33
Views
5
CrossRef citations to date
0
Altmetric
Review

Insulin: a critical autoantigen and potential therapeutic agent in Type 1 diabetes

Pages 419-431 | Published online: 10 Jan 2014

References

  • Turner R, Stratton I, Horton V et al. UKPDS 25: autoantibodies to islet-cell cytoplasm and glutamic acid decarboxylase for prediction of insulin requirement in Type 2 diabetes. UK Prospective Diabetes Study Group. Lancet350(9087), 1288–1293 (1997).
  • Steele C, Hagopian WA, Gitelman S et al. Insulin secretion in Type 1 diabetes. Diabetes53(2), 426–433 (2004).
  • Meier JJ, Bhushan A, Butler AE, Rizza RA, Butler PC. Sustained β cell apoptosis in patients with long-standing Type 1 diabetes: indirect evidence for islet regeneration? Diabetologia48(11), 2221–2228 (2005).
  • Pugliese A. Genetics of Type 1 diabetes. Endocrinol. Metab. Clin. North Am.33(1), 1–16, vii (2004).
  • Concannon P, Erlich HA, Julier C et al. Type 1 diabetes: evidence for susceptibility loci from four genome-wide linkage scans in 1,435 multiplex families. Diabetes54(10), 2995–3001 (2005).
  • Pugliese A. The insulin gene in Type 1 diabetes. IUBMB. Life57(7), 463–468 (2005).
  • Bottazzo GF, Florin-Christensen A, Doniach D. Islet-cell antibodies in diabetes mellitus with autoimmune polyendocrine deficiencies. Lancet2(7892), 1279–1283 (1974).
  • Gorsuch AN, Spencer KM, Lister J et al. Evidence for a long prediabetic period in Type I (insulin-dependent) diabetes mellitus. Lancet2(8260–8261), 1363–1365 (1981).
  • Decochez K, Tits J, Coolens JL et al. High frequency of persisting or increasing islet-specific autoantibody levels after diagnosis of Type 1 diabetes presenting before 40 years of age. The Belgian Diabetes Registry. Diabetes Care23(6), 838–844 (2000).
  • Krischer JP, Cuthbertson DD, Yu L et al. Screening strategies for the identification of multiple antibody-positive relatives of individuals with Type 1 diabetes. J. Clin. Endocrinol. Metab.88(1), 103–108 (2003).
  • Hampe CS, Hammerle LP, Bekris L et al. Recognition of glutamic acid decarboxylase (GAD) by autoantibodies from different GAD antibody-positive phenotypes. J. Clin. Endocrinol. Metab.85(12), 4671–4679 (2000).
  • Serreze DV and Silveira PA. The role of B lymphocytes as key antigen-presenting cells in the development of T cell-mediated autoimmune Type 1 diabetes. Curr. Dir. Autoimmun.6, 212–227 (2003).
  • Tree TI, Peakman M. Autoreactive T cells in human Type 1 diabetes. Endocrinol. Metab. Clin. North Am.33(1), 113–133 (2004).
  • Foulis AK. The pathology of the endocrine pancreas in Type 1 (insulin-dependent) diabetes mellitus. APMIS104(3), 161–167 (1996).
  • Rabinovitch A. Immunoregulation by cytokines in autoimmune diabetes. Adv. Exp. Med. Biol.520, 159–193 (2003).
  • Lieberman SM, DiLorenzo TP. A comprehensive guide to antibody and T-cell responses in Type 1 diabetes. Tissue Antigens62(5), 359–377 (2003).
  • George SK, Preda I, Avagyan S et al. Immunokinetics of autoreactive CD4 T cells in blood: a reporter for the "hit-and-run" autoimmune attack on pancreas and diabetes progression. J. Autoimmun. 23(2), 151–160 (2004).
  • Conrad B, Weidmann E, Trucco G et al. Evidence for superantigen involvement in insulin-dependent diabetes mellitus aetiology. Nature371(6495), 351–355 (1994).
  • Imagawa A, Hanafusa T, Tamura S et al. Pancreatic biopsy as a procedure for detecting in situ autoimmune phenomena in Type 1 diabetes: close correlation between serological markers and histological evidence of cellular autoimmunity. Diabetes50(6), 1269–1273 (2001).
  • Gianani R, Putnam A, Still T et al. Initial results of screening of non-diabetic organ donors for expression of islet autoantibodies. J. Clin. Endocrinol. Metab. (2006) (Epub ahead of print).
  • Pugliese A, Allende G, Laughlin E et al. Recurrence of autoantibodies and autoreactive T cells in patients with Type 1 diabetes following pancreas transplantation. Diabetes53(Suppl. 2), A69 (2004).
  • Palmer JP, Asplin CM, Clemons P et al. Insulin antibodies in insulin-dependent diabetics before insulin treatment. Science222(4630), 1337–1339 (1983).
  • Vardi P, Dib SA, Tuttleman M et al. Competitive insulin autoantibody assay. Prospective evaluation of subjects at high risk for development of type I diabetes mellitus. Diabetes36(11), 1286–1291 (1987).
  • Vardi P, Ziegler AG, Mathews JH et al. Concentration of insulin autoantibodies at onset of type I diabetes. Inverse log-linear correlation with age. Diabetes Care11(9), 736–739 (1988).
  • Ziegler R, Alper CA, Awdeh ZL et al. Specific association of HLA-DR4 with increased prevalence and level of insulin autoantibodies in first-degree relatives of patients with type I diabetes. Diabetes40(6), 709–714 (1991).
  • Pugliese A, Bugawan T, Moromisato R et al. Two subsets of HLA-DQA1 alleles mark phenotypic variation in levels of insulin autoantibodies in first degree relatives at risk for insulin-dependent diabetes. J. Clin. Invest.93(6), 2447–2452 (1994).
  • Yu L, Rewers M, Gianani R et al. Antiislet autoantibodies usually develop sequentially rather than simultaneously. J. Clin. Endocrinol. Metab.81(12), 4264–4267 (1996).
  • Bonifacio E, Scirpoli M, Kredel K, Fuchtenbusch M, Ziegler AG. Early autoantibody responses in prediabetes are IgG1 dominated and suggest antigen-specific regulation. J. Immunol.163(1), 525–532 (1999).
  • Ziegler AG, Hummel M, Schenker M, Bonifacio E. Autoantibody appearance and risk for development of childhood diabetes in offspring of parents with Type 1 diabetes: the 2-year analysis of the German BABYDIAB Study. Diabetes48(3), 460–468 (1999).
  • Yu L, Robles DT, Abiru N et al. Early expression of antiinsulin autoantibodies of humans and the NOD mouse: evidence for early determination of subsequent diabetes. Proc. Natl. Acad. Sci. USA97(4), 1701–1706 (2000).
  • Colman PG, McNair P, Margetts H et al. The Melbourne Pre-Diabetes Study: prediction of Type 1 diabetes mellitus using antibody and metabolic testing. Med. J. Aust.169(2), 81–84 (1998).
  • Achenbach P, Koczwara K, Knopff A et al. Mature high-affinity immune responses to (pro)insulin anticipate the autoimmune cascade that leads to Type 1 diabetes. J. Clin. Invest.114(4), 589–597 (2004).
  • Aoki CA, Borchers AT, Ridgway WM et al. NOD mice and autoimmunity. Med. J. Aust.4(6), 373–379 (2005).
  • Trudeau JD, Kelly-Smith C, Verchere CB et al. Prediction of spontaneous autoimmune diabetes in NOD mice by quantification of autoreactive T cells in peripheral blood. J. Clin. Invest.111(2), 217–223 (2003).
  • Chen W, Bergerot I, Elliott JF et al. Evidence that a peptide spanning the B-C junction of proinsulin is an early autoantigen epitope in the pathogenesis of Type 1 diabetes. J. Immunol.167(9), 4926–4935 (2001).
  • Daniel D, Gill RG, Schloot N, Wegmann D. Epitope specificity, cytokine production profile and diabetogenic activity of insulin-specific T cell clones isolated from NOD mice. Eur. J. Immunol.25, 1056–1062 (1995).
  • Wong FS, Karttunen J, Dumont C et al. Identification of an MHC class I-restricted autoantigen in Type 1 diabetes by screening an organ-specific cDNA library. Nature Med.5(9), 1026–1031 (1999).
  • Liu E, Abiru N, Moriyama H, Miao D, Eisenbarth GS. Induction of insulin autoantibodies and protection from diabetes with subcutaneous insulin B:9–23 peptide without adjuvant. Ann. NY Acad. Sci.958, 224–227 (2002).
  • Moriyama H, Wen L, Abiru N et al. Induction and acceleration of insulitis/diabetes in mice with a viral mimic (polyinosinic-polycytidylic acid) and an insulin self-peptide. Proc. Natl Acad. Sci. USA99(8), 5539–5544 (2002).
  • Abiru N, Maniatis AK, Yu L et al. Peptide and major histocompatibility complex-specific breaking of humoral tolerance to native insulin with the B9–23 peptide in diabetes-prone and normal mice. Diabetes50(6), 1274–1281 (2001).
  • Rudy G, Stone N, Harrison LC et al. Similar peptides from two β cell autoantigens, proinsulin and glutamic acid decarboxylase, stimulate T cells of individuals at risk for insulin-dependent diabetes. Mol. Med.1(6), 625–633 (1995).
  • Durinovic-Bello I, Boehm BO, Ziegler AG. Predominantly recognized proinsulin T helper cell epitopes in individuals with and without islet cell autoimmunity. J. Autoimmun.18(1), 55–66 (2002).
  • Narendran P, Williams AJ, Elsegood K, Leech NJ, Dayan CM. Humoral and cellular immune responses to proinsulin in adults with newly diagnosed Type 1 diabetes. Diabetes Metab. Res. Rev.19(1), 52–59 (2003).
  • Alleva DG, Crowe PD, Jin L et al. A disease-associated cellular immune response in Type 1 diabetics to an immunodominant epitope of insulin. J. Clin. Invest.107(2), 173–180 (2001).
  • Toma A, Haddouk S, Briand JP et al. Recognition of a subregion of human proinsulin by class I-restricted T cells in Type 1 diabetic patients. Proc. Natl Acad. Sci. USA102(30), 10581–10586 (2005).
  • Hassainya Y, Garcia-Pons F, Kratzer R et al. Identification of naturally processed HLA-A2-restricted proinsulin epitopes by reverse immunology. Diabetes54(7), 2053–2059 (2005).
  • Kent SC, Chen Y, Bregoli L et al. Expanded T cells from pancreatic lymph nodes of Type 1 diabetic subjects recognize an insulin epitope. Nature435(7039), 224–228 (2005).
  • Mannering SI, Harrison LC, Williamson NA et al. The insulin A-chain epitope recognized by human T cells is posttranslationally modified. J. Exp. Med.202(9), 1191–1197 (2005).
  • Solimena M. Vesicular autoantigens of Type 1 diabetes. Diabetes Metab. Rev.14(3), 227–240 (1998).
  • Harashima S, Clark A, Christie MR, Notkins AL. The dense core transmembrane vesicle protein IA-2 is a regulator of vesicle number and insulin secretion. Proc. Natl Acad. Sci. USA102(24), 8704–8709 (2005).
  • Yang J, Danke NA, Berger D et al. Islet-specific glucose-6-phosphatase catalytic subunit-related protein-reactive CD4+ T cells in human subjects. J. Immunol.176(5), 2781–2789 (2006).
  • Araki E, Oyadomari S, Mori M. Impact of endoplasmic reticulum stress pathway on pancreatic β-cells and diabetes mellitus. Exp. Biol. Med. (Maywood)228(10), 1213–1217 (2003).
  • Oyadomari S, Araki E, Mori M. Endoplasmic reticulum stress-mediated apoptosis in pancreatic β-cells. Apoptosis7(4), 335–345 (2002).
  • Allen JR, Nguyen LX, Sargent KE et al. High ER stress in β-cells stimulates intracellular degradation of misfolded insulin. Biochemistry Biophysics Res. Commun.324(1), 166–170 (2004).
  • Devaskar SU, Singh BS, Carnaghi LR, Rajakumar PA, Giddings SJ. Insulin II gene expression in rat central nervous system. Regulatory Peptides48, 55–63 (1993).
  • Taha A, Budd GC, Pansky B. Preproinsulin messenger ribonucleic acid in the rat adrenal gland. Ann. Clin. Lab. Sci.23(6), 469–476 (1993).
  • Budd GC, Pansky B, Glatzer L. Preproinsulin mRNA in the rat eye. Invest. Ophthalmol. Vis. Sci.34(2), 463–469 (1993).
  • Giddings SJ, King CD, Harman KW, Flood JF, Carnaghi LR. Allele specific inactivation of insulin 1 and 2, in the mouse yolk, indicates imprinting. Nature Genetics6, 310–313 (1994).
  • Kendzierski KS, Pansky B, Budd GC, Saffran M. Evidence for biosynthesis of preproinsulin in gut of rat. Endocrine13(3), 353–359 (2000).
  • Pugliese A. Central and peripheral autoantigen presentation in immune tolerance. Immunology111, 138–146 (2004).
  • Pugliese A, Brown D, Garza D et al. Self-antigen-presenting cells expressing diabetes-associated autoantigens exist in both thymus and peripheral lymphoid organs. J. Clin. Invest.107(5), 555–564 (2001).
  • Diez J, Park Y, Zeller M et al. Differential splicing of the IA-2 mRNA in pancreas and lymphoid organs as a permissive genetic mechanism for autoimmunity against the IA-2 Type 1 diabetes autoantigen. Diabetes50(4), 895–900 (2001).
  • Garcia CA, Prabakar KR, Diez J et al. Dendritic cells in human thymus and periphery display a proinsulin epitope in a transcription-dependent, capture-independent fashion. J. Immunol.175(4), 2111–2122 (2005).
  • Gotter J, Brors B, Hergenhahn M, Kyewski B. Medullary epithelial cells of the human thymus express a highly diverse selection of tissue-specific genes colocalized in chromosomal clusters. J. Exp. Med.199(2), 155–166 (2004).
  • Pugliese A, Zeller M, Fernandez AJ et al. The insulin gene is transcribed in the human thymus and transcription levels correlated with allelic variation at the INS VNTR-IDDM2 susceptibility locus for Type 1 diabetes. Nat. Genetics15(3), 293–297 (1997).
  • Vafiadis P, Bennett ST, Todd JA et al. Insulin expression in human thymus is modulated by INS VNTR alleles at the IDDM2 locus. Nat. Genetics15(3), 289–292 (1997).
  • Bennett ST, Todd JA. Human Type 1 diabetes and the insulin gene: principles of mapping polygenes. Annu. Rev. Genetics30, 343–370 (1996).
  • Pugliese A, Zeller M, Fernandez A Jr et al. The insulin gene is transcribed in the human thymus and transcription levels correlate with allelic variation at the INS VNTR-IDDM2 susceptibility locus for Type 1 diabetes. Nat. Genet.15, 293–297 (1997).
  • Chentoufi AA, Polychronakos C. Insulin expression levels in the thymus modulate insulin-specific autoreactive T-cell tolerance: the mechanism by which the IDDM2 locus may predispose to diabetes. Diabetes51(5), 1383–1390 (2002).
  • Brimnes MK, Jensen T, Jorgensen TN et al. Low expression of insulin in the thymus of non-obese diabetic mice. J. Autoimmun.19(4), 203–213 (2002).
  • French MB, Allison J, Cram DS et al. Transgenic expression of mouse proinsulin II prevents diabetes in nonobese diabetic mice. Diabetes46(1), 34–39 (1997).
  • Thebault-Baumont K, Dubois-Laforgue D, Krief P et al. Acceleration of Type 1 diabetes mellitus in proinsulin 2-deficient NOD mice. J. Clin. Invest.111(6), 851–857 (2003).
  • Moriyama H, Abiru N, Paronen J et al. Evidence for a primary islet autoantigen (preproinsulin 1) for insulitis and diabetes in the nonobese diabetic mouse. Proc. Natl Acad. Sci. USA100(18), 10376–10381 (2003).
  • Jaeckel E, Lipes MA, von Boehmer H. Recessive tolerance to preproinsulin 2 reduces but does not abolish Type 1 diabetes. Nat. Immunol.5(10), 1028–1035 (2004).
  • Abiru N, Wegmann D, Kawasaki E et al. Dual overlapping peptides recognized by insulin peptide B:9–23 T cell receptor AV13S3 T cell clones of the NOD mouse. J. Autoimmun.14(3), 231–237 (2000).
  • Nakayama M, Abiru N, Moriyama H et al. Prime role for an insulin epitope in the development of Type 1 diabetes in NOD mice. Nature435(7039), 220–223 (2005).
  • Nakayama M, Babaya N, Miao D et al. Thymic expression of mutated B16:A preproinsulin messenger RNA does not reverse acceleration of NOD diabetes associated with insulin 2 (thymic expressed insulin) knockout. J. Autoimmun.25(3), 193–198 (2005).
  • Dogra RS, Vaidyanathan P, Prabakar KR et al. Alternative splicing of G6PC2, the gene coding for the islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP), results in differential expression in human thymus and spleen compared with pancreas. Diabetologia (2006) (Epub).
  • Kralovicova J, Gaunt TR, Rodriguez S et al. Variants in the human insulin gene that affect pre-mRNA splicing: is -23HphI a functional single nucleotide polymorphism at IDDM2? Diabetes55(1), 260–264 (2006).
  • Kubosaki A, Miura J, Notkins AL. IA-2 is not required for the development of diabetes in NOD mice. Diabetologia47(1), 149–150 (2004).
  • Jaeckel E, Klein L, Martin-Orozco N, von Boehmer H. Normal incidence of diabetes in NOD mice tolerant to glutamic acid decarboxylase. J. Exp. Med.197(12), 1635–1644 (2003).
  • Geng L, Solimena M, Flavell RA, Sherwin RS, Hayday AC. Widespread expression of an autoantigen-GAD65 transgene does not tolerize non-obese diabetic mice and can exacerbate disease. Proc. Natl Acad. Sci. USA95(17), 10055–10060 (1998).
  • Kash SF, Condie BG, Baekkeskov S. Glutamate decarboxylase and GABA in pancreatic islets: lessons from knock-out mice. Horm. Metab. Res.31(5), 340–344 (1999).
  • Muir A, Schatz D, Maclaren N. Antigen-specific immunotherapy: oral tolerance and subcutaneous immunization in the treatment of insulin-dependent diabetes. Diabetes Metab. Rev.9(4), 279–287 (1993).
  • Bergerot I, Fabien N, Maguer V, Thivolet C. Oral administration of human insulin to NOD mice generates CD4+ T cells that suppress adoptive transfer of diabetes. J. Autoimmun.7(5), 655–663 (1994).
  • Maron R, Guerau-de-Arellano M, Zhang X, Weiner HL. Oral administration of insulin to neonates suppresses spontaneous and cyclophosphamide induced diabetes in the NOD mouse. J. Autoimmun.16(1), 21–28 (2001).
  • Atkinson M, Maclaren N, Luchetta R, Burr I. Insulitis and diabetes in NOD mice reduced by prophylactic insulin therapy. Diabetes39, 933–937 (1990).
  • Harrison LC, Dempsey-Collier M, Kramer DR, Takahashi K. Aerosol insulin induces regulatory CD8 γδ T cells that prevent murine insulin-dependent diabetes. J. Exp. Med.184(6), 2167–2174 (1996).
  • Martinez NR, Augstein P, Moustakas AK et al. Disabling an integral CTL epitope allows suppression of autoimmune diabetes by intranasal proinsulin peptide. J. Clin. Invest.111(9), 1365–1371 (2003).
  • Daniel D, Wegmann DR. Protection of nonobese diabetic mice from diabetes by intranasal or subcutaneous administration of insulin peptide B-(9–23). Proc. Natl Acad. Sci. USA93(2), 956–960 (1996).
  • Alleva DG, Gaur A, Jin L et al. Immunological characterization and therapeutic activity of an altered-peptide ligand, NBI-6024, based on the immunodominant Type 1 diabetes autoantigen insulin B-chain (9–23) peptide. Diabetes51(7), 2126–2134 (2002).
  • Liu E, Moriyama H, Abiru N et al. Anti-peptide autoantibodies and fatal anaphylaxis in NOD mice in response to insulin self-peptides B:9–23 and B:13–23. J. Clin. Invest.110(7), 1021–1027 (2002).
  • Pedotti R, Sanna M, Tsai M et al. Severe anaphylactic reactions to glutamic acid decarboxylase (GAD) self peptides in NOD mice that spontaneously develop autoimmune Type 1 diabetes mellitus. BMC. Immunol.4(1), 2 (2003).
  • Hanninen A, Braakhuis A, Heath WR, Harrison LC. Mucosal antigen primes diabetogenic cytotoxic T-lymphocytes regardless of dose or delivery route. Diabetes50(4), 771–775 (2001).
  • Keller RJ, Eisenbarth GS, Jackson RA. Insulin prophylaxis in individuals at high risk of type I diabetes. Lancet341(8850), 927–928 (1993).
  • Diabetes Prevention Trial - Type 1 Diabetes Study Group. Effects of insulin in relatives of patients with Type 1 diabetes mellitus. N. Engl. J. Med.346(22), 1685–1691 (2002).
  • Karounos DG, Goes SU, Bryson JS. Dose of insulin is a critical factor in the prevention of Type 1 diabetes in NOD mice. Diabetes52(Suppl. 1), A276 (2003).
  • Skyler JS, Krischer JP, Wolfsdorf J et al. Effects of oral insulin in relatives of patients with Type 1 diabetes: The Diabetes Prevention Trial-Type 1. Diabetes Care28(5), 1068–1076 (2005).
  • Faria AM and Weiner HL. Oral tolerance. Immunol. Rev.206, 232–259 (2005).
  • Maruyama T, Shimada A, Kanatsuka A et al. Multicenter prevention trial of slowly progressive Type 1 diabetes with small dose of insulin (the Tokyo study): preliminary report. Ann. NY Acad. Sci.1005, 362–369 (2003).
  • Hanninen A and Harrison LC. γδ T cells as mediators of mucosal tolerance: the autoimmune diabetes model. Immunol. Rev.173, 109–119 (2000).
  • Harrison LC, Honeyman MC, Steele CE et al. Pancreatic β-cell function and immune responses to insulin after administration of intranasal insulin to humans at risk for Type 1 diabetes. Diabetes Care27(10), 2348–2355 (2004).
  • Alleva DG, Maki RA, Putnam AL et al. Immunomodulation in Type 1 diabetes by NBI-6024, an altered peptide ligand of the insulin B epitope. Scand. J. Immunol.63(1), 59–69 (2006).
  • Herold KC, Hagopian W, Auger JA et al. Anti-CD3 monoclonal antibody in new-onset Type 1 diabetes mellitus. N. Engl. J. Med.346(22), 1692–1698 (2002).
  • Keymeulen B, Vandemeulebroucke E, Ziegler AG et al. Insulin needs after CD3-antibody therapy in new-onset Type 1 diabetes. N. Engl. J. Med.352(25), 2598–2608 (2005).
  • Raz I, Elias D, Avron A et al. β-cell function in new-onset Type 1 diabetes and immunomodulation with a heat-shock protein peptide (DiaPep277): a randomised, double-blind, Phase II trial. Lancet358(9295), 1749–1753 (2001).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.