62
Views
2
CrossRef citations to date
0
Altmetric
Review

The signaling mechanism of eosinophil activation

&
Pages 247-256 | Published online: 10 Jan 2014

References

  • Boggon TJ, Eck MJ. Structure and regulation of Src family kinases. Oncogene 23(48), 7918–7927 (2004).
  • Jiang G, Hunter T. Receptor signaling: when dimerization is not enough. Curr. Biol. 9(15), R568–R571 (1999).
  • Silvennoinen O, Witthuhn BA, Quelle FW, Cleveland JL, Yi T, Ihle JN. Structure of the murine Jak2 protein-tyrosine kinase and its role in interleukin-3 signal transduction. Proc. Natl Acad. Sci. USA 90(18), 8429–8433 (1993).
  • van der Bruggen T, Caldenhoven E, Kanters D et al. Interleukin-5 signaling in human eosinophils involves JAK2 tyrosine kinase and Stat1 α. Blood 85(6), 1442–1448 (1995).
  • Torigoe T, O’Connor R, Santoli D, Reed JC. Interleukin-3 regulates the activity of the LYN protein-tyrosine kinase in myeloid-committed leukemic cell lines. Blood 80(3), 617–624 (1992).
  • Pazdrak K, Schreiber D, Forsythe P, Justement L, Alam R. The intracellular signal transduction mechanism of interleukin-5 in eosinophils: the involvement of lyn tyrosine kinase and the Ras-Raf-1-MEK-microtubule-associated protein kinase pathway. J. Exp. Med. 181(5), 1827–1834 (1995).
  • El-Shazly A, Yamaguchi N, Masuyama K, Suda T, Ishikawa T. Novel association of the src family kinases, hck and c-fgr, with CCR3 receptor stimulation: a possible mechanism for eotaxin-induced human eosinophil chemotaxis. Biochem. Biophys. Res. Commun. 264(1), 163–170 (1999).
  • Kato M, Abraham RT, Kita H. Tyrosine phosphorylation is required for eosinophil degranulation induced by immobilized immunoglobulins. J. Immunol. 155(1), 357–366 (1995).
  • Shakoory B, Fitzgerald SM, Lee SA, Chi DS, Krishnaswamy G. The role of human mast cell-derived cytokines in eosinophil biology. J. Interferon Cytokine Res. 24(5), 271–281 (2004).
  • Noga O, Englmann C, Hanf G, Grutzkau A, Guhl S, Kunkel G. Activation of the specific neurotrophin receptors TrkA, TrkB and TrkC influences the function of eosinophils. Clin. Exp. Allergy 32(9), 1348–1354 (2002).
  • Cools J, DeAngelo DJ, Gotlib J et al. A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. N. Engl. J. Med. 348(13), 1201–1214 (2003).
  • Adachi T, Alam R. The mechanism of IL-5 signal transduction. Am. J. Physiol. 275(3 Pt 1), C623–C633 (1998).
  • Rane SG, Reddy EP. JAKs, STATs and Src kinases in hematopoiesis. Oncogene 21(21), 3334–3358 (2002).
  • Saharinen P, Takaluoma K, Silvennoinen O. Regulation of the Jak2 tyrosine kinase by its pseudokinase domain. Mol. Cell. Biol. 20(10), 3387–3395 (2000).
  • Zhao Y, Wagner F, Frank SJ, Kraft AS. The amino-terminal portion of the JAK2 protein kinase is necessary for binding and phosphorylation of the granulocyte-macrophage colony-stimulating factor receptor β c chain. J. Biol. Chem. 270(23), 13814–13818 (1995).
  • Ogata N, Kouro T, Yamada A et al. JAK2 and JAK1 constitutively associate with an interleukin-5 (IL-5) receptor α and βc subunit, respectively, and are activated upon IL-5 stimulation. Blood 91(7), 2264–2271 (1998).
  • Inhorn RC, Carlesso N, Durstin M, Frank DA, Griffin JD. Identification of a viability domain in the granulocyte/ macrophage colony-stimulating factor receptor β-chain involving tyrosine-750. Proc. Natl. Acad. Sci. USA 92(19), 8665–8669 (1995).
  • Itoh T, Liu R, Yokota T, Arai KI, Watanabe S. Definition of the role of tyrosine residues of the common β subunit regulating multiple signaling pathways of granulocyte-macrophage colony-stimulating factor receptor. Mol. Cell. Biol. 18(2), 742–752 (1998).
  • Okuda K, Smith L, Griffin JD, Foster R. Signaling functions of the tyrosine residues in the βc chain of the granulocyte-macrophage colony-stimulating factor receptor. Blood 90(12), 4759–4766 (1997).
  • Bates ME, Busse WW, Bertics PJ. Interleukin-5 signals through Shc and Grb2 in human eosinophils. Am. J. Respir. Cell. Mol. Biol. 18(1), 75–83 (1998).
  • Matsuguchi T, Inhorn RC, Carlesso N, Xu G, Druker B, Griffin JD. Tyrosine phosphorylation of p95Vav in myeloid cells is regulated by GM-CSF, IL-3 and steel factor and is constitutively increased by p210BCR/ABL. EMBO J. 14(2), 257–265 (1995).
  • Takeshita T, Arita T, Higuchi M et al. STAM, signal transducing adaptor molecule, is associated with Janus kinases and involved in signaling for cell growth and c-myc induction. Immunity 6(4), 449–457 (1997).
  • Endo K, Takeshita T, Kasai H et al. STAM2, a new member of the STAM family, binding to the Janus kinases. FEBS Lett. 477(1–2), 55–61 (2000).
  • Parganas E, Wang D, Stravopodis D et al. Jak2 is essential for signaling through a variety of cytokine receptors. Cell 93(3), 385–395 (1998).
  • Neubauer H, Cumano A, Muller M, Wu H, Huffstadt U, Pfeffer K. Jak2 deficiency defines an essential developmental checkpoint in definitive hematopoiesis. Cell 93(3), 397–409 (1998).
  • Stafford S, Lowell C, Sur S, Alam R. Lyn tyrosine kinase is important for IL-5-stimulated eosinophil differentiation. J. Immunol. 168(4), 1978–1983 (2002).
  • Pazdrak K, Olszewska-Pazdrak B, Stafford S, Garofalo RP, Alam R. Lyn, Jak2 and Raf-1 kinases are critical for the anti-apoptotic effect of interleukin-5, whereas only Raf-1 kinase is essential for eosinophil activation and degranulation. J. Exp. Med. 188(3), 421–429 (1998).
  • Lynch OT, Giembycz MA, Daniels I, Barnes PJ, Lindsay MA. Pleiotropic role of lyn kinase in leukotriene B(4)-induced eosinophil activation. Blood 95(11), 3541–3547 (2000).
  • Cen O, Gorska MM, Stafford SJ, Sur S, Alam R. Identification of UNC119 as a novel activator of SRC-type tyrosine kinases. J. Biol. Chem. 278(10), 8837–8845 (2003).
  • Gorska MM, Stafford SJ, Cen O, Sur S, Alam R. Unc119, a novel activator of Lck/Fyn, is essential for T-cell activation. J. Exp. Med. 199(3), 369–379 (2004).
  • Grishin A, Sinha S, Roginskaya V et al. Involvement of Shc and Cbl-PI 3-kinase in Lyn-dependent proliferative signaling pathways for G-CSF. Oncogene 19(1), 97–105 (2000).
  • Jucker M, Feldman RA. Identification of a new adapter protein that may link the common β subunit of the receptor for granulocyte/macrophage colony-stimulating factor, interleukin (IL)-3, and IL-5 to phosphatidylinositol 3-kinase. J. Biol. Chem. 270(46), 27817–27822 (1995).
  • Corey S, Eguinoa A, Puyana-Theall K et al. Granulocyte macrophage-colony stimulating factor stimulates both association and activation of phosphoinositide 3OH-kinase and src-related tyrosine kinase(s) in human myeloid derived cells. EMBO J. 12(7), 2681–2690 (1993).
  • Chaturvedi P, Reddy MV, Reddy EP. Src kinases and not JAKs activate STATs during IL-3 induced myeloid cell proliferation. Oncogene 16(13), 1749–1758 (1998).
  • Vicentini L, Mazzi P, Caveggion E et al. Fgr deficiency results in defective eosinophil recruitment to the lung during allergic airway inflammation. J. Immunol. 168(12), 6446–6454 (2002).
  • Adachi T, Cui CH, Kanda A, Kayaba H, Ohta K, Chihara J. Activation of epidermal growth factor receptor via CCR3 in bronchial epithelial cells. Biochem. Biophys. Res. Commun. 320(2), 292–296 (2004).
  • Roberts DJ, Waelbroeck M. G-protein activation by G-protein coupled receptors: ternary complex formation or catalyzed reaction? Biochem. Pharmacol. 68(5), 799–806 (2004).
  • Kampen GT, Stafford S, Adachi T et al. Eotaxin induces degranulation and chemotaxis of eosinophils through the activation of ERK2 and p38 mitogen-activated protein kinases. Blood 95(6), 1911–1917 (2000).
  • Dent G, Barnes PJ. Platelet activating factor stimulates a receptor-coupled membrane GTPase in guinea-pig eosinophils. Life Sci. 52(20), 1633–1640 (1993).
  • Teixeira MM, Giembycz MA, Lindsay MA, Hellewell PG. Pertussis toxin shows distinct early signalling events in platelet-activating factor-, leukotriene B4-, and C5a-induced eosinophil homotypic aggregation in vitro and recruitment in vivo. Blood 89(12), 4566–4573 (1997).
  • Giembycz MA, Lynch OT, De Souza PM, Lindsay MA. Review: G-protein coupled receptors on eosinophils. Pulm. Pharmacol. Ther. 13(5), 195–223 (2000).
  • Sano A, Zhu X, Sano H, Munoz NM, Boetticher E, Leff AR. Regulation of eosinophil function by phosphatidylinositol-specific PLC and cytosolic PLA(2). Am. J. Physiol. Lung Cell. Mol. Physiol. 281(4), L844–L851 (2001).
  • Stephens L, Smrcka A, Cooke FT, Jackson TR, Sternweis PC, Hawkins PT. A novel phosphoinositide 3 kinase activity in myeloid-derived cells is activated by G-protein β γ subunits. Cell 77(1), 83–93 (1994).
  • Geijsen N, Uings IJ, Pals C et al. Cytokine-specific transcriptional regulation through an IL-5Rα interacting protein. Science 293(5532), 1136–1138 (2001).
  • Dong C, Davis RJ, Flavell RA. MAPKs in the immune response. Ann. Rev. Immunol. 20, 55–72 (2002).
  • Rozakis-Adcock M, Fernley R, Wade J, Pawson T, Bowtell D. The SH2 and SH3 domains of mammalian Grb2 couple the EGF receptor to the Ras activator mSos1. Nature 363(6424), 83–85 (1993).
  • Egan SE, Giddings BW, Brooks MW, Buday L, Sizeland AM, Weinberg RA. Association of Sos Ras exchange protein with Grb2 is implicated in tyrosine kinase signal transduction and transformation. Nature 363(6424), 45–51 (1993).
  • Pazdrak K, Adachi T, Alam R. Src homology 2 protein tyrosine phosphatase (SHPTP2)/Src homology 2 phosphatase 2 (SHP2) tyrosine phosphatase is a positive regulator of the interleukin-5 receptor signal transduction pathways leading to the prolongation of eosinophil survival. J. Exp. Med. 186(4), 561–568 (1997).
  • Turner M, Billadeau DD. VAV proteins as signal integrators for multi-subunit immune-recognition receptors. Nature Rev. Immunol. 2(7), 476–486 (2002).
  • Adachi T, Vita R, Sannohe S et al. The functional role of rho and rho-associated coiled-coil forming protein kinase in eotaxin signaling of eosinophils. J. Immunol. 167(8), 4609–4615 (2001).
  • Miike S, Kurasawa K, Saito Y, Iwamoto I. Platelet-activating factor activates mitogen-activated protein kinases through the activation of phosphatidylinositol 3-kinase and tyrosine kinase in human eosinophils. J. Leukoc. Biol. 67(1), 117–126 (2000).
  • Harada H, Quearry B, Ruiz-Vela A, Korsmeyer SJ. Survival factor-induced extracellular signal-regulated kinase phosphorylates BIM, inhibiting its association with BAX and proapoptotic activity. Proc. Natl Acad. Sci. USA 101(43), 15313–15317 (2004).
  • Fang X, Yu S, Eder A et al. Regulation of BAD phosphorylation at serine 112 by the Ras-mitogen-activated protein kinase pathway. Oncogene 18(48), 6635–6640 (1999).
  • Esnault S, Malter JS. Extracellular signal-regulated kinase mediates granulocyte-macrophage colony-stimulating factor messenger RNA stabilization in tumor necrosis factor-α plus fibronectin-activated peripheral blood eosinophils. Blood 99(11), 4048–4052 (2002).
  • Anwar AR, Moqbel R, Walsh GM, Kay AB, Wardlaw AJ. Adhesion to fibronectin prolongs eosinophil survival. J. Exp. Med. 177(3), 839–843 (1993).
  • Adachi T, Choudhury BK, Stafford S, Sur S, Alam R. The differential role of extracellular signal-regulated kinases and p38 mitogen-activated protein kinase in eosinophil functions. J. Immunol. 165(4), 2198–2204 (2000).
  • Hall DJ, Cui J, Bates ME et al. Transduction of a dominant-negative H-Ras into human eosinophils attenuates extracellular signal-regulated kinase activation and interleukin-5-mediated cell viability. Blood 98(7), 2014–2021 (2001).
  • Miike S, Nakao A, Hiraguri M, Kurasawa K, Saito Y, Iwamoto I. Involvement of JAK2, but not PI 3-kinase/Akt and MAPK pathways, in anti-apoptotic signals of GM-CSF in human eosinophils. J. Leukoc. Biol. 65(5), 700–706 (1999).
  • Kankaanranta H, De Souza PM, Barnes PJ, Salmon M, Giembycz MA, Lindsay MA. SB-203580, an inhibitor of p38 mitogen-activated protein kinase, enhances constitutive apoptosis of cytokine-deprived human eosinophils. J. Pharmacol. Exp. Ther. 290(2), 621–628 (1999).
  • Zhu X, Sano H, Kim KP et al. Role of mitogen-activated protein kinase-mediated cytosolic phospholipase A2 activation in arachidonic acid metabolism in human eosinophils. J. Immunol. 167(1), 461–468 (2001).
  • Sano H, Zhu X, Sano A et al. Extracellular signal-regulated kinase 1/2-mediated phosphorylation of cytosolic phospholipase A2 is essential for human eosinophil adhesion to fibronectin. J. Immunol. 166(5), 3515–3521 (2001).
  • Adachi T, Stafford S, Kayaba H, Chihara J, Alam R. Myosin light chain kinase mediates eosinophil chemotaxis in a mitogen-activated protein kinase-dependent manner. J. Allergy Clin. Immunol. 111(1), 113–116 (2003).
  • Amano M, Fukata Y, Kaibuchi K. Regulation and functions of Rho-associated kinase. Exp. Cell Res. 261(1), 44–51 (2000).
  • Zhang X, Moilanen E, Lahti A et al. Regulation of eosinophil apoptosis by nitric oxide: role of c-Jun-N-terminal kinase and signal transducer and activator of transcription 5. J. Allergy Clin. Immunol. 112(1), 93–101 (2003).
  • Gardai SJ, Hoontrakoon R, Goddard CD et al. Oxidant-mediated mitochondrial injury in eosinophil apoptosis: enhancement by glucocorticoids and inhibition by granulocyte-macrophage colony-stimulating factor. J. Immunol. 170(1), 556–566 (2003).
  • Fruman DA. Phosphoinositide 3-kinase and its targets in B-cell and T-cell signaling. Curr. Opin. Immunol. 16(3), 314–320 (2004).
  • Guthridge MA, Stomski FC, Barry EF et al. Site-specific serine phosphorylation of the IL-3 receptor is required for hemopoietic cell survival. Mol. Cell 6(1), 99–108 (2000).
  • Dijkers PF, Medema RH, Pals C et al. Forkhead transcription factor FKHR-L1 modulates cytokine-dependent transcriptional regulation of p27(KIP1). Mol. Cell. Biol. 20(24), 9138–9148 (2000).
  • Sano M, Leff AR, Myou S et al. Regulation of IL-5 Induced {beta}2-integrin adheison of human eosinophils by phosphoinsotide 3-kinase. Am. J. Respir. Cell. Mol. Biol. 33(1), 65–70 (2005).
  • Palframan RT, Collins PD, Severs NJ, Rothery S, Williams TJ, Rankin SM. Mechanisms of acute eosinophil mobilization from the bone marrow stimulated by interleukin-5: the role of specific adhesion molecules and phosphatidylinositol 3-kinase. J. Exp. Med. 188(9), 1621–1632 (1998).
  • Pinho V, Souza DG, Barsante MM et al. Phosphoinositide-3 kinases critically regulate the recruitment and survival of eosinophils in vivo: importance for the resolution of allergic inflammation. J. Leukoc. Biol. 77(5), 800–810 (2005).
  • Elsner J, Hochstetter R, Kimmig D, Kapp A. Human eotaxin represents a potent activator of the respiratory burst of human eosinophils. Eur J. Immunol. 26(8), 1919–1925 (1996).
  • Coffer PJ, Schweizer RC, Dubois GR, Maikoe T, Lammers JW, Koenderman L. Analysis of signal transduction pathways in human eosinophils activated by chemoattractants and the T-helper 2-derived cytokines interleukin-4 and interleukin-5. Blood 91(7), 2547–2557 (1998).
  • Temple R, Allen E, Fordham J et al. Microarray analysis of eosinophils reveals a number of candidate survival and apoptosis genes. Am. J. Respir. Cell. Mol. Biol. 25(4), 425–433 (2001).
  • Wu JN, Koretzky GA. The SLP-76 family of adapter proteins. Semin. Immunol. 16(6), 379–393 (2004).
  • Bates ME, Green VL, Bertics PJ. ERK1 and ERK2 activation by chemotactic factors in human eosinophils is interleukin-5-dependent and contributes to leukotriene C(4) biosynthesis. J. Biol. Chem. 275(15), 10968–10975 (2000).
  • Buitenhuis M, Baltus B, Lammers JW, Coffer PJ, Koenderman L. Signal transducer and activator of transcription 5a (STAT5a) is required for eosinophil differentiation of human cord blood-derived CD34+ cells. Blood 101(1), 134–142 (2003).
  • Stout BA, Bates ME, Liu LY, Farrington NN, Bertics PJ. IL-5 and granulocyte-macrophage colony-stimulating factor activate STAT3 and STAT5 and promote Pim-1 and cyclin D3 protein expression in human eosinophils. J. Immunol. 173(10), 6409–6417 (2004).
  • Zhu Y, Chen L, Huang Z et al. Cutting edge: IL-5 primes Th2 cytokine-producing capacity in eosinophils through a STAT5-dependent mechanism. Immunology 173(5), 2918–2922 (2004).
  • Du J, Stankiewicz MJ, Liu Y et al. Novel combinatorial interactions of GATA-1, PU.1, and C/EBPepsilon isoforms regulate transcription of the gene encoding eosinophil granule major basic protein. J. Biol. Chem. 277(45), 43481–43494 (2002).
  • Yu C, Cantor AB, Yang H et al. Targeted deletion of a high-affinity GATA-binding site in the GATA-1 promoter leads to selective loss of the eosinophil lineage in vivo. J. Exp. Med. 195(11), 1387–1395 (2002).
  • Pevny L, Simon MC, Robertson E et al. Erythroid differentiation in chimaeric mice blocked by a targeted mutation in the gene for transcription factor GATA-1. Nature 349(6306), 257–260 (1991).
  • Ingley E, McCarthy DJ, Pore JR et al. Lyn deficiency reduces GATA-1, EKLF and STAT5, and induces extramedullary stress erythropoiesis. Oncogene 24(3), 336–343 (2005).
  • Hayden MS, Ghosh S. Signaling to NF-κB. Genes Dev. 18(18), 2195–2224 (2004).
  • Fujihara S, Jaffray E, Farrow SN, Rossi AG, Haslett C, Hay RT. Inhibition of NF-κ B by a cell permeable form of I kappa B alpha induces apoptosis in eosinophils. Biochem. Biophys. Res. Commun. 326(3), 632–637 (2005).
  • Yamashita N, Koizumi H, Murata M, Mano K, Ohta K. Nuclear factor κ B mediates interleukin-8 production in eosinophils. Int. Arch. Allergy Immunol. 120(3), 230–236 (1999).
  • Wong CK, Ip WK, Lam CW. Interleukin-3, -5, and granulocyte macrophage colony-stimulating factor-induced adhesion molecule expression on eosinophils by p38 mitogen-activated protein kinase and nuclear factor-[kappa] B. Am. J. Respir. Cell. Mol. Biol. 29(1), 133–147 (2003).
  • Martinez-Moczygemba M, Huston DP. Proteasomal regulation of βc signaling reveals a novel mechanism for cytokine receptor heterotypic desensitization. J. Clin. Invest. 108(12), 1797–1806 (2001).
  • Liu LY, Sedgwick JB, Bates ME et al. Decreased expression of membrane IL-5 receptor α on human eosinophils: II. IL-5 down-modulates its receptor via a proteinase-mediated process. J. Immunol. 169(11), 6459–6466 (2002).
  • Liu LY, Sedgwick JB, Bates ME et al. Decreased expression of membrane IL-5 receptor α on human eosinophils: I. Loss of membrane IL-5 receptor α on airway eosinophils and increased soluble IL-5 receptor α in the airway after allergen challenge. J. Immunol. 169(11), 6452–6458 (2002).
  • Liu LY, Jarjour NN, Busse WW, Kelly EA. Chemokine receptor expression on human eosinophils from peripheral blood and bronchoalveolar lavage fluid after segmental antigen challenge. J. Allergy Clin. Immunol. 112(3), 556–562 (2003).
  • Nagase H, Kudo K, Izumi S et al. Chemokine receptor expression profile of eosinophils at inflamed tissue sites: decreased CCR3 and increased CXCR4 expression by lung eosinophils J. Allergy Clin. Immunol. 108(4), 563–569 (2001).
  • Paling NR, Welham MJ. Role of the protein tyrosine phosphatase SHP-1 (Src homology phosphatase-1) in the regulation of interleukin-3-induced survival, proliferation and signalling. Biochem J. 368(Pt 3), 885–894 (2002).
  • Alexander WS, Hilton DJ. The role of suppressors of cytokine signaling (SOCS) proteins in regulation of the immune response. Ann. Rev. Immunol. 22, 503–529 (2004).
  • Matsumoto A, Masuhara M, Mitsui K et al. CIS, a cytokine inducible SH2 protein, is a target of the JAK-STAT5 pathway and modulates STAT5 activation. Blood 89(9), 3148–3154 (1997).
  • Bhattacharya S, Stout BA, Bates ME, Bertics PJ, Malter JS. Granulocyte macrophage colony-stimulating factor and interleukin-5 activate STAT5 and induce CIS1 mRNA in human peripheral blood eosinophils. Am. J. Respir. Cell. Mol. Biol. 24(3), 312–316 (2001).
  • Ilangumaran S, Rottapel R. Regulation of cytokine receptor signaling by SOCS1. Immunol. Rev. 192, 196–211 (2003).
  • Inoue H, Kato R, Fukuyama S et al. Spred-1 negatively regulates allergen-induced airway eosinophilia and hyperresponsiveness. J. Exp. Med. 201(1), 73–82 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.