64
Views
4
CrossRef citations to date
0
Altmetric
Review

Natural autoantibodies: immune homeostasis and therapeutic intervention

, , , , &
Pages 213-222 | Published online: 10 Jan 2014

References

  • Avrameas S. Natural autoantibodies: from ‘horror autotoxicus’ to ‘gnothi seauton’. Immunol. Today 12(5), 154–159 (1991).
  • Hayakawa K, Asano M, Shinton SA et al. Positive selection of natural autoreactive B-cells. Science 285(5424), 113–116 (1999).
  • Julien S, Soulas P, Garaud JC, Martin T, Pasquali JL. B-cell positive selection by soluble self-antigen. J. Immunol. 169(8), 4198–4204 (2002).
  • Berland R, Wortis HH. Origins and functions of B-1 cells with notes on the role of CD5. Ann. Rev. Immunol. 20, 253–300 (2002).
  • Hayakawa K, Asano M, Shinton SA et al. Positive selection of antithy-1 autoreactive B-1 cells and natural serum autoantibody production independent from bone marrow B-cell development. J. Exp. Med. 197(1), 87–99 (2003).
  • Ferry H, Jones M, Vaux DJ, Roberts IS, Cornall RJ. The cellular location of self-antigen determines the positive and negative selection of autoreactive B-cells. J. Exp. Med. 198(9), 1415–1425 (2003).
  • Agenes F, Freitas AA. Transfer of small resting B-cells into immunodeficient hosts results in the selection of a self-renewing activated B-cell population. J. Exp. Med. 189(2), 319–330 (1999).
  • Ota T, Aoki-Ota M, Tsunoda K et al. Auto-reactive B-cells against peripheral antigen, desmoglein 3, escape from tolerance mechanism. Int. Immunol. 16(10), 1487–1495 (2004).
  • Macpherson AJ, Gatto D, Sainsbury E, Harriman GR, Hengartner H, Zinkernagel RM. A primitive T-cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science 288(5474), 2222–2226 (2000).
  • Lacroix-Desmazes S, Kaveri SV, Mouthon L et al. Self-reactive antibodies (natural autoantibodies) in healthy individuals. J. Immunol. Methods 216(1–2), 117–137 (1998).
  • Kaveri S, Vassilev T, Hurez V et al. Antibodies to a conserved region of HLA class I molecules, capable of modulating CD8 T-cell-mediated function, are present in pooled normal immunoglobulin for therapeutic use. J. Clin. Invest. 97(3), 865–869 (1996).
  • Prasad NK, Papoff G, Zeuner A et al. Therapeutic preparations of normal polyspecific IgG (IVIg) induce apoptosis in human lymphocytes and monocytes: a novel mechanism of action of IVIg involving the Fas apoptotic pathway. J. Immunol. 161(7), 3781–3790 (1998).
  • Vassilev TL, Kazatchkine MD, Van Huyen JP et al. Inhibition of cell adhesion by antibodies to Arg-Gly-Asp (RGD) in normal immunoglobulin for therapeutic use (intravenous immunoglobulin, IVIg). Blood 93(11), 3624–3631 (1999).
  • Bouhlal H, Hocini H, Quillent-Gregoire C et al. Antibodies to C-C chemokine receptor 5 in normal human IgG block infection of macrophages and lymphocytes with primary R5-tropic strains of HIV-1. J. Immunol. 166(12), 7606–7611 (2001).
  • Bayry J, Lacroix-Desmazes S, Donkova-Petrini V et al. Natural antibodies sustain differentiation and maturation of human dendritic cells. Proc. Natl Acad. Sci. USA 101(39), 14210–14215 (2004).
  • Hunziker L, Recher M, Macpherson AJ et al. Hypergammaglobulinemia and autoantibody induction mechanisms in viral infections. Nature Immunol. 4(4), 343–349 (2003).
  • Munthe LA, Os A, Zangani M, Bogen B. MHC-restricted Ig V region-driven T-B lymphocyte collaboration: B-cell receptor ligation facilitates switch to IgG production. J. Immunol. 172(12), 7476–7484 (2004).
  • Durandy A, Schiff C, Bonnefoy JY et al. Induction by antiCD40 antibody or soluble CD40 ligand and cytokines of IgG, IgA and IgE production by B-cells from patients with X-linked hyper IgM syndrome. Eur. J. Immunol. 23(9), 2294–2299 (1993).
  • Mouthon L, Haury M, Lacroix-Desmazes S, Barreau C, Coutinho A, Kazatchkine MD. Analysis of the normal human IgG antibody repertoire. Evidence that IgG autoantibodies of healthy adults recognize a limited and conserved set of protein antigens in homologous tissues. J. Immunol. 154(11), 5769–5778 (1995).
  • Mouthon L, Nobrega A, Nicolas N et al. Invariance and restriction toward a limited set of self-antigens characterize neonatal IgM antibody repertoires and prevail in autoreactive repertoires of healthy adults. Proc. Natl Acad. Sci. USA 92(9), 3839–3843 (1995).
  • Prabhakar BS, Saegusa J, Onodera T, Notkins AL. Lymphocytes capable of making monoclonal autoantibodies that react with multiple organs are a common feature of the normal B-cell repertoire. J. Immunol. 133(6), 2815–2817 (1984).
  • Horn MP, Gerster T, Ochensberger B et al. Human antiFcepsilonRIα autoantibodies isolated from healthy donors cross-react with tetanus toxoid. Eur. J. Immunol. 29(4), 1139–1148 (1999).
  • Martin T, Crouzier R, Weber JC, Kipps TJ, Pasquali JL. Structure-function studies on a polyreactive (natural) autoantibody. Polyreactivity is dependent on somatically generated sequences in the third complementarity-determining region of the antibody heavy chain. J. Immunol. 152(12), 5988–5996 (1994).
  • Ichiyoshi Y, Casali P. Analysis of the structural correlates for antibody polyreactivity by multiple reassortments of chimeric human immunoglobulin heavy and light chain V segments. J. Exp. Med. 180(3), 885–895 (1994).
  • Hurez V, Dietrich G, Kaveri SV, Kazatchkine MD. Polyreactivity is a property of natural and disease-associated human autoantibodies. Scand. J. Immunol. 38(2), 190–196 (1993).
  • Casali P, Notkins AL. CD5+ B-lymphocytes, polyreactive antibodies and the human B-cell repertoire. Immunol. Today 10(11), 364–368 (1989).
  • Diaw L, Magnac C, Pritsch O, Buckle M, Alzari PM, Dighiero G. Structural and affinity studies of IgM polyreactive natural autoantibodies. J. Immunol. 158(2), 968–976 (1997).
  • Boes M. Role of natural and immune IgM antibodies in immune responses. Mol. Immunol. 37(18), 1141–1149 (2000).
  • Wardemann H, Yurasov S, Schaefer A, Young JW, Meffre E, Nussenzweig MC. Predominant autoantibody production by early human B-cell precursors. Science 301(5638), 1374–1377 (2003).
  • Lieby P, Poindron V, Roussi S et al. Pathogenic antiphospholipid antibody: an antigen-selected needle in a haystack. Blood 104(6), 1711–1715 (2004).
  • Bouanani M, Bataille R, Piechaczyk M, Salhi SL, Pau B, Bastide M. Autoimmunity to human thyroglobulin. Respective epitopic specificity patterns of antihuman thyroglobulin autoantibodies in patients with Sjogren’s syndrome and patients with Hashimoto’s thyroiditis. Arthritis Rheum. 34(12), 1585–1593 (1991).
  • Nobrega A, Haury M, Gueret R, Coutinho A, Weksler ME. The age-associated increase in autoreactive immunoglobulins reflects a quantitative increase in specificities detectable at lower concentrations in young mice. Scand. J. Immunol. 44(5), 437–443 (1996).
  • Pereira P, Forni L, Larsson EL, Cooper M, Heusser C, Coutinho A. Autonomous activation of B and T-cells in antigen-free mice. Eur. J. Immunol. 16(6), 685–688 (1986).
  • Mouthon L, Lacroix-Desmazes S, Nobrega A, Barreau C, Coutinho A, Kazatchkine MD. The self-reactive antibody repertoire of normal human serum IgM is acquired in early childhood and remains conserved throughout life. Scand. J. Immunol. 44(3), 243–251 (1996).
  • Lacroix-Desmazes S, Mouthon L, Pashov A, Barreau C, Kaveri SV, Kazatchkine MD. Analysis of antibody reactivities toward self antigens of IgM of patients with Waldenstrom’s macroglobulinemia. Int. Immunol. 9(8), 1175–1183 (1997).
  • Lacroix-Desmazes S, Mouthon L, Coutinho A, Kazatchkine MD. Analysis of the natural human IgG antibody repertoire: life-long stability of reactivities towards self antigens contrasts with age-dependent diversification of reactivities against bacterial antigens. Eur. J. Immunol. 25(9), 2598–2604 (1995).
  • Francoeur A-M. A novel method for identifying individual people and animals. Bio/Technology 6, 822–825 (1988).
  • Coutinho A, Kazatchkine MD, Avrameas S. Natural autoantibodies. Curr. Opin. Immunol. 7(6), 812–818 (1995).
  • Quintana FJ, Cohen IR. The natural autoantibody repertoire and autoimmune disease. Biomed. Pharmacother. 58, 276–281 (2004).
  • Coutinho A. Will the idiotypic network help to solve natural tolerance? Trends Immunol. 24(2), 53–54 (2003).
  • Bernasconi NL, Traggiai E, Lanzavecchia A. Maintenance of serological memory by polyclonal activation of human memory B-cells. Science 298(5601), 2199–2202 (2002).
  • Lutz HU, Bussolino F, Flepp R et al. Naturally occurring antiband-3 antibodies and complement together mediate phagocytosis of oxidatively stressed human erythrocytes. Proc. Natl Acad. Sci. USA 84(21), 7368–7372 (1987).
  • Kazatchkine MD, Kaveri SV. Immunomodulation of autoimmune and inflammatory diseases with intravenous immune globulin. N. Engl. J. Med. 345(10), 747–755 (2001).
  • Basta M, Van Goor F, Luccioli S et al. F(ab)´2-mediated neutralization of C3a and C5a anaphylatoxins: a novel effector function of immunoglobulins. Nature Med. 9(4), 431–438 (2003).
  • Bayry J, Lacroix-Desmazes S, Carbonneil C et al. Inhibition of maturation and function of dendritic cells by intravenous immunoglobulin. Blood 101(2), 758–765 (2003).
  • Sooryanarayana Prasad N, Bonnin E et al. Phosphorylation of Bcl-2 and mitochondrial changes are associated with apoptosis of lymphoblastoid cells induced by normal immunoglobulin G. Biochem. Biophys. Res. Commun. 264(3), 896–901 (1999).
  • Shoenfeld Y, Fishman P. Gamma-globulin inhibits tumor spread in mice. Int. Immunol. 11(8), 1247–1252 (1999).
  • Brandlein S, Pohle T, Ruoff N, Wozniak E, Muller-Hermelink HK, Vollmers HP. Natural IgM antibodies and immunosurveillance mechanisms against epithelial cancer cells in humans. Cancer Res. 63(22), 7995–8005 (2003).
  • Varambally S, Bar-Dayan Y, Bayry J et al. Natural human polyreactive IgM induce apoptosis of lymphoid cell lines and human peripheral blood mononuclear cells. Int. Immunol. 16(3), 517–524 (2004).
  • Bayry J, Lacroix-Desmazes S, Kazatchkine MD et al. Common variable immunodeficiency is associated with defective functions of dendritic cells. Blood 104(8), 2441–2443 (2004).
  • Radhakrishnan S, Nguyen LT, Ciric B et al. Naturally occurring human IgM antibody that binds B7-DC and potentiates T-cell stimulation by dendritic cells. J. Immunol. 170(4), 1830–1838 (2003).
  • Radhakrishnan S, Nguyen LT, Ciric B et al. Immunotherapeutic potential of B7-DC (PD-L2) cross-linking antibody in conferring antitumor immunity. Cancer Res. 64(14), 4965–4972 (2004).
  • Radhakrishnan S, Iijima K, Kobayashi T, Rodriguez M, Kita H, Pease LR. Blockade of allergic airway inflammation following systemic treatment with a B7-dendritic cell (PD-L2) cross-linking human antibody. J. Immunol. 173(2), 1360–1365 (2004).
  • Reid RR, Prodeus AP, Khan W, Hsu T, Rosen FS, Carroll MC. Endotoxin shock in antibody-deficient mice: unraveling the role of natural antibody and complement in the clearance of lipopolysaccharide. J. Immunol. 159(2), 970–975 (1997).
  • Boes M, Prodeus AP, Schmidt T, Carroll MC, Chen J. A critical role of natural immunoglobulin M in immediate defense against systemic bacterial infection. J. Exp. Med. 188(12), 2381–2386 (1998).
  • Kohler H, Bayry J, Nicoletti A, Kaveri SV. Natural autoantibodies as tools to predict the outcome of immune response? Scand. J. Immunol. 58(3), 285–289 (2003).
  • Boes M, Esau C, Fischer MB, Schmidt T, Carroll M, Chen J. Enhanced B-1 cell development, but impaired IgG antibody responses in mice deficient in secreted IgM. J. Immunol. 160(10), 4776–4787 (1998).
  • Ehrenstein MR, O’Keefe TL, Davies SL, Neuberger MS. Targeted gene disruption reveals a role for natural secretory IgM in the maturation of the primary immune response. Proc. Natl Acad. Sci. USA 95(17), 10089–10093 (1998).
  • Nawata Y, Stall AM, Herzenberg LA, Eugui EM, Allison AC. Surface immunoglobulin ligands and cytokines differentially affect proliferation and antibody production by human CD5+ and CD5- B-lymphocytes. Int. Immunol. 2(7), 603–614 (1990).
  • Flick K, Scholander C, Chen Q et al. Role of nonimmune IgG bound to PfEMP1 in placental malaria. Science 293(5537), 2098–2100 (2001).
  • Baumgarth N, Herman OC, Jager GC, Brown LE, Herzenberg LA, Chen J. B-1 and B-2 cell-derived immunoglobulin M antibodies are nonredundant components of the protective response to influenza virus infection. J. Exp. Med. 192(2), 271–280 (2000).
  • Ochsenbein AF, Fehr T, Lutz C et al. Control of early viral and bacterial distribution and disease by natural antibodies. Science 286(5447), 2156–2159 (1999).
  • Bayry J, Lacroix-Desmazes S, Kazatchkine MD, Kaveri SV. Intravenous immunoglobulin for infectious diseases: back to the pre-antibiotic and passive prophylaxis era? Trends Pharmacol. Sci. 25(6), 306–310 (2004).
  • Carroll MC, Prodeus AP. Linkages of innate and adaptive immunity. Curr. Opin. Immunol. 10(1), 36–40 (1998).
  • Ochsenbein AF, Zinkernagel RM. Natural antibodies and complement link innate and acquired immunity. Immunol. Today 21(12), 624–630 (2000).
  • Dalakas MC. Intravenous immunoglobulin in autoimmune neuromuscular diseases. JAMA 291(19), 2367–2375 (2004).
  • Debre M, Bonnet MC, Fridman WH et al. Infusion of Fc γ fragments for treatment of children with acute immune thrombocytopenic purpura. Lancet 342(8877), 945–949 (1993).
  • van Mirre E, Teeling JL, van der Meer JW, Bleeker WK, Hack CE. Monomeric IgG in intravenous Ig preparations is a functional antagonist of FcγRII and FcγRIIIb. J. Immunol. 173(1), 332–339 (2004).
  • Samuelsson A, Towers TL, Ravetch JV. Anti-inflammatory activity of IVIG mediated through the inhibitory Fc receptor. Science 291(5503), 484–486 (2001).
  • Crow AR, Song S, Freedman J et al. IVIg-mediated amelioration of murine ITP via FcγRIIB is independent of SHIP1, SHP-1, and Btk activity. Blood 102(2), 558–560 (2003).
  • Daeron M. Fc receptor biology. Ann. Rev. Immunol. 15, 203–234 (1997).
  • Binstadt BA, Geha RS, Bonilla FA. IgG Fc receptor polymorphisms in human disease: implications for intravenous immunoglobulin therapy. J. Allergy Clin. Immunol. 111(4), 697–703 (2003).
  • Akilesh S, Petkova S, Sproule TJ, Shaffer DJ, Christianson GJ, Roopenian D. The MHC class I-like Fc receptor promotes humorally mediated autoimmune disease. J. Clin. Invest. 113(9), 1328–1333 (2004).
  • Semple JW, Kim M, Lazarus AH, Freedman J. Gamma-globulins prepared from sera of multiparous women bind antiHLA antibodies and inhibit an established in vivo human alloimmune response. Blood 100(3), 1055–1059 (2002).
  • Shoenfeld Y, Rauova L, Gilburd B et al. Efficacy of IVIG affinity-purified antidouble-stranded DNA anti-idiotypic antibodies in the treatment of an experimental murine model of systemic lupus erythematosus. Int. Immunol. 14(11), 1303–1311 (2002).
  • Svenson M, Hansen MB, Ross C et al. Antibody to granulocyte-macrophage colony-stimulating factor is a dominant anticytokine activity in human IgG preparations. Blood 91(6), 2054–2061 (1998).
  • Schluter SF, Adelman MK, Taneja V, David C, Yocum DE, Marchalonis JJ. Natural autoantibodies to TCR public idiotopes: potential roles in immunomodulation. Cell. Mol. Biol. (Noisy-le-grand) 49(2), 193–207 (2003).
  • Lamoureux J, Aubin E, Lemieux R. Autoantibodies purified from therapeutic preparations of intravenous immunoglobulins (IVIg) induce the formation of autoimmune complexes in normal human serum: a role in the in vivo mechanisms of action of IVIg? Int. Immunol. 16(7), 929–936 (2004).
  • Siragam V, Brinc D, Crow AR, Song S, Freedman J, Lazarus AH. Can antibodies with specificity for soluble antigens mimic the therapeutic effects of intravenous IgG in the treatment of autoimmune disease? J. Clin. Invest. 115(1), 155–160 (2005).
  • Bayry J, Lacroix-Desmazes S, Delignat S et al. Intravenous immunoglobulin abrogates dendritic cell differentiation induced by interferon-α present in serum from patients with systemic lupus erythematosus. Arthritis Rheum. 48(12), 3497–3502 (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.