pulmonary inflammation: prophylactic and therapeutic effect of an anti-IL-5 antibody. Am. J. Respir. Cell Mol. Biol.13(3), 360–365 (1995).
  • Mauser PJ, Pitman AM, Fernandez X et al. Effects of an antibody to interleukin-5 in a monkey model of asthma. Am. J. Respir. Crit. Care Med.152(2),467–472 (1995).
  • Van Oosterhout AJ, Ladenius AR, Savelkoul HF, Van Ark I, Delsman KC, Nijkamp FP. Effect of anti-IL-5 and IL-5 on airway hyper-reactivity and eosinophils in guinea-pigs. Am. Rev. Respir. Dis.147(3), 548–552 (1993).
  • Saito H, Matsumoto K, Denburg AE et al. Pathogenesis of murine experimental allergic rhinitis: a study of local and systemic consequences of IL-5 deficiency. J. Immunol.168(6), 3017–3023 (2002).
  • Woolley MJ, Denburg JA, Ellis R, Dahlback M, O’Byrne PM. Allergen-induced changes in bone marrow progenitors and airway responsiveness in dogs and the effect of inhaled budesonide on these parameters. Am. J. Respir. Cell Mol. Biol.11(5), 600–606 (1994).
  • Inman MD, Denburg JA, Ellis R, Dahlback M, O’Byrne PM. Allergen-induced increase in bone marrow progenitors in airway hyperresponsive dogs: regulation by a serum hemopoietic factor. Am. J. Respir. Cell Mol. Biol.15(3), 305–311 (1996).
  • Gaspar Elsas MI, Joseph D, Elsas PX, Vargaftig BB. Rapid increase in bone-marrow eosinophil production and responses to eosinopoietic interleukins triggered by intranasal allergen challenge. Am. J. Respir. Cell Mol. Biol.17(4), 404–413 (1997).
  • Sitkauskiene B, Johansson AK, Sergejeva S, Lundin S, Sjostrand M, Lotvall J. Regulation of bone marrow and airway CD34+ eosinophils by interleukin-5. Am. J. Respir. Cell Mol. Biol.30(3), 367–378 (2004).
  • Minshall EM, Schleimer R, Cameron L et al. Interleukin-5 expression in the bone marrow of sensitized Balb/c mice after allergen challenge. Am. J. Respir. Crit. Care Med.158(3),951–957 (1998).
  • Isogai S, Miyata S, Taha R, Yoshizawa Y, Martin JG, Hamid Q. CD4+ T-cells migrate from airway to bone marrow after antigen inhalation in rats. J. Allergy Clin. Immunol.113(3), 455–461 (2004).
  • Stirling RG, van Rensen EL, Barnes PJ, Chung KF. Interleukin-5 induces CD34(+) eosinophil progenitor mobilization and eosinophil CCR3 expression in asthma. Am. J. Respir. Crit. Care Med.164(8 Pt 1),1403–1409 (2001).
  • Wood LJ, Sehmi R, Dorman S et al. Allergen-induced increases in bone marrow T-lymphocytes and interleukin-5 expression in subjects with asthma. Am. J. Respir. Crit. Care Med.166(6),883–889 (2002).
  • Tavernier J, Van der HJ, Verhee A et al. interleukin-5 regulates the isoform expression of its own receptor α-subunit. Blood95(5), 1600–1607 (2000).
  • van der Veen MJ, Van Neerven RJ, De Jong EC, Aalberse RC, Jansen HM, van der Zee JS. The late asthmatic response is associated with baseline allergen-specific proliferative responsiveness of peripheral T-lymphocytes in vitro and serum interleukin-5. Clin. Exp. Allergy29(2), 217–227 (1999).
  • Gregory B, Kirchem A, Phipps S et al. Differential regulation of human eosinophil IL-3, IL-5, and GM-CSF receptor α-chain expression by cytokines: IL-3, IL-5, and GM-CSF downregulate IL-5 receptor α expression with loss of IL-5 responsiveness, but upregulate IL-3 receptor α expression. J. Immunol.170(11), 5359–5366 (2003).
  • Johansson AK, Sjostrand M, Tomaki M, Samulesson AM, Lotvall J. Allergen stimulates bone marrow CD34(+) cells to release IL-5 in vitro; a mechanism involved in eosinophilic inflammation? Allergy59(10), 1080–1086 (2004).
  • Rottem M, Okada T, Goff JP, Metcalfe DD. Mast cells cultured from the peripheral blood of normal donors and patients with mastocytosis originate from a CD34+/Fc epsilon RI- cell population. Blood84(8), 2489–2496 (1994).
  • Shimizu Y, Suga T, Maeno T et al. Functional expression of high-affinity receptor for immunoglobulin E on mast cells precedes that of tryptase during differentiation from human bone marrow-derived CD34 progenitors cultured in the presence of stem cell factor and interleukin-6. Clin. Exp. Allergy34(6), 917–925 (2004).
  • Hogan MB, Piktel D, Landreth KS. IL-5 production by bone marrow stromal cells: implications for eosinophilia associated with asthma. J. Allergy Clin. Immunol.106(2), 329–336 (2000).
  • Kuo HP, Wang CH, Lin HC, Hwang KS, Liu SL, Chung KF. Interleukin-5 in growth and differentiation of blood eosinophil progenitors in asthma: effect of glucocorticoids. Br. J. Pharmacol.134(7), 1539–1547 (2001).
  • Baswick EN, Gauvreau GM, Sehmi R, Ronnen GM, O’Byrne PM. The effect of LTD4 and LTE4 on migrational responses of peripheral blood eosinophils from atopic subjects. Am. J. Respir. Crit. Care Med.161,A832 (2000).
  • Gauvreau GM, Parameswaran KN, Watson RM, O’Byrne PM. Inhaled leukotriene E(4), but not leukotriene D(4), increased airway inflammatory cells in subjects with atopic asthma. Am. J. Respir. Crit. Care Med.164(8 Pt 1),1495–1500 (2001).
  • Laitinen LA, Laitinen A, Haahtela T, Vilkka V, Spur BW, Lee TH. Leukotriene E4 and granulocytic infiltration into asthmatic airways. Lancet341(8851), 989–990 (1993).
  • Lee E, Robertson T, Smith J, Kilfeather S. Leukotriene receptor antagonists and synthesis inhibitors reverse survival in eosinophils of asthmatic individuals. Am. J. Respir. Crit. Care Med.161(6), 1881–1886 (2000).
  • Spada CS, Nieves AL, Krauss AH, Woodward DF. Comparison of leukotriene B4 and D4 effects on human eosinophil and neutrophil motility in vitro. J. Leukoc. Biol.55(2), 183–191 (1994).
  • Claesson HE, Dahlberg N, Gahrton G. Stimulation of human myelopoiesis by leukotriene B4. Biochem. Biophys. Res. Commun.131(2), 579–585 (1985).
  • Miller AM, Weiner RS, Ziboh VA. Evidence for the role of leukotrienes C4 and D4 as essential intermediates in CSF-stimulated human myeloid colony formation. Exp. Hematol.14(8), 760–765 (1986).
  • Braccioni F, Dorman SC, O’Byrne PM et al. The effect of cysteinyl leukotrienes on growth of eosinophil progenitors from peripheral blood and bone marrow of atopic subjects. J. Allergy Clin. Immunol.110(1), 96–101 (2002).
  • Mao H, Wang ZL, Li FY, Liu CT, Lei S. Relationship between bone marrow-derived CD34+ cells expressing interleukin-5 receptor messenger RNA and asthmatic airway inflammation. Chin. Med. J.117(1), 24–29 (2004).
  • Cameron L, Christodoulopoulos P, Lavigne F et al. Evidence for local eosinophil differentiation within allergic nasal mucosa: inhibition with soluble IL-5 receptor. J. Immunol.164(3), 1538–1545 (2000).
  • Ohnishi M, Ruhno J, Bienenstock J, Dolovich J, Denburg JA. Hematopoietic growth factor production by cultured cells of human nasal polyp epithelial scrapings: kinetics, cell source, and relationship to clinical status. J. Allergy Clin. Immunol.83(6), 1091–1100 (1989).
  • Ohnishi M, Ruhno J, Bienenstock J, Milner R, Dolovich J, Denburg JA. Human nasal polyp epithelial basophil/mast cell and eosinophil colony-stimulating activity. The effect is T-cell-dependent. Am. Rev. Respir. Dis.138(3), 560–564 (1988).
  • Sergejeva S, Johansson AK, Malmhall C, Lotvall J. Allergen exposure-induced differences in CD34+ cell phenotype: relationship to eosinophilopoietic responses in different compartments. Blood103(4), 1270–1277 (2004).
  • Southam DS, Widmer N, Ellis R, Hirota JA, Inman MD, Sehmi R. Increased eosinophil-lineage committed progenitors in the lung of allergen-challenged mice. J. Allergy Clin. Immunol.115(1), 95–102 (2005).
  • Gauvreau GM, Doctor J, Watson RM, Jordana M, O’Byrne PM. Effects of inhaled budesonide on allergen-induced airway responses and airway inflammation. Am. J. Respir. Crit. Care Med.154(5), 1267–1271 (1996).
  • Kelly EA, Busse WW, Jarjour NN. Inhaled budesonide decreases airway inflammatory response to allergen. Am. J. Respir. Crit. Care Med.162(3 Pt 1), 883–890 (2000).
  • Shen H, O’Byrne PM, Ellis R, Wattie J, Tang C, Inman MD. The effects of intranasal budesonide on allergen-induced production of interleukin-5 and eotaxin, airways, blood, and bone marrow eosinophilia, and eosinophil progenitor expansion in sensitized mice. Am. J. Respir. Crit. Care Med.166(2), 146–153 (2002).
  • Kim YK, Nakagawa N, Nakano K, Sulakvelidze I, Dolovich J, Denburg J. Stem cell factor in nasal polyposis and allergic rhinitis: increased expression by structural cells is suppressed by in vivo topical corticosteroids. J. Allergy Clin. Immunol.100(3), 389–399 (1997).
  • Gibson PG, Wong BJ, Hepperle MJ et al. A research method to induce and examine a mild exacerbation of asthma by withdrawal of inhaled corticosteroid. Clin. Exp. Allergy22(5), 525–532 (1992).
  • Egan RW, Athwahl D, Chou CC et al. Pulmonary biology of anti-interleukin-5 antibodies. Mem. Inst. Oswaldo Cruz92(Suppl. 2), 69–73 (1997).
  • Mauser PJ, Pitman A, Witt A et al. Inhibitory effect of the TRFK-5 antiIL-5 antibody in a guinea pig model of asthma. Am. Rev. Respir. Dis.148(6 Pt 1), 1623–1627 (1993).
  • Karras JG, McGraw K, McKay RA et al. Inhibition of antigen-induced eosinophilia and late phase airway hyperresponsiveness by an IL-5 antisense oligonucleotide in mouse models of asthma. J. Immunol.164(10), 5409–5415 (2000).
  • Leckie MJ, ten Brinke A, Khan J et al. Effects of an interleukin-5 blocking monoclonal antibody on eosinophils, airway hyper-responsiveness, and the late asthmatic response. Lancet356(9248), 2144–2148 (2000).
  • Menzies-Gow A, Flood-Page P, Sehmi R et al. AntiIL-5 (mepolizumab) therapy induces bone marrow eosinophil maturational arrest and decreases eosinophil progenitors in the bronchial mucosa of atopic asthmatics. J. Allergy Clin. Immunol.111(4), 714–719 (2003).
  • Georgitis JW, Matthews BL, Stone B. Chronic sinusitis: characterization of cellular influx and inflammatory mediators in sinus lavage fluid. Int. Arch. Allergy Immunol.106(4), 416–421 (1995).
  • Manning PJ, Rokach J, Malo JL et al. Urinary leukotriene E4 levels during early and late asthmatic responses. J. Allergy Clin. Immunol.86(2), 211–220 (1990).
  • Samuelsson B, Dahlen SE, Lindgren JA, Rouzer CA, Serhan CN. Leukotrienes and lipoxins: structures, biosynthesis, and biological effects. Science 237(4819), 1171–1176 (1987).
  • Wenzel SE, Larsen GL, Johnston K, Voelkel NF, Westcott JY. Elevated levels of leukotriene C4 in bronchoalveolar lavage fluid from atopic asthmatics after endobronchial allergen challenge. Am. Rev. Respir. Dis.142(1), 112–119 (1990).
  • Nakamura Y, Hoshino M, Sim JJ, Ishii K, Hosaka K, Sakamoto T. Effect of the leukotriene receptor antagonist pranlukast on cellular infiltration in the bronchial mucosa of patients with asthma. Thorax53(10), 835–841 (1998).
  • Parameswaran K, Watson R, Gauvreau GM, Sehmi R, O’Byrne PM. The effect of pranlukast on allergen-induced bone marrow eosinophilopoiesis in subjects with asthma. Am. J. Respir. Crit. Care Med.169(8), 915–920 (2004).
  • Pizzichini E, Leff JA, Reiss TF et al. Montelukast reduces airway eosinophilic inflammation in asthma: a randomized, controlled trial. Eur. Respir. J.14(1), 12–18 (1999).
  • Ueda T, Takeno S, Furukido K, Hirakawa K, Yajin K. Leukotriene receptor antagonist pranlukast suppresses eosinophil infiltration and cytokine production in human nasal mucosa of perennial allergic rhinitis. Ann. Otol. Rhinol. Laryngol.112(11), 955–961 (2003).
  • Lindgren JA, Stenke L, Mansour M et al. Formation and effects of leukotrienes and lipoxins in human bone marrow. J. Lipid Mediat.6( 1–3), 313–320 (1993).
  • Estrov Z, Halperin DS, Coceani F, Freedman MH. Modulation of human marrow haematopoiesis by leucotrienes in vitro. Br. J. Haematol. 69(3), 321–327 (1988).
  • Stenke L, Mansour M, Reizenstein P, Lindgren JA. Stimulation of human myelopoiesis by leukotrienes B4 and C4: interactions with granulocyte-macrophage colony-stimulating factor. Blood81(2), 352–356 (1993).
  • Figueroa DJ, Breyer RM, Defoe SK et al. Expression of the cysteinyl leukotriene 1 receptor in normal human lung and peripheral blood leukocytes. Am. J. Respir. Crit. Care Med. 163(1), 226–233 (2001).
  • Bautz F, Denzlinger C, Kanz L, Mohle R. Chemotaxis and transendothelial migration of CD34(+) hematopoietic progenitor cells induced by the inflammatory mediator leukotriene D4 are mediated by the 7-transmembrane receptor CysLT1. Blood97(11), 3433–3440 (2001).
  • Saito H, Morikawa H, Howie K et al. Effects of a cysteinyl leukotriene receptor antagonist on eosinophil recruitment in experimental allergic rhinitis. Immunology113(2), 246–252 (2004).
  • Mao H, Yin KS, Wang ZL et al. Effects of glucocorticoid and cysteinyl leukotriene 1 receptor antagonist on CD34(+) hematopoietic cells in bone marrow of asthmatic mice. Chin. Med. J.117(4), 592–597 (2004).
  • Gratas C, Menot ML, Dresch C, Chomienne C. Retinoid acid supports granulocytic but not erythroid differentiation of myeloid progenitors in normal bone marrow cells. Leukemia7(8), 1156–1162 (1993).
  • Upham JW, Sehmi R, Hayes LM, Howie K, Lundahl J, Denburg JA. Retinoic acid modulates IL-5 receptor expression and selectively inhibits eosinophil-basophil differentiation of hemopoietic progenitor cells. J. Allergy Clin. Immunol.109(2), 307–313 (2002).
  • Gavett SH, O’Hearn DJ, Li X, Huang SK, Finkelman FD, Wills-Karp M. Interleukin-12 inhibits antigen-induced airway hyperresponsiveness, inflammation, and Th2 cytokine expression in mice. J. Exp. Med.182(5), 1527–1536 (1995).
  • Kips JC, Brusselle GJ, Joos GF et al. Interleukin-12 inhibits antigen-induced airway hyperresponsiveness in mice. Am. J. Respir. Crit. Care Med.153(2), 535–539 (1996).
  • Rais M, Wild JS, Choudhury BK et al. Interleukin-12 inhibits eosinophil differentiation from bone marrow stem cells in an interferon-γ-dependent manner in a mouse model of asthma. Clin. Exp. Allergy32(4), 627–632 (2002).
  • Zhao LL, Linden A, Sjostrand M, Cui ZH, Lotvall J, Jordana M. IL-12 regulates bone marrow eosinophilia and airway eotaxin levels induced by airway allergen exposure. Allergy55(8), 749–756 (2000).
  • Mastrandrea F, Coradduzza G, Serio G et al. Probiotics reduce the CD34+ hemopoietic precursor cell increased traffic in allergic subjects. Allerg. Immunol.36(4), 118–122 (2004).
  • Cyr MM, Hatfield HM, Dunstan JA, Prescott SL, Holt PG, Denburg JA. Relationship of maternal skin test responses to infant cord-blood progenitor cytokine receptor expression. J. Allergy Clin. Immunol. A113 (2005).
  • Upham JW, Hayes LM, Lundahl J, Sehmi R, Denburg JA. Reduced expression of hemopoietic cytokine receptors on cord blood progenitor cells in neonates at risk for atopy. J. Allergy Clin. Immunol.104(2 Pt 1), 370–375 (1999).
  • Kurata H, Arai T, Yokota T, Arai K. Differential expression of granulocyte–macrophage colony-stimulating factor and IL-3 receptor subunits on human CD34+ cells and leukemic cell lines. J. Allergy Clin. Immunol.96(6 Pt 2), 1083–1099 (1995).
  • Dunstan JA, Mori TA, Barden A et al. Fish oil supplementation in pregnancy modifies neonatal allergen-specific immune responses and clinical outcomes in infants at high risk of atopy: a randomized, controlled trial. J. Allergy Clin. Immunol.112(6), 1178–1184 (2003).
  • Denburg JA, Hatfield HM, Cyr MM et al. Fish oil supplementation in pregnancy modifies neonatal progenitors at birth in infants at risk of atopy. Pediatr. Res. 57(2), 276–281 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.