36
Views
12
CrossRef citations to date
0
Altmetric
Review

Airway smooth muscle modulation and airway hyper-responsiveness in asthma: new cellular and molecular paradigms

Pages 353-364 | Published online: 10 Jan 2014

References

  • Stephens NL, Li W, Jiang H, Unruh H, Ma X. The biophysics of asthmatic airway smooth muscle. Respir. Physiol. Neurobiol.137, 125–140 (2003).
  • Seow CY, Schellenberg RR, Pare PD. Structural and functional changes in the airway smooth muscle of asthmatic subjects. Am. J. Respir. Crit. Care Med.158, S179–S186. (1998).
  • Seow CY, Fredberg JJ. Historical perspective on airway smooth muscle: the saga of a frustrated cell. J. Appl. Physiol.91, 938–952 (2001).
  • Ma X, Cheng Z, Kong H et al. Changes in biophysical and biochemical properties of single bronchial smooth muscle cells from asthmatic subjects. Am. J. Physiol. Lung Cell Mol. Physiol. 283, L1181–L1189 (2002).
  • Rabe KF. Mechanisms of immune sensitization of human bronchus. Am. J. Respir. Crit. Care Med. 158, S161–S170 (1998).
  • Schmidt D, Rabe K. Immune mechanisms of smooth muscle hyperreactivity in asthma. J. Allergy Clin. Immunol.105, 673–682 (2000).
  • Burgess JK, Ge Q, Boustany S, Black JL, Johnson PR. Increased sensitivity of asthmatic airway smooth muscle cells to prostaglandin E2 might be mediated by increased numbers of E-prostanoid receptors. J. Allergy. Clin. Immunol. 113, 876–881 (2004).
  • Roth M, Johnson PR, Borger P et al. Dysfunctional interaction of C/EBPα and the glucocorticoid receptor in asthmatic bronchial smooth-muscle cells. N. Engl. J. Med. 351, 560–574 (2004).
  • Burgess JK, Blake AE, Boustany S et al. CD40 and OX40 ligand are increased on stimulated asthmatic airway smooth muscle. J. Allergy Clin. Immunol. 115, 302–308 (2005).
  • Johnson PR, Burgess JK, Ge Q et al. Connective tissue growth factor induces extracellular matrix in asthmatic airway smooth muscle. Am. J. Respir. Crit. Care Med. 173, 32–41 (2006).
  • Amrani Y, Panettieri RA, Jr. Modulation of calcium homeostasis as a mechanism for altering smooth muscle responsiveness in asthma. Curr. Opin. Allergy Clin. Immunol. 2, 39–45 (2002).
  • Amrani Y, Panettieri RA. Airway smooth muscle: contraction and beyond. Int. J. Biochem. Cell Biol. 35, 272–276 (2003).
  • Amrani Y, Tliba O, Deshpande DA, Walseth TF, Kannan MS, Panettieri RA Jr. Bronchial hyperresponsiveness: insights into new signaling molecules. Curr. Opin. Pharmacol. 4, 230–234 (2004).
  • Pauwels RA, Lofdahl CG, Postma DS et al. Effect of inhaled formoterol and budesonide on exacerbations of asthma. Formoterol and Corticosteroids Establishing Therapy (FACET) International Study Group. N. Engl. J. Med. 337, 1405–1411 (1997).
  • Walters JA, Wood-Baker R, Walters EH. Long-acting b2-agonists in asthma: an overview of Cochrane systematic reviews. Respir. Med. 99, 384–395 (2005).
  • Currie GP, Lee DK, Wilson AM. Effects of dual therapy with corticosteroids plus long acting β2-agonists in asthma. Respir. Med. 99, 683–694 (2005).
  • Sears MR. Adverse effects of β-agonists. J. Allergy Clin. Immunol. 110, S322–S328 (2002).
  • Callaerts-Vegh Z, Evans KL, Dudekula N et al. Effects of acute and chronic administration of β-adrenoceptor ligands on airway function in a murine model of asthma. Proc. Natl Acad. Sci. USA101, 4948–4953 (2004).
  • Nelson HS. Is there a problem with inhaled long-acting β-adrenergic agonists? J. Allergy Clin. Immunol. 117, 3–16 (2006).
  • Nelson HS, Weiss ST, Bleecker ER, Yancey SW, Dorinsky PM. The Salmeterol Multicenter Asthma Research Trial: a comparison of usual pharmacotherapy for asthma or usual pharmacotherapy plus salmeterol. Chest129, 15–26 (2006).
  • James AL, Elliot JG, Abramson MJ, Walters EH. Time to death, airway wall inflammation and remodelling in fatal asthma. Eur. Respir. J. 26, 429–434 (2005).
  • Mann M, Chowdhury B, Sullivan E, Nicklas R, Anthracite R, Meyer RJ. Serious asthma exacerbations in asthmatics treated with high-dose formoterol. Chest124, 70–74 (2003).
  • Frey U, Brodbeck T, Majumdar A et al. Risk of severe asthma episodes predicted from fluctuation analysis of airway function. Nature438, 667–670 (2005).
  • Tamaoki J, Tagaya E, Kawatani K, Nakata J, Endo Y, Nagai A. Airway mucosal thickening and bronchial hyperresponsiveness induced by inhaled β2-agonist in mice. Chest126, 205–212 (2004).
  • Fenech A, Hall IP. Pharmacogenetics of asthma. Br. J. Clin. Pharmacol. 53, 3–15 (2002).
  • Wechsler ME, Lehman E, Lazarus SC et al. β-adrenergic receptor polymorphisms and response to salmeterol. Am. J. Respir. Crit. Care Med.173(5), 519–526 (2006).
  • Swystun VA, Gordon JR, Davis EB, Zhang X, Cockcroft DW. Mast cell tryptase release and asthmatic responses to allergen increase with regular use of salbutamol. J. Allergy Clin. Immunol. 106, 57–64 (2000).
  • McGraw DW, Almoosa KF, Paul RJ, Kobilka BK, Liggett SB. Antithetic regulation by β-adrenergic receptors of Gq receptor signaling via phospholipase C underlies the airway β-agonist paradox. J. Clin. Invest. 112, 619–626 (2003).
  • Faisy C, Naline E, Rouget C et al. Nociceptin inhibits vanilloid TRPV-1-mediated neurosensitization induced by fenoterol in human isolated bronchi. Naunyn Schmiedebergs Arch. Pharmacol. 370, 167–175 (2004).
  • Faisy C, Pinto F, Danel C et al. β2-adrenoceptor agonist modulates endothelin-1-receptors in human isolated bronchi. Am. J. Respir. Cell Mol. Biol. 34(4), 410–416 (2006).
  • Girodet PO, Berger P, Martinez B, Marthan R, Advenier C, Molimard M. Paradoxal effect of salbutamol in an in vitro model of bronchoprotection. Fundam. Clin. Pharmacol. 19, 179–186 (2005).
  • Agrawal DK, Ariyarathna K, Kelbe PW. (S)-Albuterol activates pro-constrictory and pro-inflammatory pathways in human bronchial smooth muscle cells. J. Allergy Clin. Immunol. 113, 503–510 (2004).
  • Sayers I, Swan C, Hall IP. The effect of β2-adrenoceptor agonists on phospholipase C (β1) signalling in human airway smooth muscle cells. Eur. J. Pharmacol. (2006) (In Press).
  • Henderson WR Jr, Banerjee ER, Chi EY. Differential effects of (S)- and (R)-enantiomers of albuterol in a mouse asthma model. J. Allergy Clin. Immunol. 116, 332–340 (2005).
  • Mak JC, Roffel AF, Katsunuma T, Elzinga CR, Zaagsma J, Barnes PJ. Up-regulation of airway smooth muscle histamine H1 receptor mRNA, protein, and function by β2-adrenoceptor activation. Mol. Pharmacol. 57, 857–864 (2000).
  • Katsunuma T, Roffel AF, Elzinga CR, Zaagsma J, Barnes PJ, Mak JC. β2-adrenoceptor agonist-induced upregulation of tachykinin NK(2) receptor expression and function in airway smooth muscle. Am. J. Respir. Cell Mol. Biol. 21, 409–417 (1999).
  • Katsunuma T, Fujita K, Mak JC, Barnes PJ, Ueno K, Iikura Y. β-adrenergic agonists and bronchial hyperreactivity: role of β2-adrenergic and tachykinin neurokinin-2 receptors. J. Allergy Clin. Immunol. 106, S104–S108 (2000).
  • Berger P, N’Guyen C, Buckley M, Scotto-Gomez E, Marthan R, Tunon-de-Lara JM. Passive sensitization of human airways induces mast cell degranulation and release of tryptase. Allergy57, 592–599 (2002).
  • Ramos-BarbonD, Presley JF, Hamid QA, Fixman ED, Martin JG. Antigen-specific CD4+ T cells drive airway smooth muscle remodeling in experimental asthma. J. Clin. Invest. 115, 1580–1589 (2005).
  • Lazaar AL, Panettieri RA Jr. Airway smooth muscle: a modulator of airway remodeling in asthma. J. Allergy Clin. Immunol. 116, 488–495 (2005).
  • Brightling CE, Bradding P, Symon FA, Holgate ST, Wardlaw AJ, Pavord ID. Mast-cell infiltration of airway smooth muscle in asthma. N. Engl. J. Med. 346, 1699–1705 (2002).
  • Ammit AJ, Bekir SS, Johnson PR, Hughes JM, Armour CL, Black JL. Mast cell numbers are increased in the smooth muscle of human sensitized isolated bronchi. Am. J. Respir. Crit. Care Med. 155, 1123–1129 (1997).
  • Berger P, Girodet PO, Begueret H et al. Tryptase-stimulated human airway smooth muscle cells induce cytokine synthesis and mast cell chemotaxis. FASEB J. 17, 2139–2141 (2003).
  • Carroll NG, Mutavdzic S, James AL. Distribution and degranulation of airway mast cells in normal and asthmatic subjects. Eur. Respir. J. 19, 879–885 (2002).
  • Chen FH, Samson KT, Miura K et al. Airway remodeling: a comparison between fatal and nonfatal asthma. J. Asthma41, 631–638 (2004).
  • Robinson DS. The role of the mast cell in asthma: induction of airway hyperresponsiveness by interaction with smooth muscle? J. Allergy Clin. Immunol. 114, 58–65 (2004).
  • Bryborn M, Adner M, Cardell LO. Interleukin-4 increases murine airway response to kinins, via up-regulation of bradykinin B1-receptors and altered signalling along mitogen-activated protein kinase pathways. Clin. Exp. Allergy34, 1291–1298 (2004).
  • Zhang Y, Adner M, Cardell LO. Up-regulation of bradykinin receptors in a murine in-vitro model of chronic airway inflammation. Eur. J. Pharmacol. 489, 117–126 (2004).
  • Zhang Y, Adner M, Cardell LO. Glucocorticoids suppress transcriptional up-regulation of bradykinin receptors in a murine in vitro model of chronic airway inflammation. Clin. Exp. Allergy35, 531–538 (2005).
  • Sakai H, Otogoto S, Chiba Y, Abe K, Misawa M. Involvement of p42/44 MAPK and RhoA protein in augmentation of ACh-induced bronchial smooth muscle contraction by TNF-α in rats. J. Appl. Physiol. 97, 2154–2159 (2004).
  • Whelan R, Kim C, Chen M, Leiter J, Grunstein MM, Hakonarson H. Role and regulation of interleukin-1 molecules in pro-asthmatic sensitised airway smooth muscle. Eur. Respir. J. 24, 559–567 (2004).
  • Frossard N, Naline E, Olgart Hoglund C, Georges O, Advenier C. Nerve growth factor is released by IL-1β and induces hyperresponsiveness of the human isolated bronchus. Eur. Respir. J. 26, 15–20 (2005).
  • Kim JH, Jain D, Tliba O et al. TGF-β potentiates airway smooth muscle responsiveness to bradykinin. Am. J. Physiol. Lung Cell Mol. Physiol. 289, L511–L520 (2005).
  • Grunstein MM, Veler H, Shan X, Larson J, Grunstein JS, Chuang S. Proasthmatic effects and mechanisms of action of the dust mite allergen, Der p 1, in airway smooth muscle. J. Allergy Clin. Immunol. 116, 94–101 (2005).
  • Sakai H, Otogoto S, Chiba Y, Abe K, Misawa M. TNF-α augments the expression of RhoA in the rat bronchus. J. Smooth Muscle Res. 40, 25–34 (2004).
  • Chen H, Tliba O, Van Besien CR, Panettieri RA, Jr., Amrani Y. Selected Contribution: TNF-α modulates murine tracheal rings responsiveness to G-protein-coupled receptor agonists and KCl. J. Appl. Physiol. 95, 864–872 (2003).
  • Bachar O, Rose AC, Adner M et al. TNF α reduces tachykinin, PGE2-dependent, relaxation of the cultured mouse trachea by increasing the activity of COX-2. Br. J. Pharmacol. 144, 220–230 (2005).
  • Eum SY, Maghni K, Tolloczko B, Eidelman DH, Martin JG. IL-13 may mediate allergen-induced hyperresponsiveness independently of IL-5 or eotaxin by effects on airway smooth muscle. Am. J. Physiol. Lung Cell Mol. Physiol. 288, L576–L584 (2005).
  • Guo M, Pascual RM, Wang S et al. Cytokines regulate β-2-adrenergic receptor responsiveness in airway smooth muscle via multiple PKA- and EP2 receptor-dependent mechanisms. Biochemistry44, 13771–13782 (2005).
  • Stephens NL, Fust A, Jiang H, Li W, Ma X. Isotonic relaxation of control and sensitized airway smooth muscle. Can. J. Physiol. Pharmacol. 83, 941–951 (2005).
  • Schaafsma D, Zuidhof AB, Nelemans SA, Zaagsma J, Meurs H. Inhibition of Rho-kinase normalizes nonspecific hyperresponsiveness in passively sensitized airway smooth muscle preparations. Eur. J. Pharmacol. 531, 145–150 (2006).
  • Brightling CE, Ammit AJ, Kaur D et al. The CXCL10/CXCR3 axis mediates human lung mast cell migration to asthmatic airway smooth muscle. Am. J. Respir. Crit. Care Med. 171, 1103–1108 (2005).
  • El-Shazly A, Berger P, Girodet PO et al. Fraktalkine produced by airway smooth muscle cells contributes to mast cell recruitment in asthma. J. Immunol. 176, 1860–1868 (2006).
  • Thangam EB, Venkatesha RT, Zaidi AK et al. Airway smooth muscle cells enhance C3a-induced mast cell degranulation following cell-cell contact. FASEB J. 19, 798–800 (2005).
  • Liu L, Yang J, Huang Y. Human airway smooth muscle cells express eotaxin in response to signaling following mast cell contact. Respiration 73(2), 227–235 (2005).
  • Yang W, Kaur D, Okayama Y et al. Human lung mast cells adhere to human airway smooth muscle, in part, via tumor suppressor in lung cancer-1. J. Immunol. 176, 1238–1243 (2006).
  • Taube C, Wei X, Swasey CH et al. Mast cells, Fc ε RI, and IL-13 are required for development of airway hyperresponsiveness after aerosolized allergen exposure in the absence of adjuvant. J. Immunol. 172, 6398–6406 (2004).
  • Belleau JT, Gandhi RK, McPherson HM, Lew DB. Research upregulation of CD23 (FcεRII) expression in human airway smooth muscle cells (huASMC) in response to IL-4, GM-CSF, and IL-4/GM-CSF. Clin. Mol. Allergy3, 6 (2005).
  • Gounni AS, Wellemans V, Yang J et al. Human airway smooth muscle cells express the high affinity receptor for IgE (Fc ε RI): a critical role of Fc epsilon RI in human airway smooth muscle cell function. J. Immunol. 175, 2613–2621 (2005).
  • Hakonarson H, Grunstein MM. Autologously up-regulated Fc receptor expression and action in airway smooth muscle mediates its altered responsiveness in the atopic asthmatic sensitized state. Proc. Natl Acad. Sci. USA95, 5257–5262 (1998).
  • Hakonarson H, Kim C, Whelan R, Campbell D, Grunstein M. Bi-directional activation between human airway smooth muscle cells and T lymphocytes: role in induction of altered airway responsiveness. J. Immunol. 166, 293–303 (2001).
  • Hakonarson H, Whelan R, Leiter J et al. T lymphocyte-mediated changes in airway smooth muscle responsiveness are attributed to induced autocrine release and actions of IL-5 and IL-1β. J. Allergy Clin. Immunol. 110, 624–633 (2002).
  • Miller JD, Cox G, Vincic L, Lombard CM, Loomas BE, Danek CJ. A prospective feasibility study of bronchial thermoplasty in the human airway. Chest127, 1999–2006 (2005).
  • Cox PG, Miller J, Mitzner W, Leff AR. Radiofrequency ablation of airway smooth muscle for sustained treatment of asthma: preliminary investigations. Eur. Respir. J. 24, 659–663 (2004).
  • Brown RH, Wizeman W, Danek C, Mitzner W. Effect of bronchial thermoplasty on airway distensibility. Eur. Respir. J. 26, 277–282 (2005).
  • Brown RH, Wizeman W, Danek C, Mitzner W. In vivo evaluation of the effectiveness of bronchial thermoplasty with computed tomography. J. Appl. Physiol.98, 1603–1606 (2005).
  • Danek CJ, Lombard CM, Dungworth DL et al. Reduction in airway hyperresponsiveness to methacholine by the application of RF energy in dogs. J. Appl. Physiol. 97, 1946–1953 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.