46
Views
1
CrossRef citations to date
0
Altmetric
Review

Immune deficiency in HIV-1 infection: novel therapeutic approaches targeting innate and adaptive responses

Pages 529-547 | Published online: 10 Jan 2014

References

  • De Milito A. B-lymphocyte dysfunctions in HIV infection. Curr. HIV Res. 2, 11–21 (2004).
  • De Milito A, Nilsson A, Titanji K et al. Mechanisms of hypergammaglobulinemia and impaired antigen-specific humoral immunity in HIV-1 infection. Blood 103(6), 2180–2186 (2004).
  • Martinez-Maza O, Breen EC. B-cell activation and lymphoma in patients with HIV. Curr. Opin.Oncol. 14, 528–532 (2002).
  • De Milito A, Morch C, Sonnerborg A, Chiodi F. Loss of memory (CD27) B-lymphocytes in HIV-1 infection. AIDS 15, 957–964 (2001).
  • Moir S, Malaspina A, Li Y et al. B-cells of HIV-1 infected patients bind virions through CD21-complement interactions and transmit infectious virus to activated T-cells. J. Exp. Med. 192, 637–646 (2000).
  • Moir S, Malaspina A, Pickeral OK et al. Decreased survival of B-cells of HIV-viremic patients mediated by altered expression of receptors of the TNF- superfamily. J. Exp. Med. 200(5), 587–600 (2004).
  • Kroon FP, van Dissel JT, Ravensbergen E, Nibering PH, van Furth R. Antibodies against pneumococcal polysaccharides after vaccination in HIV- infected individuals: 5-year follow-up of antibody concentrations. Vaccine 18, 524–530 (1999).
  • Malaspina A, Moir S, Shyamasundaran K et al. Deleterious effect of HIV-1 plasma viremia on B-cell costimulatory function. J. Immunol. 170, 5965–5972 (2003).
  • Borrow P, Lewicki H, Wei X et al. Antiviral pressure exerted by HIV -1-specific cytotoxic T-lymphocytes (CTLs) during primary infection demonstrated by rapid selection of CTL escape virus. Nature Med. 3, 205–211 (1997).
  • Schmitz JE, Kuroda MJ, Santra S et al. Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes. Science 283, 857–860 (1999).
  • McMichael AJ, Rowland-Jones SL. Cellular immune responses to HIV. Nature 410, 980–986 (2001).
  • Lieberman J, Shankar P, Manjunath N, Andersson J. Dressed to kill? A review of why antiviral CD8 T-lymphocytes fail to prevent progressive immunodeficiency in HIV-1 infection. Blood 98, 1667–1677 (2001).
  • Van Baarle D, Kostense S, van Oers MH., Hamann D, Miedema F. Failing immune control as a result of impaired CD8+ T-cell maturation: CD27 might provide a clue. Trends. Immunol. 23(12), 586–591 (2002).
  • Lichterfeld M, Kaufmann DE, Yu XG et al. Loss of HIV-1-specific CD8+ T-cell proliferation after acute HIV-1 infection and restoration by vaccine-induced HIV-1-specific CD4+ T-cells. J. Exp. Med. 200(6), 701–712 (2004).
  • Tomiyama H, Fujiwara M, Oka S, Takiguchi M. Epitope-dependent effect of nef-mediated HLA class I downregulation on ability of HIV-1-specific CTLs to suppress HIV-1 replication. J. Immunol. 174, 36–40 (2005).
  • Cao J, McNevin J, Malkotra U, McElrath J. Evolution of CD8+ T-cell immunity and viral escape following acute HIV-1 infection. J. Immunol. 171, 3837–3846 (2003).
  • Zhang D, Shankar P, Xu Z et al. Most antiviral CD8 T-cells during chronic viral infection do not express high levels of perforin and are not directly cytotoxic. Blood 101(1), 226–235 (2003).
  • Ueno T, Tomiyama H, Fujiwara M, Oka S, Takiguchi M. Functionally impaired HIV-specific CD8 T-cells show high affinity TCR-ligand interactions. J. Immunol. 173, 5451–5457 (2004).
  • Shacklett BL, Cox CA, Quigley MF et al. Abundant expression of granzyme A, but not perforin, in granules of CD8+ T-cells in GALT: implications for immune control of HIV-1 infection. J. Immunol. 173, 641–648 (2004).
  • Petrovas C, Mueller YM, Dimitriou ID et al. HIV-specific CD8 T-cells exhibit markedly reduced levels of Bcl-2 and Bcl-xL. J. Immunol. 172, 4444–4453 (2004).
  • Trimble LA, Lieberman J. Circulating CD8 T-lymphocytes in human immunodeficiency virus-infected individuals have impaired function and downmodulate CD3 zeta, the signaling chain of T-cell receptor complex. Blood 91, 585–594 (1998).
  • Paiardini M, Cervasi B, Albrecht H et al. Loss of CD127 expression defines an expansion of effector CD8+ T-cells in HIV-infected individuals. J. Immunol. 174, 2900–2909 (2005).
  • Sullivan YB, Landay AL, Zack JA, Kitchen SG, Al-Harthi L. Upregulation of CD4 on CD8+ T-cells: CD4dimCD8bright T-cells constitute an activated phenotype of CD8+ T-cells. Immunology 103, 270–280 (2001).
  • Zloza A, Sullivan YB, Connick E, Landay AL, Al-Harthi L. CD8+ T-cells that express CD4 on their surface (CD4dimCD8brignt T-cells) recognize an antigen-specific target, are detected in vivo, and can be productively infected by T-tropic HIV. Blood 102(6), 2156–2164 (2003).
  • Flamand L, Crowley RW, Lusso P, Colombini-Hatch S, Margolis DM, Gallo RC. Activationof CD8+ T-lymphocytes through the T-cell receptor turns on CD4 gene expression: implications for pathogenesis. Proc. Natl Acad. Sci. USA 95, 3111–3116 (1998).
  • Semenzato G, Agostini C, Ometto L et al. CD8+ T-lymphocytes in the lung of acquired immunodeficiency syndrome patients harbor human immunodeficiency virus Type 1. Blood 85, 2308–2314 (1995).
  • Douek DC, Picker LJ, Koup RA. T-cell dynamics in HIV-1 infection. Ann. Rev. Immunol. 21, 265–304 (2003).
  • Veazey RS, DeMaria M, Chalifoux LV et al. Gastrointestinal tract as a major site of CD4+ T-cell deplection and viral replication in SIV infection. Science 280, 427–431 (1998).
  • Mehandru S, Poles MA, Tenner-Racz K et al. Primary HIV-1 infection is associated with preferential depletion of CD4+ T-lymphocytes from effector sites in the gastrointestinal tract. J. Exp. Med. 200, 761–770 (2004).
  • Brenchley JM, Schacker TW, Ruff LE et al. CD4+ T-cell depletion during all stages of HIV disease occurs predominantly in the gastrointestinal tract. J. Exp. Med. 200, 749–759 (2004).
  • Qingsheng L, Duan L, Estes JD et al. Peak SIV replication in resting memory CD4+ T-cells depletes gut lamina propria CD4+ T-cells. Nature 434, 1148–1152 (2005).
  • Mattapallil JJ, Douek DC, Hill B, Nishimura Y, Martin M, Roederer M. Massive infection and loss of memory CD4+ T-cells in multiple tissues during acute SIV infection. Nature 434, 1093–1097 (2005).
  • Gea-Banacloche JC, Migueles SA, Martino L et al. Maintenance of large numbers of virus-specific CD8+ T-cells in HIV-infected progressors and long-term non-progressors. J. Immunol. 164, 1082–1092 (2000).
  • Betts MR, Ambrozak DA, Douek DC et al. Analysis of total human immunodeficiency virus (HIV)-specific CD4 and CD8 T-cell responses: relationship to viral load in untreated HIV infection. J. Virol. 75, 11983–11991 (2001).
  • McNeil AC, Shupert WL, Iyasere CA et al. High-level HIV-1 viremia suppresses viral antigen-specific CD4+ T-cell proliferation. Proc. Natl Acad. Sci. USA 98, 13878–13883 (2001).
  • Grossman Z, Feinberg MB, Paul WE. Multiple modes of cellular activation and virus transmission in HIV infection: a role for chronically and latently infected cells in sustaining viral replication. Proc. Natl Acad. Sci. USA 95, 6314–6319 (1998).
  • Douek DC, Brenchley JM, Betts MR et al. HIV preferentially infects HIV- specific CD4+ T-cells. Nature 417, 95–98 (2002).
  • Hellerstein MK, Hoh RA, Hanley MB et al. Subpopulations of long-lived and short-lived T-cells in advanced HIV-1 infection. J. Clin. Invest. 112(6), 956–966 (2003).
  • Yue FY, Kovacs CM, Dimayuga RC, Parks P, Ostrowski MA. HIV-1-specific memory CD4+ T-cells are phenotypically less mature than cytomegalovirus-specific memory CD4+ T-cells. J. Immunol. 172, 2476–2486 (2004).
  • Palmer BE, Boritz E, Wilson CC. Effects of sustained HIV-1 plasma viremia on HIV-1 gag-specific CD4+ T-cell maturation and function. J. Immunol. 172, 3337–3347 (2004).
  • Yue FY, Kovacs CM, Dimayuga RC et al. Preferential apoptosis of HIV-1-specific CD4+ T-cells. J. Immunol. 174, 2196–2204 (2005).
  • Holm GH, Gabuzda D. Distinct mechanisms of CD4+ and CD8+ T-cell activation and bystander apoptosis induced by human immunodeficiency virus Type 1 virions. J. Virol. 79(10), 6299–6311 (2005).
  • Douek DC. Disrupting T-cell homeostasis: how HIV-1 infection causes disease. AIDS Rev. 5(3), 172–177 (2003).
  • Paiardini M, Cervasi B, Dunham R, Sumpter B, Radziewicz H, Silvestri G. Cell-cycle dysregulation in the immunopathogenesis of AIDS. Immunol. Res. 29(1–3), 253–268 (2004).
  • Alfano M, Poli G. The cytokine network in HIV infection. Curr. Mol. Med. 2(8), 677–689 (2002).
  • Ostrowski SR, Gerstoft J, Pedersen BK, Ullum H. Impaired production of cytokines is an independent predictor of mortality in HIV-1-infected patients. AIDS 17, 521–530 (2003).
  • Ng WF, Duggan PJ, Ponchel F et al. Human CD4+CD25+ cells; a naturally occurring population of regulatory T-cells. Blood 98(9), 2736–2744 (2001).
  • Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T-cells. Nature Immunol. 4(4), 330–336 (2003).
  • Fontenot JD, Rasmussen JP, Williams LM, Dooley JL, Farr AG, Rudensky AY. Regulatory T-cell lineage specification by the forkhead transcription factor foxp3. Immunity 22(3), 329–341 (2005).
  • Fehervari Z, Sakaguchi S. CD4+ Tregs and immune control. J. Clin. Invest. 114(9), 1209–1217 (2004).
  • Robinson DS, Larche M, Durham SR. Tregs and allergic disease. J. Clin. Invest. 114 (10), 1389–1397 (2004).
  • Rouse BT, Suvas S. Regulatory cells and infectious agents: detentes cordiale and contraire. J. Immunol. 173, 2211–2215 (2004).
  • Bettelli E, Dastrange M, Oukka M. Foxp3 interacts with nuclear factor of activated T-cells and NF-κB to repress cytokine gene expression and effector functions of T-helper cells. Proc. Natl Acad. Sci. USA 102, 5138–5143 (2005).
  • Oldenhove G, de Heusch M, Urbain-Vansanten G et al. CD4+CD25+ regulatory T-cells control T-helper cell Type 1 responses to foreign antigens induced by mature dendritic cells in vivo. J. Exp. Med. 198(2), 259–266 (2003).
  • Piccirillo CA, Shevach E. Control of CD8+ T-cell activation by CD4+CD25+ immunoregulatory cells. J. Immunol. 167, 1137–1140 (2001).
  • Taams LS, van Amelsfort JMR, Tiemessen MM et al. Modulation of monocyte/macrophage function by human CD4+CD25+ regulatory T-cells. Human. Immunol. 66, 222–230 (2005).
  • Hasenkrug KJ. CD4+ regulatory T-cells in chronic viral infection. Novartis Found. Symp. 252, 194–199 (2003).
  • Boyer O, Saadoun D, Abriol J et al. CD4+CD25+ regulatory T-cell deficiency in patients with hepatitis C-mixed cryoglobulinemia vasculitis. Blood 103(9), 3428–3430 (2004).
  • Yamano Y, Takenouchi N, Li H-C et al. Virus-induced dysfunction of CD4+CD25+ T-cells in patients with HTLV-I-associated neuroimmunological disease. J. Clin. Invest. 115, 1361–1368 (2005).
  • Suvas S, Kumaraguru U, Pack CD, Lee S, Rouse BT. CD4+CD25+ T-cells regulate virus-specific primary and memory CD8 T cell responses. J. Exp. Med. 198(6), 889–901 (2003).
  • Dittmer U, He H, Messer RJ et al. Functional impairment of CD8+ T-cells by regulatory T-cells during persistent retroviral infection. Immunity 20, 293–303 (2004).
  • Vahlenkamp TW, Tompkins MB, Tompkins WAF. Feline immunodeficiency virus infection phenotypically and functionally activates immunosuppressive CD4+CD25+ T regulatory cells. J. Immunol. 172, 4752–4761 (2004).
  • Beilharz MW, Sammels LM, Paun A et al. Timed ablation of regulatory CD4+ T-cells can prevent murine AIDS progression. J. Immunol. 172, 4917–4925 (2004).
  • Oswald-Richter K, Grill SM, Shariat N et al. HIV infection of naturally occurring and genetically reprogrammed human regulatory T-cells. PLoS. Biol. 2(7), E198 (2004).
  • Eggena MP, Barugahare B, Jones N et al. Depletion of regulatory T-cells in HIV infection is associated with immune activation. J. Immunol. 174, 4407–4414 (2005).
  • Andersson J, Boasso A, Nilsson J et al. The prevalence of regulatory T-cells in lymphoid tissue is correlated with viral load in HIV- infected patients. J. Immunol 174, 3143–3147 (2005).
  • Aandahl EM, Michaelsson J, Moretto WJ, Hecht FM, Nixon DF. Human CD4+ CD25+ regulatory T-cells control T-cell responses to human immunodeficiency virus and cytomegalovirus antigens. J. Virol. 78(5), 2454–2459 (2004).
  • Weiss L, Donkova-Petrini V, Caccavelli L, Balbo M, Carbonneil C, Levy Y. Human immunodeficiency virus-driven expansion of CD4+CD25+ regulatory T-cells, which suppress HIV-specific CD4 T-cell responses in HIV-infected patients. Blood 104(10), 3249–3256 (2004).
  • Kinter AL, Hennessey M, Bell A et al. CD25+CD4+ regulatory T-cells from peripheral Blood of asymptomatic HIV-infected individuals regulate CD4+ and CD8+ HIV-specific T-cell immune responses in vitro and are associated with favorable clinical markers of disease status. J. Exp. Med. 200(3), 331–343 (2004).
  • Kornfeld C. Ploquin MJ-Y, Pandrea I et al. Anti-inflammatory profiles during primary SIV infection in African green monkeys are associated with protection against AIDS. J. Clin. Invest. 115(4), 1082–1091 (2005).
  • Basset C, Holton J, O’Mahony R, Roitt I. Innate immunity and pathogen-host interaction. Vaccine 21(Suppl. 2), 12–23 (2003).
  • Alfano M, Poli G. Role of cytokines and chemokines in the regulation of innate immunity and HIV infection. Mol. Immunol. 42, 161–182 (2005).
  • Ma G, Greenwell-Wild T, Lei K et al. Secretory leukocyte protease inhibitor binds to annexin II, a co-factor for macrophage HIV-1 infection. J. Exp. Med. 200(10), 1337–1346 (2004).
  • McNeely TB, Shugars DC, Rosendahl M, Tucker C, Eisenberg SP, Wahl SM. Inhibition of human immunodeficiency virus Type 1 infectivity by secretory leukocyte protease inhibitor occurs prior to viral reverse transcription. Blood 90(3), 1141–1149 (1997).
  • Levy JA. The search for the CD8+ cell antiHIV factor (CAF). Trends Immunol. 24(12), 628–632 (2003).
  • Mackewicz CE, Yuan J, Tran P et al. α-defensins can have antiHIV activity but are not CD8 cell antiHIV factors. AIDS 17, F23–F32 (2003).
  • Chang TL, Vargas J, DelPortillo A, Klotman ME. Dual role of α-defensin-1 in antiHIV-1 innate immunity. J. Clin. Invest. 115(3), 765–773 (2005).
  • Quinones-Mateu ME, Lederman MM, Feng Z et al. Human epithetial β-defensis 2 and 3 inhibit HIV-1 replication. AIDS 17, F39–F48 (2003).
  • Chiu Y-L, Soros VB, Kreisberg JF, Stopak K, YonemotoW, Greene WC. Cellular APOBEC3G restricts HIV-1 infection in resting CD4+ T-cells. Nature 435(7038), 108–115 (2005).
  • Zheng Y-H, Lovsin N, Peterlin BM. Newly identified host factors modulate HIV replication. Immunol. Lett. 97, 225–234 (2005).
  • Stremlau M, Owens CM, Perron MJ, Kiessling M, Autissier P, Sodroski J. The cytoplasmic body component TRIM5 restricts HIV-1 infection in old world monkeys. Nature 427, 848–853 (2004).
  • Ganesh L, Burstein E, Guha-Niyogi A et al. The gene product MurR1 restricts HIV-1 replication in resting CD4+ lymphocytes. Nature 426, 853–857 (2003).
  • Carlson KA, Leisman G, Limoges J et al. Molecular characterization of a putative antiretroviral transcriptional factor, OTK18. J. Immunol. 172, 381–391 (2004).
  • Stoiber H, Kacani L, Speth C, Wurzner R, Dierich MP. The supportive role of complement in HIV pathogenesis. Immunol. Rev. 180, 168–176 (2001).
  • Stoiber H, Speth C, Dierich MP. Role of complement in the control of HIV dynamics and pathogenesis. Vaccine 21(Suppl. 2), 77–82 (2003).
  • Horakova E, Gasser O, Sadallah S et al. Complement mediates the binding of HIV to erythrocytes. J. Immunol. 173, 4236–4241 (2004).
  • Banki Z, Kacani L, Rusert P et al. Complement dependent trapping of infectious HIV in human lymphoid tissues. AIDS 19(5), 481–486 (2005).
  • Banki Z, Stoiber H, Dierich MP. HIV and human complement: inefficient virolysis and effective adherence. Immunol. Lett. 97, 209–214 (2005).
  • Ji X, Gewurz H, Spear GT. Mannose binding lectin (MBL) and HIV. Mol. Immunol. 42, 145–152 (2005).
  • Peters-Golden M, Canetti C, Mancuso P, Coffey MJ. Leukotrienes: underappreciated mediators of innate immune responses. J. Immunol. 173, 589–594 (2004).
  • Chan WL, Pejnovic N, Liew TV, Lee CA, Groves R, Hamilton H. NKT cell subsets in infection and inflammation. Immunol. Lett. 85, 159–163 (2003).
  • Motsinger A, Haas DW, Stanic AK, Van Kaer L, Joyce S, Unutmaz D. CD1d-restricted human natural killer T-cells are highly susceptible to human immunodeficiency virus 1 infection. J. Exp. Med. 195(7), 869–879 (2002).
  • van der Vliet, von Blomberg BM, Hazenberg MD et al. Selective decrease in circulating V-α 24+V−β 11+NKT cells during HIV Type 1 infection. J. Immunol. 168(3), 1490–1495 (2002).
  • Unutmaz D. NKT cells and HIV infection. Microbes. Infect. 5, 1041–1047 (2003).
  • Poccia F, Gougeon ML, Agrati C et al. Innate T-cell immunity in HIV infection: the role of Vγ9Vδ2 T-lymphocytes. Curr. Mol. Med. 2(8), 769–781 (2002).
  • Dobmeyer TS, Dobmeyer R, Wesch D, Helm EB, Hoelzer D, Kabelitz D. Reciprocal alterations of Th1/Th2 function in γδT-cell subsets of human immunodeficiency virus-1-infected patients. Br. J. Haematol. 118, 282–288 (2002).
  • Malkovsky M, Wallace M, Fournie JJ, Fisch P, Poccia F, Gougeon ML. Alternative cytotoxic effector mechanisms in infections with immunodeficiency viruses: T-lymphocytes and natural killer cells. AIDS 14(Suppl. 3), 175–186 (2000).
  • Ferlazzo G, Munz C. NK cell compartments and their activation by dentritic cells. J. Immunol. 172(3), 1333–1339 (2004).
  • Moretta L, Ferlazzo G, Mingari MC, Melioli G, Moretta A. Human natural killer cell function and their interactions with dentritic cells. Vaccine 21(Suppl. 2), 38–42 (2003).
  • Valentin A, Rosati M, Patenaude DJ et al. Persistent HIV-1 infection of natural killer cells in patients receiving highly active antiretroviral therapy. Proc. Natl Acad. Sci. USA 99(10), 7015–7020 (2002).
  • Jacobs R, Heiken H, Schmidt RE. Mutual interference of HIV and natural killer cell-mediated response. Mol. Immunol. 42, 239–249 (2005).
  • Bonaparte MI, Baker E. Killing of human immunodeficiency virus-infected primary T-cell blasts by autologous natural killer cells is dependent on the ability of the virus to alter the expression of major histocompatibility complex class I molecules. Blood 104(7), 2087–2094 (2004).
  • Ward JP, Bonaparte MI, Baker E. HLA-C and HLA-E reduce antibody- dependent natural killer cell-mediated cytotoxicity of HIV-infected primary T-cell blasts. AIDS 18(13), 1769–1779 (2004).
  • Mavilio D, Lombardo G, Benjamin J et al. Characterization of CD56-/CD16+ natural killer (NK) cells: a highly dysfunctional NK subset expended in HIV- infected viremic individuals. Proc. Natl Acad. Sci. USA 102(8), 2886–2891 (2005).
  • Poggi A, Carosio R, Spaggiari GM et al. NK cell activation by dentritic cells is dependent on LFA-1-mediated induction of calcium-calmodulin kinase II: inhibition by HIV-1 tat C-terminal domain. J. Immunol. 168(1), 95–101 (2002).
  • Tasca S, Tambussi G, Nazza S et al. Escape of monocyte-derived dentritic cells of HIV-1 infected individuals from natural killer cell-mediated lysis. AIDS 17, 2291–2298 (2003).
  • Kedzierska K, Crowe SM. The role of monocytes and macrophages in the pathogenesis of HIV-1 infection. Curr. Med. Chem. 9(21), 1893–1903 (2002).
  • Chen S, Tuttle DL, Oshier JT et al. Transforming growth factor-β1 increases CXCR4 expression, stromal-derived factor-1α-stimulated signaling and human immunodeficiency virus-1 entry in human monocyte-derived macrophages. Immunology 114, 565–574 (2005).
  • Jayakumar P, Berger I, Autschbach F et al. Tissue-resident macrophages are productively infected ex vivo by primary X4 isolates of human immunodeficiency virus Type 1. J. Virol. 79(8), 5220–5226 (2005).
  • Persidsky Y, Gendelman HE. Mononuclear phagocyte immunity and neuropathogenesis of HIV-1 infection. J. Leukoc. Biol. 74, 691–701 (2003).
  • Verani A, Gras G, Pancino G. Macrophages and HIV-1: dangerous liaisons. Mol. Immunol. 42, 195–212 (2005).
  • Kedzierska K, Azzam R, Ellery P, Mak J, Jaworowski A, Crowe SM. Defective phagocytosis by human monocyte/macrophages following HIV 1 infection: underlying mechanisms and modulation by adjunctive cytokine therapy. J. Clin. Virol. 26, 247–263 (2003).
  • Trabattoni D, Saresella M, Biasin M et al. B7-H1 is upregulated in HIV infection and is a novel surrogate maker of disease progression. Blood 101(7), 2514–2520 (2003).
  • Suzu S, Harada H, Matsumoto T, Okada S. HIV-1 nef interferes with M- CSF receptor signaling through Hck activation and inhibits M-CSF bioactivities. Blood 105(8), 3230–3237 (2005).
  • Hage CA, Kohli L, Cho S, Brutkiewicz RR, Twigg III HL, Knox KS. Human immunodeficiency virus gp 120 downregulates CD1d cell surface expression. Immunol. Lett. 98, 131–135 (2005).
  • Jiang W, Lederman MM, Salkowitz JR, Rodriguez B, Harding CV, Sieg SF. Impaired monocyte maturation in response to CpG oligodeoxynucleotide is related to viral RNA levels in human immunodeficiency virus disease and is at least partially mediated by deficiencies in α/β interferon responsiveness and production. J. Virol. 79(7), 4109–4119 (2005).
  • Ciborowski P, Enose Y, Mack A, Fladseth M, Gendelman HE. Diminished matrix metalloproteinase 9 secretion in human immunodeficiency virus- infected mononuclear phagocytes: modulation of innate immunity and implications for neurological disease. J. Neuroimmunol. 157(1–2), 11–16 (2004).
  • Sperber K, Beuria P, Singha N et al. Induction of apoptosis by HIV-1-infected monocytic cells. J. Immunol. 170, 1566–1578 (2003).
  • Herbeuval JP, Boasso A, Grivel JC et al. TNF-related apoptosis-inducing ligand (TRAIL) in HIV-1-infected patients and its in vitro production by antigen-presenting cells. Blood 105(6), 2458–2464 (2005).
  • Vazquez N, Grennwell-Wild T, Marinos NJ et al. Human immunodeficiency virus Type 1-induced macrophage gene expression includes the p21 gene, a target for viral regulation. J. Virol. 79(7), 4479–4491 (2005).
  • Lee ES. Kalantari P, Tsutsui S et al. RON receptor tyrosine kinase, a negative regulator of inflammation, inhibits HIV-1 transcription in monocytes/macrophages and is decreased in brain tissue from patients with AIDS. J. Immunol. 173, 6864–6872 (2004).
  • Godstein DR. Toll-like receptors and other links between innate and acquired alloimmunoty. Curr. Opin. Immunol. 16, 538–544 (2004).
  • Abreu MT, Arditi M. Innate immunity and toll-like receptors: clinical implications of basic science research. J. Pediatr. 144, 421–429 (2004).
  • Schjetne KW, Thompson KM, Nilsen N et al. Link between innate and adaptive immunity: Toll-like receptor 2 internalizes antigen for presentation to CD4+ T cells and could be an efficient Vaccine target. J. Immunol. 171, 32–36 (2003).
  • Krug A, French AR, Barchet W et al. TLR9-dependent recognition of MCMV by IPC and DC generates co-ordinated cytokine responses that activate antiviral NK cell function. Immunity 21, 107–119 (2004).
  • Pasare C, Medzhitov R. Toll-dependent control mechanisms of CD4 T-cell activation. Immunity 21, 733–741 (2004).
  • Ahonen CL, Doxsee CL, McGurran SM et al. Combined TLR and CD40 triggering induces potent CD8+ T-cell expansion with variable dependence on Type I IFN. J. Exp. Med. 199(6), 775–784 (2004).
  • Komai-Koma M, Jones L, Ogg GS, Xu D, Liew FY. TLR2 is expressed on activated T-cells as a costimulatory receptor. Proc. Natl Acad. Sci. USA 101(9), 3029–3034 (2004).
  • Gelman AE, Zhang J, Choi Y, Turka LA. Toll-like receptor ligands promote activated CD4+ T-cell survival. J. Immunol. 172, 6065–6073 (2004).
  • Caramalbo I, Lopes-Carvalbo T, Ostler D, Zelenay S, Haury M, Demengeot J. Regulatory T-cells selectively express Toll-like receptors and are activated by lipopolysaccharide. J. Exp. Med. 197, 403–411 (2003).
  • Vaidya SA, Cheng G. Toll-like receptors and innate antiviral responses. Curr. Opin. Immunol. 15, 402–407 (2003).
  • Boehme KW, Compton T. Innate sensing of viruses by Toll-like receptors. J. Virol. 78(15), 7867–7873 (2004).
  • Sato A, Iwasaki A. Induction of antiviral immunity requires Toll-like receptor signaling in both stromal and dentritic cell compartments. Proc. Natl Acad. Sci. USA 101(46), 16274–16279 (2004).
  • Bowie AG, Haga IR. The role of Toll-like receptors in the host response to viruses. Mol. Immunol. 42, 859–867 (2005).
  • Equils O, Faure E, Thomas L, Bulut Y, Trushin S, Arditi M. Bacterial lipopolysaccharide activates HIV long-terminal repeat through Toll-like receptor 4. J. Immunol. 166, 2342–2347 (2001).
  • Bafica A, Scanga CA, Schito ML, Hieny S, Sher A. In vivo induction of integrated HIV-1 expression by mycobacteria is critically dependent on Toll-like receptor 2. J. Immunol. 171, 1123–1127 (2003).
  • Equils O, Schito ML, Karahashi H et al. Toll-like receptor 2 (TLR2) and TLR9 signaling results in HIV-long-terminal repeat trans-activation and HIV replication in HIV-1 transgenic mouse spleen cells: Implications of simultaneous activation of TLRs on HIV replication. J. Immunol. 170, 5159–5164 (2003).
  • Bafica A, Scanga CA, Schito M, Chaussabel D, Sher A. Influence of coinfecting pathogens on HIV expression: Evidence for a role of Toll-like receptors. J. Immunol. 172, 7229–7234 (2004).
  • Scheller C, Ullrich A, McPherson K et al. CpG oligodeoxynucleotides activate HIV replication in latently infected human T-cells. J. Biol. Chem. 279(21), 21897–21902 (2004).
  • Sundstrom JB, Little DM, Villinger F, Ellis JE, Ansari AA. Signaling through Toll-like receptors triggers HIV-1 replication in latently infected mast cells. J. Immunol. 172, 4391–4401 (2004).
  • Heggelund L, Muller F, Lien E et al. Increased expression of Toll-like receptor 2 on monocytes in HIV infection: possible roles in inflammation and viral replication. Clin. Infect. Dis. 39(2), 264–269 (2004).
  • Heggelund L, Flo T, Berg K et al. Soluble toll-like receptor 2 in HIV infection: association with disease progression. AIDS 18(18), 2437–2439 (2004).
  • Agrawal S, Martin RR. Was induction of HIV-1 through TLR9? J. Immunol. 171(4), 1621–1643 (2003).
  • Lore K, Larsson M. The role of dentritic cells in the pathogenesis of HIV-1 infection. APMIS 111(7–8), 776–788 (2003).
  • Siegal FP, Spear GT. Innate immunity and HIV. AIDS 15(Suppl. 5), 127–137 (2001).
  • Turville S, Wilkinson J, Cameron P, Dable J, Cunningham AL. The role of dentritic cell C-type lectin receptors in HIV pathogenesis. J. Leukoc. Biol. 74, 710–718 (2003).
  • Kasper MR, Roeth JF, Williams M, Filzen TM, Fleis RI, Collins KL. HIV-1 nef disrupts antigen presentation early in the secretory pathway. J. Biol. Chem. 280(13), 12840–12848 (2005).
  • Izmailova E, Bertley FM, Huang Q et al. HIV-1 tat reprograms immature dentritic cells to express chemoattractants for activated T-cells and macrophages. Nature Med. 9(2), 191–197 (2003).
  • Majumder B, Janket ML, Schafer EA et al. Human immunodeficiency virus Type 1 vpr impairs dentritic cell maturation and T-cell activation: implications for viral immune escape. J. Virol. 79(13), 7990–8003 (2005).
  • Granelli-Piperno A, Golebiowska A, Trumpfheller C, Siegal FP, Steinman RM. HIV-1-infected monocyte-derived dentritic cells do not undergo maturation but can elicit IL-10 production and T-cell regulation. Proc. Natl Acad. Sci. USA 101(20), 7669–7674 (2004).
  • Smed-Sorensen A, Lore K, Walther-Jallow L, Andersson J, Spetz AL. HIV-1 infected dentritic cells upregulate cell surface markers but fail to produce IL-12 p70 in response to CD40 ligand stimulation. Blood 104(9), 2810–2817 (2004).
  • Anthony DD, Yonkers NL, Post AB et al. Selective impairments in dentritic cell-associated function distinguish hepatitis C virus and HIV infection. J. Immunol. 172, 4907–4916 (2004).
  • Almeida M, Cordero M, Almeida J, Orfao A. Different subsets of peripheral blood dentritic cells show distinct phenotypic and functional abnormalities in HIV-1 infection. AIDS 19(3), 261–271 (2005).
  • Donaghy H, Gazzard B, Gotch F, Patterson S. Dysfunction and infection of freshly isolated blood myeloid and plasmacytoid dentritic cells in patients infected with HIV-1. Blood 101(11), 4505–4511 (2003).
  • Donaghy H, Pozniak A, Gazzard B et al. Loss of blood CD11c+ myeloid and CD11c- plasmacytoid dentritic cells in patients with HIV-1 infection correlates with HIV-1 RNA virus load. Blood 98(8), 2574–2576 (2001).
  • Pacanowski J, Kahi S, Baillet M et al. Reduced blood CD123+ (lymphoid) and CD11c+ (myeloid) dentritic cell numbers in primary HIV-1 infection. Blood 98(10), 3016–3021 (2001).
  • Donaghy H, Stebbing J, Patterson S. Antigen presentation and the role of dentritic cells in HIV. Curr. Opin. Infect. Dis. 17(1), 1–6 (2004).
  • Willemot P, Klein MB. Prevention of HIV-associated opportunistic infections and disease in the age of highly active antiretroviral therapy. Expert Rev. Anti-infect. Ther. 2(4), 521–532 (2004).
  • Turpin JA. The next generation of HIV/AIDS drugs: novel and developmental antiHIV drugs and targets. Expert Rev. Anti-infect. Ther. 1(1), 97–128 (2003).
  • Steinhart CR. Recent advances in the treatment of HIV/AIDS. Expert Rev. Anti-infect. Ther. 2(2), 197–211 (2004).
  • Gandi RT, Walker BD. Promises and pitfalls in the reconstitution of immunity in patients who have HIV-1 infection. Curr. Opin. Immunol. 14, 487–494 (2002).
  • Hatzakis A, Touloumi G, Karanicolas R et al. Effect of recent thymic emigrants on progression of HIV-1 disease. Lancet 355, 599–604 (2000).
  • Boritz E, Palmer BE, Livingston B, Sette A, Wilson CC. Diverse repertoire of HIV-1 p24-specific, IFN producing CD4+ T-cell clones following immune reconstruction of highly active antiretroviral therapy. J. Immunol. 170, 1106–1116 (2003).
  • Leibowitz MR, Mitsuyasu RT. Immune reconstitution strategies in HIV. Curr. Infect. Dis. Rep. 3, 302–308 (2001).
  • Harari A, Petitpierre S, Vallelian F, Pantaleo G. Skewed representation of functionally distinct populations of virus-specific CD4 T-cells in HIV-1-infected subjects with progressive disease: changes after antiretroviral therapy. Blood 103(3), 966–972 (2004).
  • Tsunemi S, Iwasaki T, Imado T et al. Relationship of CD4+CD25+ regulatory T-cells to immune status in HIV-infected patients. AIDS 19(9), 879–886 (2005).
  • Badley AD, Pilon AA, Landay A, Lynch DH. Mechanisms of HIV- associated lymphocyte apoptosis. Blood 96(9), 2951–2964 (2000).
  • Amendola A, Poccia F, Martini F et al. Decreased CD95 expression on naive T-cells from HIV-infected persons undergoing highly active antiretroviral therapy (HAART) and the influence of IL-2 low dose administration. Clin. Exp. Immunol. 120, 324–332 (2000).
  • Munoz-Calleja C, Costantini A, Silvestri G et al. Highly active antiretroviral therapy induces specific changes in effector and central memory T-cell sub-populations. AIDS 15(14), 1887–1890 (2001).
  • Weber K, Meyer D, Grosse V, Stoll M, Schmidt RE, Heiken H. Reconstitution of NK cell activity in HIV-1 infected individuals receiving antiretroviral therapy. Immunobiology 202(2), 172–178 (2000).
  • Wiercinska-Drapolo A, Jaroszewicz J, Flisiak R, Prokopowicz D. Plasma interleukin-18 is associated with viral load and disease progression in HIV-1 infected patients. Microbes. Infect. 6, 1273–1277 (2004).
  • Darcissac ECA, Vidal V, De La Tribonniere X, Mouton Y, Bahr GM. Variations in serum IL-7 and 90K/Mac-2 binding protein (Mac-2 BP) levels analysed in cohorts of HIV-1 patients and correlated with clinical changes following antiretroviral therapy. Clin. Exp. Immunol. 126, 287–294 (2001).
  • Kamga I, Kahi S, Develioglu L et al. Type I interferon production is profoundly and transiently impaired in primary HIV-1 infection. J. Infect. Dis. 192(2), 303–310 (2005).
  • Chehimi J, Campbell DE, Azzoni L et al. Persistent decreases in blood plasmacytoid dentritic cell number and function despite effective highly active antiretroviral therapy and increased blood myeloid dentritic cells in HIV-infected individuals. J. Immunol. 168, 4796–4801 (2002).
  • Barron MA, Blyveis N, Palmer BE, MaWhinney S, Wilson CC. Influence of plasma viremia on defects in number and immunophenotype of blood dentritic cell subsets in human immunodeficiency virus 1-infected individuals. J. Infect. Dis. 187, 26–37 (2003).
  • Mavilio D, Benjamin J, Daucher M et al. Natural killer cells in HIV-1 infection: Dichotomous effects of viremia on inhibitory and activating receptors and thei functional correlates. Proc. Natl Acad. Sci. USA 100(25), 15011–15016 (2003).
  • Azzoni L, Papasavvas E, Chehimi J et al. Sustained impairment of IFN- gamma secretion in suppressed HIV-infected patients despite mature NK cell recovery: evidence for a defective reconstitution of innate immunity. J. Immunol. 168(11), 5764–5770 (2002).
  • Carbonneil C, Donkova-Petrini V, Aouba A, Weiss L. Defective dentritic cell function in HIV-infected patients receiving effective highly active antiretroviral therapy: Neutralization of IL-10 production and depletion of CD4+CD25+ T-cells restore high levels of HIV-specific CD4+ T-cell responses induced by dentritic cells generated in the presence of IFN-α. J. Immunol. 172, 7832–7840 (2004).
  • Pett SL. Kelleher AD. Cytokine therapies in HIV-1 infection: present and future. Expert Rev. Anti-infect. Ther. 1(1), 83–96 (2003).
  • Sereti I, Anthony KB, Martinez-Wilson H et al. IL-2-induced CD4+ T-cell expansion in HIV-infected patients is associated with long-term decreases in T-cell proliferation. Blood 104(3), 775–780 (2004).
  • Sereti I, Imamichi H, Natarajan V et al. In vivo expansion of CD4+CD45RO-CD25+ T-cells expressing foxP3 in IL-2-treated HIV-infected patients. J. Clin. Invest. 115(7), 1839–1847 (2005).
  • Mueller YM, Petrovas C, Bojczuk PM et al. Interleukin-15 increases effector memory CD8+ T-cells and NK cells in simian immunodeficiency virus-infected macaques. J. Virol. 79(8), 4877–4885 (2005).
  • Levine BL, Bernstein WB, Aronson NE et al. Adoptive transfer of costimulated CD4+ T-cells induces expansion of peripheral T-cells and decreases CCR5 expression in HIV infection. Nature Med. 8(1), 47–53 (2002).
  • Bernstein WB, Cox JH, Aronson NE et al. Immune reconstitution following autologous transfers of CD3/CD28 stimulated CD4+ T-cells to HIV-infected persons. Clin. Immunol. 111(3), 262–274 (2004).
  • Garber DA, Silvestri G, Barry AP et al. Blockade of T-cell costimulation reveals interrelated actions of CD4+ and CD8+ T-cells in control of SIV replication. J. Clin. Invest. 113(6), 836–845 (2004).
  • Stiehm ER, Fletcher CV, Mofenson LM et al. Use of human immunodeficiency virus (HIV) human hyperimmune immunoglobulin in HIV Type 1-infected children (Pediatric AIDS clinical trials group protocol 273). J. Infect. Dis. 181, 548–554 (2000).
  • McComsey GA, Whalen CC, Mawhorter SD et al. Placebo-controlled trial of prednisone in advanced HIV-1 infection. AIDS 15(3), 321–327 (2001).
  • Haslett PA, Klausner JD, Makonkawkeyoon S et al. Thalidomide stimulates T-cell responses and interleukin-12 production in HIV-infected patients. AIDS Res. Hum. Retroviruses. 15(13), 1169–1179 (1999).
  • Franks ME, Macpherson GR, Figg WD. Thalidomide. Lancet 363(9423), 1802–1811 (2004).
  • Kurktschiev D, Temelkova-Kurktschiev T, Horn K, Schentke KU. Successful immunomodulating in AIDS patients with ursodeoxycholic acid – a pilot study. Clin. Exp. Immunol. 115, 144–146 (1999).
  • Chapuis AG, Rizzardi P, D’Agostino C et al. Effects of mycophenoloc acid on human immunodeficiency virus infection in vitro and in vivo. Nature Med. 6(7), 762–768 (2000).
  • Sankatsing SUC, Jurriaans S, van Swieten P et al. Highly active antiretroviral therapy with or without mycophenolate mofetil in treatment-naive HIV-1 patients. AIDS 18(14), 1925–1931 (2004).
  • Gori A, Trabattoni D, Bandera A et al. Immunomodulation induced by tucaresol in HIV infection: results of a 16 week pilot Phase I/II trial. Antivir. Ther. 9(4), 603–614 (2004).
  • Wang W. Technology evaluation: reticulose, advanced research. Curr. Opin. Mol. Ther. 5(2), 186–191 (2003).
  • Breitkreutz R, Pittack N, Nebe CT et al. Improvement of immune functions in HIV infection by sulfur supplementation: two randomized trials. J. Mol. Med. 78, 55–62 (2000).
  • Goldstein G, Conant MA, Beall G et al. Safety and efficacy of thymopentin in zidovudine (AZT)-treated asymptomatic HIV-infected subjects with 200- 500 CD4 cells mm3: a double-blind placebo-controlled trial. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 18(3), 279–288 (1995).
  • Chadwick D, Pido-Lopez J, Pires A et al. A pilot study of the safety and efficacy of thymosin α-1 in augmenting immune reconstitution in HIV- infected patients with low CD4 counts taking highly active antiretroviral therapy. Clin. Exp. Immunol. 134(3), 477–481 (2003).
  • Portales P, Reynes J, Rouzier-Panis R, Baillat V, Clot J, Corbeau P. Perforin expression in T-cells and virological response to PEG-interferon α2β in HIV-1 infection. AIDS 17, 505–511 (2003).
  • Emilie D, Burgard M, Lascoux-Combe C et al. Early control of HIV replication in primary HIV-1 infection treated with antiretroviral drugs and pegylated IFN alpha: results from the primoferon A (ANRS 086) study. AIDS 15(11), 1435–1437 (2001).
  • Angel JB, Jacobson MA, Skolnik PR et al. A multicenter, randomized, double-blind, placebo-controlled trial of recombinant human interleukin-10 in HIV-infected subjects. AIDS 14, 2503–2508 (2000).
  • Jacobson MA, Spritzler J, Landay A et al. A Phase I, placebo-controlled trial of multi-dose recombinant human interleukin-12 in patients with HIV infection. AIDS 16(8), 1147–1154 (2002).
  • Aladdin H, Ullum H, Dam Nielson S et al. Granulocyte colony-stimulating factor increases CD4+ T-cell counts of human immunodeficiency virus- infected patients receiving stable, highly active antiretroviral therapy: results from a randomized, placebo-controlled trial. J. Infect. Dis. 181(3), 1148–1152 (2000).
  • Imani N, Gotch F. Prospects for immune reconstitution in HIV-1 infection. Clin. Exp. Immunol. 127, 402–411 (2002).
  • Nguyen BY, Clerici M, Venzon DJ et al. Pilot study of the immunologic effects of recombinant human growth hormone and recombinant insulin-like growth factor in HIV-infected patients. AIDS 12(8), 895–904 (1998).
  • Moss RB, Brandt C, Giermakowska WK et al. HIV-specific immunity during structured antiviral drug treatment interruption. Vaccine 21, 1066–1071 (2003).
  • Ananworanich J, Hirshel B. Interrupting highly active antiretroviral therapy in patients with HIV. Expert Rev. Anti-infect. Ther. 3(1), 51–60 (2005).
  • Berzofsky JA, Ahlers JD, Janik J et al. Progress on new vaccine strategies against chronic viral infections. J. Clin. Invest. 114(4), 450–462 (2004).
  • Autran B, Costagliola D, Murphy R, Katlama C. Evaluating therapeutic vaccines in patients infected with HIV. Expert Rev.Vaccines. 3(4 Suppl.). 169–177 (2004).
  • Wahren B, Liu M. Therapeutic vaccination against HIV. Expert Rev. Vaccines 3(4 Suppl.). 1–10 (2004).
  • Kran AM, Sorensen B, Nyhus J et al. HLA-and dose-dependent immunogenicity of a peptide-based HIV-1 immunotherapy candidate (Vacc- 4x). AIDS 18(14), 1875–1883 (2004).
  • Walsh SR, Bhardwaj N, Gandhil RT. Dentritic cells and the promise of therapeutic vaccines for human immunodeficiency virus (HIV)-1. Curr. HIV Res. 1(2), 205–216 (2003).
  • Garcia F, Lejeune M, Climent N et al. Therapeutic immunization with dentritic cells loaded with heat-inactivated autologous HIV-1 in patients with chronic HIV-1 infection. J. Infect.Dis. 191(10), 1680–1685 (2005).
  • Fernandez-Cruz E, Navarro J, Rodriguez-Sainz C et al. The potential role of the HIV-1 immunogen (Remune) as a therapeutic Vaccine in treatment of HIV infection. Expert Rev.Vaccines 2, 739–752 (2003).
  • Moss RB, Brandt C, Giermakowska W et al. HIV-specific immunity during structured antiviral drug treatment interruption. Vaccine 21, 1066–1071 (2003).
  • Coffey MJ, Phare SM, George S, Peters-Golden M, Kazanjian PH. Granulocyte colony-stimulating factor administration to HIV-infected subjects augments reduced leukotriene synthesis and anticryptococcal activity in neutrophils. J. Clin. Invest. 102(4), 663–670 (1998).
  • Kuritzkes DR, Parenti D, Ward DJ et al. Filgrastim prevents severe neutropenia and reduces infective morbidity in patients with advanced HIV infection: results of a randomized, multicenter, controlled trial. AIDS 12, 65–74 (1998).
  • Brites C, Gilbert MJ, Pedral-Sampaio D et al. A randomized, placebo-controlled trial of granulocyte-macrophage colony-stimulating factor and nucleoside analogue therapy in AIDS. J. Infect. Dis. 182, 1531–1535 (2000).
  • Angel JB, High K, Rhame F et al. Phase III study of granulocyte- macrophage colony-stimulating factor in advanced HIV disease: effect on infections, CD4 cell counts and HIV suppression. AIDS 14, 387–395 (2000).
  • Fagard C, Le Braz M, Gunthard H et al. A controlled trial of granulocyte macrophage-colony stimulating factor during interruption of HAART. AIDS 17, 1487–1492 (2003).
  • Kedzierska K, Paukovics G, Handley A et al. Interferon-γ therapy activates human monocytes for enhanced phagocytosis of mycobacterium avium complex in HIV infected individuals. HIV Clin.Trials 5(2), 80–85 (2004).
  • Gieseler RK, Marquitan G, Scolaro MJ, Cohen MD. Lessons from history: dysfunctional APCs, inherent dangers of STI and an important goal, as yet unmet. Trends Immunol. 24(1), 11 (2003).
  • Lu W, Achour A, Arlie M, Cao L, Andrieu JM. Enhanced dentritic cell-driven proliferation and antiHIV active CD8+ T-cell by a new phenothiazine derivative, aminoperazine. J. Immunol. 167(5), 2929–2935 (2001).
  • De Becker G, Moulin V, Pajak B et al. The adjuvant monophosphoryl lipid A increases the function of antigen-presenting cells. Int. Immunol. 12(6), 807– 815 (2000).
  • Bahr GM. Non-specific immunotherapy of HIV-1 infection: potential use of the synthetic immunomodulator murabutide. J. Antimicrob. Chemother. 51, 5–8 (2003).
  • Bahr GM, Darcissac E, Bevec D, Dukor P, Chedid A. Immunopharmacological activities and clinical development of muramyl peptides with particular emphasis on murabutide. Int. J. Immunopharmacol. 14(2), 117–131 (1995).
  • Vidal VF, Casteran N, Riendeau CJ et al. Macrophage stimulation with murabutide, an HIV-suppressive muramyl peptide derivative, selectively activate extracellular signal-regulated kinases 1 and 2, C/EBPβ and STAT1: role of CD14 and Toll-like receptors 2 and 4. Eur. J. Immunol. 31, 1962–1971 (2001).
  • Vidal V, Dewulf J, Bahr GM. Enhanced maturation and functional capacity of monocyte-derived immature dentritic cells by the synthetic immunomodulator murabutide. Immunology 103, 479–487 (2001).
  • Darcissac EA, Truong MJ, Dewulf J et al. The synthetic immunomodulator murabutide controls human immunodeficiency virus Type 1 replication at multiple levels in macrophages and dentritic cells. J. Virol. 74(17), 7794–7802 (2000).
  • Bahr GM, Darcissac EA, Casteran N et al. Selective regulation of human immunodeficiency virus-infected CD4+ lymphocytes by a synthetic immunomodulator leads to potent virus suppression in vitro and in hu-PBL- SCID mice. J. Virol. 75(15), 6941–6952 (2001).
  • Goasduff T, Darcissac EA, Vidal V, Capron A. Bahr GM. The transcriptional response of human macrophages to murabutide reflects a spectrum of biological effects for the synthetic immunomodulator. Clin. Exp. Immunol. 128, 474–482 (2002).
  • Cocude C. Truong MJ, Billaut-Mulot O et al. A novel cellular RNA helicase, RH116, differentially regulates cell growth, programmed cell death and human immunodeficiency virus Type 1 replication. J. Gen. Virol. 84, 3215–3225 (2003).
  • Truong MJ, Delsart V, Bahr GM. Differentially expressed genes in HIV-1- infected macrophages following treatment with the virus-suppressive immunomodulator murabutide. Virus Res. 99, 25–33 (2004).
  • Amiel C, De La Tribonniere X, Vidal V, Darcissac E, Mouton Y, Bahr GM. Clinical tolerance and immunologic effects after single or repeated administrations of the synthetic immunomodulator murabutide in HIV-1-infected patients. J. Acquir. Immune defic. Synd. 30, 294–305 (2002).
  • De La Tribonniere X, Mouton Y, Vidal V et al. A Phase I study of a six-week cycle of immunotherapy with murabutide in HIV-1 patients naive to antiretrovirals. Med. Sci. Monit. 9(6), 43–50 (2003).
  • Bahr GM, De La Tribonniere X, Darcissac E et al. Clinical and immunological effects of a 6 week immunotherapy cycle with murabutide in HIV-1 patients with unsuccessful long-term antiretroviral treatment. J. Antimicrob. Chemother. 51, 1377–1388 (2003).
  • Gougeon ML, Malkovsky M, Casetti R, Agrati C, Poccia F. Innate T-cell immunity to HIV-infection: immunotherapy with phosphocarbohydrates, a novel strategy of immune intervention. Vaccine 20, 1938–1941 (2002).
  • Kunzmann V, Bauer E, Feurle J et al. Stimulation of T-cells by aminobiphosphonates and induction of antiplasma cell activity in multiple myeloma. Blood 96, 384–392 (2000).
  • Gupta N, Arthos J, Khazanie P et al. Targeted lysis of HIV-infected cells by natural killer cells armed and triggered by a recombinant immunoglobulin fusion protein: implications for immunotherapy. Virology 332(2), 491–497 (2005).
  • Portales P, Reynes J, Pinet V et al. Interferon-α restores HIV-induced alteration of natural killer cell perforin expression in vivo. AIDS 17, 495–504 (2003).
  • Goldstein D, Hertzog P, Tomkinson E et al. Administration of imiquimod, an interferon inducer, in asymptomatic human immunodeficiency virus-infected persons to determine safety and biologic response modification. J. Infect. Dis. 178(3), 858–861 (1998).
  • Jansen CA, De Cuyper IM, Steingrover R et al. Analysis of the effect of highly acive antiretroviral therapy during acute HIV-1 infection on HIV-specific CD4 T cell function. AIDS 19(11), 1145–1154 (2005).
  • Sankaran S, Guadalupe M, Reay E et al. Gut mucosal T-cell responses and gene expression correlate with protection against disease in long-term HIV-1-infected nonprogressors. Proc. Natl Acad. Sci. USA 102(28), 9860–9865 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.