36
Views
2
CrossRef citations to date
0
Altmetric
Review

Genetic dissection of inflammatory bowel disease: unravelling etiology and improving diagnostics

, &
Pages 609-617 | Published online: 10 Jan 2014

References

  • Loftus EV Jr. Clinical epidemiology of inflammatory bowel disease: incidence, prevalence, and environmental influences. Gastroenterology 126(6), 1504–1517 (2004).
  • Bassi A, Bodger K. Cost of illness of inflammatory bowel disease in the UK: a single center retrospective study. Gut 53(10), 1471–1478 (2004).
  • Bernstein CN, Blanchard JF, Kliewer E, Wajda A. Cancer risk in patients with inflammatory bowel disease: a population-based study. Cancer 91, 854862 (2001).
  • Podolsky DK. Inflammatory bowel disease. N. Engl. J. Med. 347(6), 417–429 (2002).
  • Kirsner J, Spencer J. Familial occurrences of ulcerative colitis, regional enteritis and ileocolitis. Ann. Intern. Med. 59, 133144 (1963).
  • Halfvarson J, Bodin L, Tysk C, Lindberg E, Jarnerot G. Inflammatory bowel disease in a Swedish twin cohort: a long-term follow-up of concordance and clinical characteristics. Gastroenterology 124(7), 1767–1773 (2003).
  • Fielding JF. The relative risk of inflammatory bowel disease among parents and siblings of Crohn’s disease patients. J. Clin. Gastroenterol. 8, 655–657 (1986).
  • Laharie D, Debeugny S, Peeters M et al. Inflammatory bowel disease in spouses and their offspring. Gastroenterology 120, 816–819 (2001).
  • Satsangi J, Grootscholten C, Holt H, Jewell DP. Clinical patterns of familial inflammatory bowel disease. Gut 38(5), 738–741 (1996).
  • Newman B, Siminovitch KA. Recent advances in the genetics of inflammatory bowel disease. Curr. Opin. Gastroenterol. 21(4), 401–407 (2005).
  • Satsangi J, Parkes M, Louis E et al. Two-stage genome-wide search in inflammatory bowel disease provides evidence for susceptibility loci on chromosomes 3, 7 and 12. Nature Genet. 14(2), 199–202 (1996).
  • Hugot JP, Laurent-Puig P, Gower-Rousseau C et al. Mapping of a susceptibility locus for Crohn’s disease on chromosome 16. Nature 379(6568), 821–823 (1996).
  • Parkes M, Barmada MM, Satsangi J, Weeks DE, Jewell DP, Duerr RH. The IBD2 locus shows linkage heterogeneity between ulcerative colitis and Crohn disease. Am. J. Hum. Genet. 67(6), 1605–1610 (2000).
  • Brant SR, Panhuysen CI, Bailey-Wilson JE et al. Linkage heterogeneity for the IBD1 locus in Crohn’s disease pedigrees by disease onset and severity. Gastroenterology 119(6), 1483–1490 (2000).
  • Hugot JP, Chamaillard M, Zouali H et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 411(6837), 599–603 (2001).
  • Ogura Y, Bonen DK, Inohara N et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 411(6837), 603–606 (2001).
  • Hampe J, Cuthbert A, Croucher PJ et al. Association between insertion mutation in NOD2 gene and Crohn’s disease in German and British populations. Lancet 357(9272), 1925–1928 (2001).
  • Lesage S, Zouali H, Cezard JP et al. CARD15/NOD2 Mutational analysis and genotype-phenotype correlation in 612 patients with inflammatory bowel disease. Am. J. Hum. Genet. 70, 845–857 (2002).
  • Economou M, Trikalinos TA, Loizou KT, Tsianos EV, Ioannidis JP. Differential effects of NOD2 variants on Crohn’s disease risk and phenotype in diverse populations: a meta-analysis. Am. J. Gastroenterol. 99(12), 2393–2404 (2004).
  • Cuthbert AP, Fisher SA, Mirza MM et al. The contribution of NOD2 gene mutations to the risk and site of disease in inflammatory bowel disease. Gastroenterology 122, 867–874 (2002).
  • Ahmad T, Armuzzi A, Bunce M et al. The molecular classification of the clinical manifestations of Crohn’s disease. Gastroenterology 122, 854–866 (2002).
  • Newman B, Silverberg MS, Gu X et al. CARD15 and HLA DRB1 alleles influence susceptibility and disease localization in Crohn’s disease. Am. J. Gastroenterol. 99(2), 306–315 (2004).
  • Vermeire S, Wild G, Kocher K et al. CARD15 genetic variation in a Quebec population: prevalence, genotype-phenotype relationship, and haplotype structure. Am. J. Hum. Genet. 71, 74–83 (2002).
  • Cavanaugh JA, Adams KE, Quak EJ et al. CARD15/NOD2 risk alleles in the development of Crohn’s disease in the Australian population. Ann. Hum. Genet. 67(1), 35–41 (2003).
  • Arnott ID, Nimmo ER, Drummond HE et al. NOD2/CARD15, TLR4 and CD14 mutations in Scottish and Irish Crohn’s disease patients: evidence for genetic heterogeneity within Europe? Genet. Immun. 5(5), 417–425 (2004).
  • Bonen DK, Nicolae DL, Moran A et al. Racial differences in NOD2 variation:characterization of NOD2 in African–Americans with Crohn’s disease. Gastroenterology 122, A29–A35 (2002).
  • Inoue N, Tamura K, Kinouchi Y et al. Lack of common NOD2 variants in Japanese patients with Crohn’s disease. Gastroenterology 123(1), 86–91 (2002).
  • Leong RW, Armuzzi A, Ahmad T et al. NOD2/CARD15 gene polymorphisms and Crohn’s disease in the Chinese population. Aliment. Pharmacol.Ther. 17(12), 1465–1470 (2003).
  • Colombel J. The CARD15 gene in Crohn’s disease: Are there implications for current clinical practice? Clin. Gastroenterol. Hepatol.. 59 (2003).
  • Yang H, McElree C, Roth MP et al. Familial empirical risks for inflammatory bowel disease: differences between Jews and non-Jews. Gut 34, 517524 (1993).
  • Rawsthorne P, Wajda A. Epidemiology of Crohn’s disease and ulcerative colitis in a central Canadian province: a population-based study. Am. J. Epidemiol. 149(10), 916–924 (1999).
  • Ekbom A, Helmick C, Zack M, Adami HO. The epidemiology of inflammatory bowel disease: a large, population-based study in Sweden. Gastroenterology 100(2), 350–358 (1991).
  • Vermeire S, Wild G, Kocher K et al. CARD15 genetic variation in a Quebec population: prevalence, genotype-phenotype relationship, and haplotype structure. Am. J. Hum. Genet. 71(1), 74–83 (2002).
  • Idestrom M, Rubio C, Granath F, Finkel Y, Hugot JP. CARD15 mutations are rare in Swedish pediatric Crohn disease. J. Pediatr. Gastroenterol. Nutr. 40(4), 456–460 (2005).
  • Sugimura K, Taylor KD, Lin YC et al. A novel NOD2/CARD15 haplotype conferring risk for Crohn’s disease in Ashkenazi Jews. Am. J. Hum. Genet. 72, 509–519 (2003).
  • Tukel T, Shalata A, Present D et al. Crohn’s disease: frequency and nature of CARD15 mutations in Ashkenazi and Sephardi/Oriental Jewish families. Am. J. Hum. Genet. 74, 623–636 (2004).
  • Radlmayr M, Torok HP, Martin K, Folwaczny C. The c-insertion mutation of the NOD2 gene is associated with fistulizing and fibrostenotic phenotypes in Crohn’s disease. Gastroenterology 122, 2091–2092 (2002).
  • Buning C, Genschel J, Buhner S et al. Mutations in the NOD2/CARD15 gene in Crohn’s disease are associated with ileocecal resection and are a risk factor for reoperation. Aliment Pharmacol.Ther. 19(10), 1073–1078 (2004).
  • Ogura Y, Inohara N, Benito A, Chen FF, Yamaoka S, Nunez G. Nod2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-kappaB. J. Biol. Chem. 276(7), 4812–4818 (2001).
  • Rosenstiel P, Fantini M, Brautigam K et al. TNF-alpha and IFN-gamma regulate the expression of the NOD2 (CARD15) gene in human intestinal epithelial cells. Gastroenterology 124(4), 1001–1009 (2003).
  • Hisamatsu T, Suzuki M, Reinecker HC, Nadeau WJ, McCormick BA, Podolsky DK. CARD15/NOD2 functions as an antibacterial factor in human intestinal epithelial cells. Gastroenterology 124(4), 993–1000 (2003).
  • Lala S, Ogura Y, Osborne C et al. Crohn’s disease and the NOD2 gene: a role for paneth cells. Gastroenterology 125(1), 47–57 (2003).
  • Dangl JL, Jones JD. Plant pathogens and integrated defence responses to infection. Nature 411(6839), 826–833 (2001).
  • Inohara N, Ogura Y, Nunez G. Nods: a family of cytosolic proteins that regulate the host response to pathogens. Curr. Opin. Microbiol. 5(1), 76–80 (2002).
  • Akira S, Hemmi H. Recognition of pathogen-associated molecular patterns by TLR family. Immunol. Lett. 85(2), 85–95 (2003).
  • Inohara N, Ogura Y, Fontalba A et al. Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn’s disease. J. Biol. Chem. 278(8), 5509–5512 (2003).
  • Girardin SE, Boneca IG, Viala J et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J. Biol. Chem. 278(11), 8869–8872 (2003).
  • Vavricka SR, Musch MW, Chang JE et al. hPepT1 transports muramyl dipeptide, activating NF-kappaB and stimulating IL-8 secretion in human colonic Caco2/bbe cells. Gastroenterology 127(5), 1401–1409 (2004).
  • Inohara N, Koseki T, Lin J et al. An induced proximity model for NF-ΚB activation in the Nod1/RICK and RIP signaling pathways. J. Biol. Chem. 275(36), 27823–27831 (2000).
  • Kobayashi K, Inohara N, Hernandez LD et al. RICK/Rip2/CARDIAK mediates signaling for receptors of the innate and adaptive immune systems. Nature 416(6877), 194–199 (2002).
  • Schreiber S, Nikolaus S, Hampe J. Activation of nuclear factor kappa B inflammatory bowel disease. Gut. 42(4), 477–484 (1998).
  • Bonen DK, Ogura Y, Nicolae DL et al. Crohn’s disease-associated NOD2 variants share a signaling defect in response to lipopolysaccharide and peptidoglycan. Gastroenterology 124(1), 140–146 (2003).
  • Chamaillard M, Girardin SE, Viala J, Philpott DJ. Nods, Nalps and Naip: intracellular regulators of bacterial-induced inflammation. Cell. Microbiol. 5(9), 581–592 (2003).
  • van Heel DA, Ghosh S, Butler M et al. Muramyl dipeptide and toll-like receptor sensitivity in NOD2-associated Crohn’s disease. Lancet 365(9473), 1794–1796 (2005).
  • Kobayashi KS, Chamaillard M, Ogura Y et al. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 307(5710), 731–734 (2005).
  • Lala S, Ogura Y, Osborne C et al. Crohn’s disease and the NOD2 gene: a role for paneth cells. Gastroenterology 125(1), 47–57 (2003).
  • Ogura Y, Lala S, Xin W et al. Expression of NOD2 in Paneth cells: a possible link to Crohn’s ileitis. Gut 52 (11), 1591–1597 (2003).
  • Wehkamp J, Harder J, Weichenthal M et al. NOD2 (CARD15) mutations in Crohn’s disease are associated with diminished mucosal alpha-defensin expression. Gut 53(11), 1658–1664 (2004).
  • Rioux JD, Silverberg MS, Daly MJ et al. Genomewide search in Canadian families with inflammatory bowel disease reveals two novel susceptibility loci. Am. J. Hum. Genet. 66, 1863–1870 (2000).
  • Rioux JD, Daly MJ, Silverberg MS et al. Genetic variation in the 5q31 cytokine gene cluster confers susceptibility to Crohn’s disease. Nature Genet. 29, 223228 (2001).
  • Giallourakis C, Stoll M, Miller K et al. IBD5 is a general risk factor for inflammatory bowel disease: replication of association with Crohn disease and identification of a novel association with ulcerative colitis. Am. J. Hum. Genet. 73, 205–211 (2003).
  • Mirza MM, Fisher SA, King K et al. Genetic evidence for interaction of the 5q31 cytokine locus and the CARD15 gene in Crohn’s disease. Am. J. Hum. Genet. 72, 1018–1022 (2003).
  • Yamazaki K, Takazoe M, Tanaka T et al. Association analysis of SLC22A4, SLC22A5 and DLG5 in Japanese patients with Crohn’s disease. J. Hum. Genet. 49(12), 664–668 (2004).
  • Torok HP, Glas J, Tonenchi L et al. Polymorphisms in the DLG5 and OCTN cation transporter genes in Crohn’s disease. Gut 54(10), 1421–1427 (2005).
  • Peltekova VD, Wintle RF, Rubin LA et al. Functional variants of OCTN cation transporter genes are associated with Crohn’s disease. Nature Genet. 36(5), 471–475 (2004).
  • Yabuuchi H, Tamai I, Nezu J et al. Novel membrane transporter OCTN1 mediates multispecific, bidirectional, and pH-dependent transport of organic cations. J. Pharmacol. Exp. Ther. 289(2), 768–773 (1999).
  • Newman B, Gu X, Wintle R et al. A risk haplotype in the solute carrier family 22A4/22A5 gene cluster influences phenotypic expression of Crohn’s disease. Gastroenterology 128(2), 260–269 (2005).
  • Armuzzi A, Ahmad T, Ling KL et al. Genotype-phenotype analysis of the Crohn’s disease susceptibility haplotype on chromosome 5q31. Gut 52(8), 1133–1139 (2003).
  • Stoll M, Corneliussen B, Costello CM et al. Genetic variation in DLG5 is associated with inflammatory bowel disease. Nature Genet. 36(5), 476–480 (2004).
  • Daly MJ, Pearce AV, Farwell L et al. Association of DLG5 R30Q variant with inflammatory bowel disease. Eur. J. Hum. Genet. 13(7), 835–839 (2005).
  • Noble CL, Nimmo ER, Drummond H, Smith L, Arnott ID, Satsangi J. DLG5 variants do not influence susceptibility to inflammatory bowel disease in the Scottish population. Gut (2005) Apr 20 [Epub ahead of print].
  • Hampe J, Schreiber S, Shaw SH et al. A genomewide analysis provides evidence for novel linkages in inflammatory bowel disease in a large European cohort. Am. J. Hum. Genet. 64(3), 808–816 (1999).
  • Shah G, Brugada R, Gonzalez O et al. The cloning, genomic organization and tissue expression profile of the human DLG5 gene. BMC Genomics 3(1), 6 (2002).
  • Wakabayashi M, Ito T, Mitsushima M et al. Interaction of lp-dlg/KIAA0583, a membrane-associated guanylate kinase family protein, with vinexin and beta-catenin at sites of cell-cell contact. J. Biol. Chem. 278(24), 21709–21714 (2003).
  • Hollander D. Crohn’s disease – a permeability disorder of the tight junction? Gut 29(12), 1621–1624 (1988).
  • Peeters M, Geypens B, Claus D et al. Clustering of increased small intestinal permeability in families with Crohn’s disease. Gastroenterology 113(3), 802–807 (1997).
  • Buhner S, Buning C, Genschel J et al. Genetic basis for increased intestinal permeability in families with Crohn’s disease: role of CARD15 3020insC mutation? Gut 2005 [Epub ahead of print]
  • Van Heel DA, Fisher SA, Kirby A et al. Inflammatory bowel disease susceptibility loci defined by genome scan meta-analysis of 1952 affected relative pairs. Hum. Mol. Genet. 13(7), 763–770 (2004).
  • Yap LM, Ahmad T, Jewell DP. The contribution of HLA genes to IBD susceptibility and phenotype. Best Pract. Res. Clin. Gastroenterol. 18(3), 577–596 (2004).
  • Silverberg MS, Mirea L, Bull SB et al. A population – and family – based study of Canadian families reveals association of HLA DRB10103 with colonic involvement in inflammatory bowel disease. Inflamm. Bowel Dis. 9(1), 1–9 (2003).
  • Farmer RG, Whelan G, Fazio VW. Long-term follow-up of patients with Crohn’s disease. Relationship between the clinical pattern and prognosis. Gastroenterology 88(6), 1818–1825 (1985).
  • Whelan G, Farmer RG, Fazio VW, Goormastic M. Recurrence after surgery in Crohn’s disease. Relationship to location of disease (clinical pattern) and surgical indication. Gastroenterology 88(6), 1826–1833 (1985).
  • Griffiths AM, Wesson DE, Shandling B, Corey M, Sherman PM. Factors influencing postoperative recurrence of Crohn’s disease in childhood. Gut 32(5), 491–495 (1991).
  • Gasche C, Scholmerich J, Brynskov J et al. A simple classification of Crohn’s disease: report of the Working Party for the World Congresses of Gastroenterology, Vienna 1998. Inflamm. Bowel Dis. 6(1), 8–15 (2000).
  • Vasiliauskas EA, Kam LY, Karp LC, Gaiennie J, Yang H, Targan SR. Marker antibody expression stratifies Crohn’s disease into immunologically homogeneous subgroups with distinct clinical characteristics. Gut 47(4), 487–496 (2000).
  • Smith BR, Arnott ID, Drummond HE, Nimmo ER, Satsangi J. Disease location, antiSaccharomyces cerevisiae antibody, and NOD2/CARD15 genotype influence the progression of disease behavior in Crohn’s disease. Inflamm. Bowel Dis. 10(5), 521–528 (2004).
  • Mow WS, Vasiliauskas EA, Lin YC et al. Association of antibody responses to microbial antigens and complications of small bowel Crohn’s disease. Gastroenterology 126(2), 414–424 (2004).
  • Gasche C, Grundtner P. Genotypes and phenotypes in Crohn’s disease: do they help in clinical management? Gut. 54(1), 162–167 (2005).
  • Brant SR, McGovern DP. NOD2, not yet: con. Inflamm. Bowel Dis. 11(5), 507–509 (2005).
  • Rubin DT. To test or ‘NOD-2’ test: what are the questions? The balanced viewpoint. Inflamm. Bowel Dis. 11(5), 510–512 (2005).
  • Satsangi J, Campbell H, Dunlop MG, Porteous MEM. Molecular genetics in gastroenterology: from research success to clinical application. Nature Clin. Prac. Gastroenterol. Hepatol. 2(3), 118–119 (2005).
  • Silver J. The importance of penetration. Inflamm. Bowel Dis. 9(5), 341 (2003).
  • van der Linde K, Boor PP, Houwing-Duistermaat JJ, Kuipers EJ, Wilson JH, de Rooij FW. CARD15 and Crohn’s disease: Healthy homozygous carriers of the 3020insC frameshift mutation. Am. J. Gastroenterol. 98, 613–617 (2003).
  • Esters N, Pierik M, van Steen K et al. Transmission of CARD15 (NOD2) variants within families of patients with inflammatory bowel disease. Am. J. Gastroenterol. 99(2), 299–305 (2004).
  • Konda V, Huo D, Hermes G et al. Do inflammatory bowel disease patients want genetic testing? Gastroenterology 125, A369 (2003).
  • Appleton JL, Mascarenhas J, Esplen MJ et al. Demand for genetic testing for inflammatory bowel disease. Gastroenterology 126, A352 (2004).
  • McLeod HL, Siva C. The thiopurine S-methyltransferase gene locus – implications for clinical pharmacogenomics. Pharmacogenomics 3(1), 89–98 (2002).
  • Mascheretti S, Schreiber S. The role of pharmacogenomics in the prediction of efficacy of antiTNF therapy in patients with Crohn’s disease. Pharmacogenomics 5(5), 479–486 (2004).
  • Vermeire S, Louis E, Rutgeerts P et al. NOD2/CARD15 does not influence response to infliximab in Crohn’s disease. Gastroenterology 123(1), 106–111 (2002).
  • Mascheretti S, Hampe J, Croucher PJ et al. Response to infliximab treatment in Crohn’s disease is not associated with mutations in the CARD15 (NOD2) gene: an analysis in 534 patients from two multicenter, prospective GCP-level trials. Pharmacogenetics 12(7), 509–515 (2002).
  • Urcelay E, Mendoza JL, Martinez A et al. IBD5 polymorphisms in inflammatory bowel disease: association with response to infliximab. World J. Gastroenterol. 11(8), 1187–1192 (2005).
  • Rahman P, Bartlett S, Siannis F et al. CARD15: a pleiotropic autoimmune gene that confers susceptibility to psoriatic arthritis. Am. J. Hum. Genet. 73(3), 677–681 (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.