44
Views
7
CrossRef citations to date
0
Altmetric
Review

Chemokines and chemokine receptors in inflammation of the CNS

, &
Pages 293-301 | Published online: 10 Jan 2014

References

  • Murphy PM, Baggiolini M, Charo IF et al. International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol. Rev. 52, 145–176 (2000).
  • Ransohoff R, Suzuki K, Proudfoot M, Hickey W, Harrison JE. Universe’s in Delicate Balance: Chemokines and the Nervous System. Elsevier Science, Amsterdam, The Netherlands (2002).
  • Baggiolini M. Chemokines in pathology and medicine. J. Intern. Med. 250, 91–104 (2001).
  • Glabinski AR, Ransohoff RM. Sentries at the gate: chemokines and the blood–brain barrier. J. Neurovirol. 5, 623–634 (1999).
  • Piccio L, Rossi B, Scarpini E et al. Molecular mechanisms involved in lymphocyte recruitment in inflamed brain microvessels: critical roles for P-selectin glycoprotein ligand-1 and heterotrimeric G(i)-linked receptors. J. Immunol. 168, 1940–1949 (2002).
  • Springer TA. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76, 301–314 (1994).
  • Male D, Pryce G, Hughes C, Lantos P. Lymphocyte migration into brain modelled in vitro: control by lymphocyte activation, cytokines, and antigen. Cell. Immunol. 127, 1–11 (1990).
  • Hickey W. Leukocyte traffic in the central nervous system: the participants and their roles. Semin. Immunol. 11, 125–137 (1999).
  • Yednock TA, Cannon C, Fritz LC, Sanchez-Madrid F, Steinman L, Karin N. Prevention of experimental autoimmune encephalomyelitis by antibodies against α4β1 integrin. Nature 356, 63–66 (1992).
  • Baron JL, Madri JA, Ruddle NH, Hashim G, Janeway CA. Surface expression of α4 integrin by CD4 T-cells is required for their entry into brain parenchyma. J. Exp. Med. 177, 57–68 (1993).
  • Biernacki K, Prat A, Blain M, Antel J. Regulation of cellular and molecular trafficking across human brain endothelial cells by Th1- and Th2-polarized lymphocytes. J. Neuropathol. Exp. Neurol. 63, 223–232 (2004).
  • Karin N, Szafer F, Mitchell D, Gold D, Steinman L. Selective and nonselective stages in homing of T-lymphocytes to the central nervous system during experimental allergic encephalomyelitis. J. Immunol. 150, 4116–4124 (1993).
  • Cross AH, Cannella B, Brosnan CF, Raine CS. Homing to central nervous system vasculature by antigen-specific lymphocytes. I. Localization of 14C-labeled cells during acute, chronic, and relapsing experimental allergic encephalomyelitis. Lab. Invest. 63, 162–170 (1990).
  • Bell MD, Taub DD, Perry VH. Overriding the brain’s intrinsic resistance to leukocyte recruitment with intraparenchymal injections of recombinant chemokines. Neuroscience 74, 283–292 (1996).
  • Bell MD, Taub DD, Kunkel SJ et al. Recombinant human adenovirus with rat MIP-2 gene insertion causes prolonged PMN recruitment to the murine brain. Eur. J. Neurosci. 8, 1803–1811 (1996).
  • Glabinski AR, Bielecki B, Kolodziejski P, Han Y, Selmaj K, Ransohoff RM. TNF-α microinjection upregulates chemokines and chemokine receptors in the central nervous system without inducing leukocyte infiltration. J. Interferon Cytokine Res. 23, 457–466 (2003).
  • Fuentes ME, Durham SK, Swerdel MR et al. Controlled recruitment of monocytes and macrophages to specific organs through transgenic expression of monocyte chemoattractant protein-1. J. Immunol. 155, 5769–5776 (1995).
  • Tani M, Fuentes ME, Peterson JW et al. Neutrophil infiltration, glial reaction, and neurological disease in transgenic mice expressing the chemokine N51/KC in oligodendrocytes. J. Clin. Invest. 98, 529–539 (1996).
  • Fife BT, Huffnagle GB, Kuziel WA, Karpus WJ. CC chemokine receptor 2 is critical for induction of experimental autoimmune encephalomyelitis. J. Exp. Med. 192, 899–906 (2000).
  • Izikson L, Klein RS, Charo IF, Weiner HL, Luster AD. Resistance to experimental autoimmune encephalomyelitis in mice lacking the CC chemokine receptor (CCR)2. J. Exp. Med. 192, 1075–1080 (2000).
  • Tran EH, Kuziel WA, Owens T. Induction of experimental autoimmune encephalomyelitis in C57BL/6 mice deficient in either the chemokine macrophage inflammatory protein-1α or its CCR5 receptor. Eur. J. Immunol. 30, 1410–1415 (2000).
  • Huang D, Wang J, Kivisakk P, Rollins BJ, Ransohoff RM. Absence of monocyte chemoattractant protein 1 in mice leads to decreased local macrophage recruitment and antigen-specific T-helper cell type 1 immune response in experimental autoimmune encephalomyelitis. J. Exp. Med. 193, 713–725 (2001).
  • Glabinski AR, Krakowski M, Han Y, Owens T, Ransohoff RM. Chemokine expression in GKO mice (lacking interferon-γ) with experimental autoimmune encephalomyelitis. J. Neurovirol. 5, 95–101 (1999).
  • Matejuk A, Dwyer J, Ito A, Bruender Z, Vandenbark AA, Offner H. Effects of cytokine deficiency on chemokine expression in CNS of mice with EAE. J. Neurosci. Res. 67, 680–688 (2002).
  • Matejuk A, Vandenbark A, Burrows G, Bebo B, Offner H. Reduced chemokine and chemokine receptor expression in spinal cords of TCR BV8S2 transgenic mice protected against experimental autoimmune encephalomyelitis with BV8S2 protein. J. Immunol. 164, 3924–3931 (2000).
  • Callahan MK, Ransohoff RM. Analysis of leukocyte extravasation across the blood–brain barrier: conceptual and technical aspects. Curr. Allergy Asthma Rep. 4, 65–73 (2004).
  • Seguin R, Biernacki K, Rotondo RL, Prat A, Antel J. Regulation and functional effects of monocyte migration across human brain-derived endothelial cells. J. Neuropathol. Exp. Neurol. 62, 412–419 (2003).
  • Callahan MK, Williams KA, Kivisakk P, Pearce D, Stins MF, Ransohoff RM. CXCR3 marks CD4+ memory T-lymphocytes that are competent to migrate across a human brain microvascular endothelial cell layer. J. Neuroimmunol. 153, 150–157 (2004).
  • Prat A, Biernacki K, Lavoie JF, Poirier J, Duquette P, Antel JP. Migration of multiple sclerosis lymphocytes through brain endothelium. Arch. Neurol. 59, 391–397 (2002).
  • Uhm JH, Dooley NP, Stuve O et al. Migratory behavior of lymphocytes isolated from multiple sclerosis patients: effects of interferon β-1b therapy. Ann. Neurol. 46, 319–324 (1999).
  • Prat A, Al-Asmi A, Duquette P, Antel J. Lymphocyte migration and multiple sclerosis: relation with disease course and therapy. Ann. Neurol. 46, 253–256 (1999).
  • Hulkower K, Brosnan CF, Aquino DA et al. Expression of CSF-1, c-fms, and MCP-1 in the central nervous system of rats with experimental allergic encephalomyelitis. J. Immunol. 150, 2525–2533 (1993).
  • Ransohoff RM, Hamilton TA, Tani M et al. Astrocyte expression of mRNA encoding cytokines IP-10 and JE/MCP-1 in experimental autoimmune encephalomyelitis. FASEB J. 7, 592–600 (1993).
  • Godiska R, Chantry D, Dietsch GN, Gray PW. Chemokine expression in murine experimental allergic encephalomyelitis. J. Neuroimmunol. 58, 167–176 (1995).
  • Pan Y, Lloyd C, Zhou H et al. Neurotactin, a membrane-anchored chemokine upregulated in brain inflammation. Nature 387, 611–617 (1997).
  • Sun D, Tani M, Newman TA et al. Role of chemokines, neuronal projections, and the blood–brain barrier in the enhancement of cerebral EAE following focal brain damage. J. Neuropathol. Exp. Neurol. 59, 1031–1043 (2000).
  • Glabinski AR, Tani M, Tuohy VK, Tuthill RJ, Ransohoff RM. Central nervous system chemokine mRNA accumulation follows initial leukocyte entry at the onset of acute murine experimental autoimmune encephalomyelitis. Brain Behav. Immun. 9, 315–330 (1995).
  • Glabinski AR, Tani M, Strieter RM, Tuohy VK, Ransohoff RM. Synchronous synthesis of α- and β-chemokines by cells of diverse lineage in the central nervous system of mice with relapses of chronic experimental autoimmune encephalomyelitis. Am. J. Pathol. 150, 617–630 (1997).
  • Asensio VC, Lassmann S, Pagenstecher A, Steffensen SC, Henriksen SJ, Campbell IL. C10 is a novel chemokine expressed in experimental inflammatory demyelinating disorders that promotes recruitment of macrophages to the central nervous system. Am. J. Pathol. 154, 1181–1191 (1999).
  • Hamilton NH, Banyer JL, Hapel AJ et al. IFN-γ regulates murine interferon-inducible T-cell α chemokine (I-TAC) expression in dendritic cell lines and during experimental autoimmune encephalomyelitis. Scand. J. Immunol. 55, 171–177 (2002).
  • Jiang Y, Salafranca MN, Adhikari S et al. Chemokine receptor expression in cultured glia and rat experimental allergic encephalomyelitis. J. Neuroimmunol. 86, 1–12 (1998).
  • Fischer FR, Santambrogio L, Luo Y, Berman MA, Hancock WW, Dorf ME. Modulation of experimental autoimmune encephalomyelitis: effect of altered peptide ligand on chemokine and chemokine receptor expression. J. Neuroimmunol. 110, 195–208 (2000).
  • Glabinski AR, O’Bryant S, Selmaj K, Ransohoff RM. CXC chemokine receptor expression during chronic relapsing experimental autoimmune encephalomyelitis. Ann. NY Acad. Sci. 917, 135–144 (2000).
  • Glabinski A, Bielecki B, O’Bryant S, Selmaj K, Ransohoff R. Experimental autoimmune encephalomyelitis: CC chemokine receptor expression by trafficking cells. J. Autoimmunity 19, 175–181 (2002).
  • Serafini B, Columba-Cabezas S, Di Rosa F, Aloisi F. Intracerebral recruitment and maturation of dendritic cells in the onset and progression of experimental autoimmune encephalomyelitis. Am. J. Pathol. 157, 1991–2002 (2000).
  • Narumi S, Kaburaki T, Yoneyama H, Iwamura H, Kobayashi Y, Matsushima K. Neutralization of IFN-inducible protein 10/CXCL10 exacerbates experimental autoimmune encephalomyelitis. Eur. J. Immunol. 32, 1784–1791 (2002).
  • Alt C, Laschinger M, Engelhardt B. Functional expression of the lymphoid chemokines CCL19 (ELC) and CCL21 (SLC) at the blood–brain barrier suggests their involvement in G-protein-dependent lymphocyte recruitment into the central nervous system during experimental autoimmune encephalomyelitis. Eur. J. Immunol. 32, 2133–2144 (2002).
  • Fife B, Paniagua M, Lukacs N, Kunkel S, Karpus W. Selective CC chemokine receptor expression by central nervous system-infiltrating encephalitogenic T-cells during experimental autoimmune encephalomyelitis. J. Neurosci. Res. 66, 705–714 (2001).
  • Murray PD, Krivacic K, Chernosky A, Wei T, Ransohoff RM, Rodriguez M. Biphasic and regionally-restricted chemokine expression in the central nervous system in the Theiler’s virus model of multiple sclerosis. J. Neurovirol. 6, S44–S52 (2000).
  • Tsunoda I, Lane T, Blackett J, Fujinami R. Distinct roles for IP-10/CXCL10 in three animal models, Theiler’s virus infection, EAE, and MHV infection, for multiple sclerosis: implication of differing roles for IP-10. Mult. Scler. 10, 26–34 (2004).
  • Liu M, Keirstead H, Lane T. Neutralization of the chemokine CXCL10 reduces inflammatory cell invasion and demyelination and improves neurological function in a viral model of multiple sclerosis. J. Immunol. 167, 4091–4097 (2001).
  • Glass WG, Hickey MJ, Hardison JL, Liu MT, Manning JE, Lane TE. Antibody targeting of the CC chemokine ligand 5 results in diminished leukocyte infiltration into the central nervous system and reduced neurologic disease in the viral model of multiple sclerosis. J. Immunol. 172, 4018–4025 (2004).
  • Hvas J, McLean C, Justesen J et al. Perivascular T-cells express the pro-inflammatory chemokine RANTES mRNA in multiple sclerosis lesions. Scand. J. Immunol. 46, 195–203 (1997).
  • Simpson JE, Newcombe J, Cuzner ML, Woodroofe MN. Expression of monocyte chemoattractant protein-1 and other β-chemokines by resident glia and inflammatory cells in multiple sclerosis lesions. J. Neuroimmunol. 84, 238–249 (1998).
  • McManus C, Berman JW, Brett FM, Staunton H, Farrell M, Brosnan CF. MCP-1, MCP-2 and MCP-3 expression in multiple sclerosis lesions: an immunohistochemical and in situ hybridization study. J. Neuroimmunol. 86, 20–29 (1998).
  • Hulshof S, van Haastert ES, Kuipers HF et al. CX3CL1 and CX3CR1 expression in human brain tissue: noninflammatory control verus multiple sclerosis. J. Neuropathol. Exp. Neurol. 62, 899–907 (2003).
  • Simpson JE, Newcombe J, Cuzner ML, Woodroofe MN. Expression of the interferon-γ-inducible chemokines IP-10 and Mig and their receptor, CXCR3, in multiple sclerosis lesions. Neuropathol. Appl. Neurobiol. 26, 133–142 (2000).
  • Trebst C, Sorensen TL, Kivisakk P et al. CCR1+/CCR5+ mononuclear phagocytes accumulate in the central nervous system of patients with multiple sclerosis. Am. J. Pathol. 159, 1701–1710 (2001).
  • Mahad DJ, Trebst C, Kivisakk P et al. Expression of chemokine receptors CCR1 and CCR5 reflects differential activation of mononuclear phagocytes in pattern II and pattern III multiple sclerosis lesions. J. Neuropathol. Exp. Neurol. 63, 262–273 (2004).
  • Kivisakk P, Mahad DJ, Callahan MK et al. Expression of CCR7 in multiple sclerosis: implications for CNS immunity. Ann. Neurol. 55, 627–638 (2004).
  • Trebst C, Staugaitis SM, Tucky B et al. Chemokine receptors on infiltrating leucocytes in inflammatory pathologies of the central nervous system (CNS). Neuropathol. Appl. Neurobiol. 29, 584–595 (2003).
  • Sorensen TL, Tani M, Jensen J et al. Expression of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients. J. Clin. Invest. 103, 807–815 (1999).
  • Balashov KE, Rottman JB, Weiner HL, Hancock WW. CCR5+ and CXCR3+ T-cells are increased in multiple sclerosis and their ligands MIP-1α and IP-10 are expressed in demyelinating brain lesions. Proc. Natl Acad. Sci. USA 96, 6873–6878 (1999).
  • Nakajima H, Fukuda K, Doi Y et al. Expression of Th1/Th2-related chemokine receptors on peripheral T-cells and correlation with clinical disease activity in patients with multiple sclerosis. Eur. Neurol. 52, 162–168 (2004).
  • Franciotta D, Martino G, Zardini E et al. Serum and CSF levels of MCP-1 and IP-10 in multiple sclerosis patients with acute and stable disease and undergoing immunomodulatory therapies. J. Neuroimmunol. 115, 192–198 (2001).
  • Narikawa K, Misu T, Fujihara K, Nakashima I, Sato S, Itoyama Y. CSF chemokine levels in relapsing neuromyelitis optica and multiple sclerosis. J. Neuroimmunol. 149, 182–186 (2004).
  • Misu T, Onodera H, Fujihara K et al. Chemokine receptor expression on T-cells in blood and cerebrospinal fluid at relapse and remission of multiple sclerosis: imbalance of Th1/Th2-associated chemokine signaling. J. Neuroimmunol. 114, 207–212 (2001).
  • Sun JB, Xiao BG, Lindblad M et al. Oral administration of cholera toxin B subunit conjugated to myelin basic protein protects against experimental autoimmune encephalomyelitis by inducing transforming growth factor-β-secreting cells and suppressing chemokine expression. Int. Immunol. 12, 1449–1457 (2000).
  • Zavala F, Abad S, Ezine S, Taupin V, Masson A, Bach JF. G-CSF therapy of ongoing experimental allergic encephalomyelitis via chemokine- and cytokine-based immune deviation. J. Immunol. 168, 2011–2019 (2002).
  • Furlan R, Poliani PL, Marconi PC et al. Central nervous system gene therapy with interleukin-4 inhibits progression of ongoing relapsing-remitting autoimmune encephalomyelitis in Biozzi AB/H mice. Gene Ther. 8, 13–19 (2001).
  • Iarlori C, Reale M, Lugaresi A et al. RANTES production and expression is reduced in relapsing-remitting multiple sclerosis patients treated with interferon-β-1b. J. Neuroimmunol. 107, 100–107 (2000).
  • Kivisakk P, Cotleur A, Lee JC, Rudick R, Ransohoff R. Interferon-β1a does not reduce expression of CCR5 and CXCR3 on circulating T-cells. J. Neuroimmunol. 141, 150–154 (2003).
  • Buttmann M, Merzyn C, Rieckmann P. Interferon-β induces transient systemic IP-10/CXCL10 chemokine release in patients with multiple sclerosis. J. Neuroimmunol. 156, 195–203 (2004).
  • Lund BT, Ashikian N, Ta HQ et al. Increased CXCL8 (IL-8) expression in multiple sclerosis. J. Neuroimmunol. 155, 161–171 (2004).
  • Bartosik-Psujek H, Belniak E, Mitosek-Szewczyk K, Dobosz B, Stelmasiak Z. Interleukin-8 and RANTES levels in patients with relapsing-remitting multiple sclerosis (RR-MS) treated with cladribine. Acta Neurol. Scand. 109, 390–392 (2004).
  • Karpus WJ, Lukacs NW, McRae BL, Strieter RM, Kunkel SL, Miller SD. An important role for the chemokine macrophage inflammatory protein-1 α in the pathogenesis of the T-cell-mediated autoimmune disease, experimental autoimmune encephalomyelitis. J. Immunol. 155, 5003–5010 (1995).
  • Kennedy K, Strieter R, Kunkel S, Lukacs N, Karpus W. Acute and relapsing experimental autoimmune encephalomyelitis are regulated by differential expression of the CC chemokines macrophage inflammatory protein-1 and monocyte chemotactic protein1. J. Neuroimmunol. 92, 98–108 (1998).
  • Adamus G, Manczak M, Machnicki M. Expression of CC chemokines and their receptors in the eye in autoimmune anterior uveitis associated with EAE. Invest. Ophthalmol. Vis. Sci. 42, 2894–2903 (2001).
  • Fife BT, Kennedy KJ, Paniagua MC et al. CXCL10 (IFN-γ-inducible protein-10) control of encephalitogenic CD4+ T-cell accumulation in the central nervous system during experimental autoimmune encephalomyelitis. J. Immunol. 166, 7617–7624 (2001).
  • Matsui M, Weaver J, Proudfoot AE et al. Treatment of experimental autoimmune encephalomyelitis with the chemokine receptor antagonist Met-RANTES. J. Neuroimmunol. 128, 16–22 (2002).
  • Proudfoot AE, Handel TM, Johnson Z et al. Glycosaminoglycan binding and oligomerization are essential for the in vivo activity of certain chemokines. Proc. Natl Acad. Sci. USA 100, 1885–1890 (2003).
  • Ransohoff R, Bacon K. Chemokine receptor antagonism as a new therapy for multiple sclerosis. Exp. Opin. Invest. Drugs 9, 1079–1097 (2000).
  • Glabinski A, Ransohoff R. Targeting the chemokine system for multiple sclerosis treatment. Curr. Opin. Invest. Drugs 2, 1712–1719 (2001).
  • Johnson Z, Power CA, Weiss C et al. Chemokine inhibition – why, when, where, which and how? Biochem. Soc. Trans. 32, 366–377 (2004).
  • Anders HJ, Vielhauer V, Frink M et al. A chemokine receptor CCR-1 antagonist reduces renal fibrosis after unilateral ureter ligation. J. Clin. Invest. 109, 251–259 (2002). Hvas J, Bernard CC. Molecular detection and quantitation of the chemokine RANTES mRNA in neurological brain. APMIS 106(6), 598–604 (1998). Boven LA, Montagne L, Nottet HS, De Groot CJ. Macrophage inflammatory protein-1α (MIP-1α), MIP-1β, and RANTES mRNA semiquantification and protein expression in active demyelinating multiple sclerosis (MS) lesions. Clin. Exp. Immunol. 122(2), 257–263 (2000). Ambrosini E, Columba-Cabezas S, Serafini B, Muscella A, Aloisi F. Astrocytes are the major intracerebral source of macrophage inflammatory protein-3α/CCL20 in relapsing experimental autoimmune encephalomyelitis and in vitro. Glia 41(3), 290–300 (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.