100
Views
32
CrossRef citations to date
0
Altmetric
Review

The role of the complement system in CNS inflammatory diseases

&
Pages 445-456 | Published online: 10 Jan 2014

References

  • Mastellos D, Morikis D, Isaacs SN, Holland MC, Strey CW, Lambris JD. Complement: structure, functions, evolution, and viral molecular mimicry. Immunol. Res.27, 367–386 (2003).
  • Carroll MC. The complement system in regulation of adaptive immunity. Nat. Immunol.5, 981–986 (2004).
  • Morgan BP, Marchbank KJ, Longhi MP, Harris CL, Gallimore AM. Complement: central to innate immunity and bridging to adaptive responses. Immunol. Lett.97, 171–179 (2005).
  • Mastellos D, Andronis C, Persidis A, Lambris JD. Novel biological networks modulated by complement. Clin. Immunol.115, 225–235 (2005).
  • Volanakis JE, Frank MM. The Human Complement System in Health and Disease. Marcel Dekker Inc., NY, USA (1998).
  • Barnum SR. In: Inflammatory Events in Neurodegeneration. Bondy SC, Campbell A (Eds). Prominent Press, Scottsdale, AZ, USA, 139–156 (2001).
  • Akiyama H, Barger S, Barnum S et al. Inflammation and Alzheimer’s disease. Neurobiol. Aging21, 383–421 (2000).
  • Barnum SR, Szalai AJ. Complement and demyelinating disease: no MAC needed? Brain Res. Rev. (2006) (In Press).
  • Piddlesden SJ, Storch MK, Hibbs M, Freeman AM, Lassmann H, Morgan BP. Soluble recombinant complement receptor 1 inhibits inflammation and demyelination in antibody-mediated demyelinating experimental allergic encephalomyelitis. J. Immunol.152, 5477–5484 (1994).
  • Shin ML, Koski CL. In: Myelin: Biology and Chemistry. Martenson RE (Ed.). CRC Press, Boca Raton, FL, USA, 801–831 (1992).
  • Cross AH, Trotter JL, Lyons J. B cells and antibodies in CNS demyelinating disease. J. Neuroimmunol.112, 1–14 (2001).
  • Barnett MH, Prineas JW. Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion. Ann. Neurol.55, 458–468 (2004).
  • Morariu MA, Dalmasso AP. Experimental allergic encephalomyelitis in cobra venom factor-treated and C4-deficient guinea pigs. Ann. Neurol.4, 427–430 (1978).
  • Boos LA, Szalai AJ, Barnum SR. Murine complement C4 is not required for experimental autoimmune encephalomyelitis. Glia49, 158–160 (2005).
  • Nataf S, Carroll SL, Wetsel RA, Szalai AJ, Barnum SR. Attenuation of experimental autoimmune demyelination in complement-deficient mice. J. Immunol.165, 5867–5873 (2000).
  • Davoust N, Nataf S, Reiman R, Holers MV, Campbell IL, Barnum SR. Central nervous system-targeted expression of the complement inhibitor sCrry prevents experimental allergic encephalomyelitis. J. Immunol.163, 6551–6556 (1999).
  • Nataf S, Stahel PF, Davoust N, Barnum SR. Complement anaphylatoxin receptors on neurons: new tricks for old receptors? Trends Neurosci.22, 397–402 (1999).
  • Reiman R, Gerard C, Campbell IL, Barnum SR. Disruption of the C5a receptor gene fails to protect against experimental allergic encephalomyelitis. Eur. J. Immunol.32, 1157–1163 (2002).
  • Reiman R, Torres AC, Martin BK, Ting JP, Campbell IL, Barnum SR. Expression of C5a in the brain does not exacerbate experimental autoimmune encephalomyelitis. Neurosci. Lett.390(3), 134–138 (2005).
  • Morgan BP, Griffiths M, Khanom H, Taylor SM, Neal JW. Blockade of the C5a receptor fails to protect against experimental autoimmune encephalomyelitis in rats. Clin. Exp. Immunol.138, 430–438 (2004).
  • Boos L, Campbell IL, Ames R, Wetsel RA, Barnum SR. Deletion of the complement anaphylatoxin C3a receptor attenuates, whereas ectopic expression of C3a in the brain exacerbates, experimental autoimmune encephalomyelitis. J. Immunol.173, 4708–4714 (2004).
  • Munoz JJ, Mackay IR. Production of experimental allergic encephalomyelitis with the aid of pertussigen in mouse strains considered genetically resistant. J. Neuroimmunol.7, 91–96 (1984).
  • Tuohy VK, Sobel RA, Lees MB. Myelin proteolipid protein-induced experimental allergic encephalomyelitis. Variations of disease expression in different strains of mice. J. Immunol.140, 1868–1873 (1988).
  • Weerth SH, Rus H, Shin ML, Raine CS. Complement C5 in experimental autoimmune encephalomyelitis (EAE) facilitates remyelination and prevents gliosis. Am. J. Pathol.163, 1069–1080 (2003).
  • Mead RJ, Singhrao SK, Neal JW, Lassmann H, Morgan BP. The membrane attack complex of complement causes severe demyelination associated with acute axonal injury. J. Immunol.168, 458–465 (2002).
  • Tran GT, Hodgkinson SJ, Carter N, Killingsworth M, Spicer ST, Hall BM. Attenuation of experimental allergic encephalomyelitis in complement component 6-deficient rats is associated with reduced complement C9 deposition, P-selectin expression, and cellular infiltrate in spinal cords. J. Immunol.168, 4293–4300 (2002).
  • Mead RJ, Neal JW, Griffiths MR et al. Deficiency of the complement regulator CD59a enhances disease severity, demyelination and axonal injury in murine acute experimental allergic encephalomyelitis. Lab. Invest.84, 21–28 (2004).
  • Eikelenboom P, Stam FC. Immunoglobulins and complement factors in senile plaques. An immunoperoxidase study. Acta Neuropathol. (Berl.)57, 239–242 (1982).
  • Eikelenboom P, Stam FC. An immunohistochemical study on cerebral vascular and senile plaque amyloid in Alzheimer’s dementia. Virchows Arch. B Cell Pathol. Incl. Mol. Pathol.47, 17–25 (1984).
  • Emmerling MR, Watson MD, Raby CA, Spiegel K. The role of complement in Alzheimer’s disease pathology. Biochim. Biophys. Acta1502, 158–1571 (2000).
  • Chaney MO, Baudry J, Esh C et al. A β, aging, and Alzheimer’s disease: a tale, models, and hypotheses. Neurol. Res.25, 581–589 (2003).
  • Bouras C, Riederer BM, Kovari E, Hof PR, Giannakopoulos P. Humoral immunity in brain aging and Alzheimer’s disease. Brain Res. Brain Res. Rev.48, 477–487 (2005).
  • Stoltzner SE, Grenfell TJ, Mori C et al. Temporal accrual of complement proteins in amyloid plaques in Down’s syndrome with Alzheimer’s disease. Am. J. Pathol.156, 489–499 (2000).
  • Head E, Azizeh BY, Lott IT, Tenner AJ, Cotman CW, Cribbs DH. Complement association with neurons and β-amyloid deposition in the brains of aged individuals with Down syndrome. Neurobiol. Dis.8, 252–265 (2001).
  • Rogers J, Cooper NR, Webster S et al. Complement activation by β-amyloid in Alzheimer disease. Proc. Natl Acad. Sci. USA89, 10016–10020 (1992).
  • Jiang H, Burdick D, Glabe CG, Cotman CW, Tenner AJ. β-Amyloid activates complement by binding to a specific region of the collagen-like domain of the C1q A chain. J. Immunol.152, 5050–5059 (1994).
  • Watson MD, Roher AE, Kim KS, Spiegel K, Emmerling MR. Complement interactions with amyloid-β 1–42: a nidus for inflammation in AD brains. Amyloid4, 147–156 (1997).
  • Velazquez P, Cribbs DH, Poulos TL, Tenner AJ. Aspartate residue 7 in amyloid β-protein is critical for classical complement pathway activation: implications for Alzheimer’s disease pathogenesis. Nature Med.3, 77–79 (1997).
  • Bradt BM, Kolb WP, Cooper NR. Complement-dependent proinflammatory properties of the Alzheimer’s disease β-peptide. J. Exp. Med.188, 431–438 (1998).
  • Shen Y, Lue L, Yang L et al. Complement activation by neurofibrillary tangles in Alzheimer’s disease. Neurosci. Lett.305, 165–168 (2001).
  • Webster S, O’Barr S, Rogers J. Enhanced aggregation and β structure of amyloid β peptide after coincubation with C1q. J. Neurosci. Res.39, 448–456 (1994).
  • Emmerling MR, Spiegel K, Watson MD. Inhibiting the formation of classical C3-convertase on the Alzheimer's β-amyloid peptide. Immunopharmacology38, 101–109 (1997).
  • Quigg RJ, He C, Lim A et al. Transgenic mice overexpressing the complement inhibitor crry as a soluble protein are protected from antibody-induced glomerular injury. J. Exp. Med.188, 1321–1331 (1998).
  • Wyss-Coray T, Yan F, Lin AH et al. Prominent neurodegeneration and increased plaque formation in complement-inhibited Alzheimer’s mice. Proc. Natl Acad. Sci. USA99, 10837–10842 (2002).
  • Hsiao K, Chapman P, Nilsen S et al. Correlative memory deficits, A β elevation, and amyloid plaques in transgenic mice. Science274, 99–102 (1996).
  • Holcomb L, Gordon MN, McGowan E et al. Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes. Nat. Med.4, 97–100 (1998).
  • Fonseca MI, Zhou J, Botto M, Tenner AJ. Absence of C1q leads to less neuropathology in transgenic mouse models of Alzheimer’s disease. J. Neurosci.24, 6457–6465 (2004).
  • D’Ambrosio D, Iellem A, Colantonio L, Clissi B, Pardi R, Sinigaglia F. Localization of Th-cell subsets in inflammation: differential thresholds for extravasation of Th1 and Th2 cells. Immunol. Today21, 183–186 (2000).
  • Riedemann NC, Ward PA. Complement in ischemia reperfusion injury. Am. J. Pathol.162, 363–367 (2003).
  • Stahel PF, Morganti-Kossmann MC, Kossmann T. The role of the complement system in traumatic brain injury. Brain Res. Brain Res. Rev.27, 243–256 (1998).
  • Francis K, Van Beek J, Canova C, Neal JW, Gasque P. Innate immunity and brain inflammation: the key role of complement. Expert Rev. Mol. Med.5, 1–19 (2003).
  • Baufreton C, Allain P, Chevailler A et al. Brain injury and neuropsychological outcome after coronary artery surgery are affected by complement activation. Ann. Thorac. Surg.79, 1597–1605 (2005).
  • Lindsberg PJ, Ohman J, Lehto T et al. Complement activation in the central nervous system following blood-brain barrier damage in man. Ann. Neurol.40, 587–596 (1996).
  • Di Napoli M. Systemic complement activation in ischemic stroke. Stroke32, 1443–1448 (2001).
  • Schultz SJ, Aly H, Hasanen BM et al. Complement component 9 activation, consumption, and neuronal deposition in the post-hypoxic-ischemic central nervous system of human newborn infants. Neurosci. Lett.378, 1–6 (2005).
  • Van Beek J, Chan P, Bernaudin M, Petit E, MacKenzie ET, Fontaine M. Glial responses, clusterin, and complement in permanent focal cerebral ischemia in the mouse. Glia31, 39–50 (2000).
  • Schafer MK, Schwaeble WJ, Post C et al. Complement C1q is dramatically up-regulated in brain microglia in response to transient global cerebral ischemia. J. Immunol.164, 5446–5452 (2000).
  • Huang J, Kim LJ, Mealey R et al. Neuronal protection in stroke by an sLex-glycosylated complement inhibitory protein. Science285, 595–599 (1999).
  • Ten VS, Sosunov SA, Mazer SP et al. C1q-deficiency is neuroprotective against hypoxic-ischemic brain injury in neonatal mice. Stroke36, 2244–2250 (2005).
  • Cowell RM, Plane JM, Silverstein FS. Complement activation contributes to hypoxic-ischemic brain injury in neonatal rats. J. Neurosci.23, 9459–9468 (2003).
  • D’Ambrosio AL, Pinsky DJ, Connolly ES. The role of the complement cascade in ischemia/reperfusion injury: implications for neuroprotection. Mol. Med.7, 367–382 (2001).
  • Kato H, Kogure K, Liu XH, Araki T, Itoyama Y. Progressive expression of immunomolecules on activated microglia and invading leukocytes following focal cerebral ischemia in the rat. Brain Res.734, 203–212 (1996).
  • Van Beek J, Bernaudin M, Petit E et al. Expression of receptors for complement anaphylatoxins C3a and C5a following permanent focal cerebral ischemia in the mouse. Exp. Neurol.161, 373–382 (2000).
  • Barnum SR, Ames RS, Maycox PR et al. Expression of the complement C3a and C5a receptors after permanent focal ischemia: an alternative interpretation. Glia38, 169–173 (2002).
  • Dirnagl U, Simon RP, Hallenbeck JM. Ischemic tolerance and endogenous neuroprotection. Trends Neurosci.26, 248–254 (2003).
  • Dirnagl U, Iadecola C, Moskowitz MA. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci.22, 391–397 (1999).
  • Liu PK, Grossman RG, Hsu CY, Robertson CS. Ischemic injury and faulty gene transcripts in the brain. Trends Neurosci.24, 581–588 (2001).
  • Katsura K, Kristian T, Siesjo BK. Energy metabolism, ion homeostasis, and cell damage in the brain. Biochem. Soc. Trans.22, 991–996 (1994).
  • Bellander BM, Singhrao SK, Ohlsson M, Mattsson P, Svensson M. Complement activation in the human brain after traumatic head injury. J. Neurotrauma18, 1295–1311 (2001).
  • Schmidt OI, Heyde CE, Ertel W, Stahel PF. Closed head injury – an inflammatory disease? Brain Res. Brain Res. Rev.48, 388–399 (2005).
  • Stahel PF, Morganti-Kossmann MC, Perez D et al. Intrathecal levels of complement-derived soluble membrane attack complex (sC5b-9) correlate with blood-brain barrier dysfunction in patients with traumatic brain injury. J. Neurotrauma18, 773–781 (2001).
  • Casarsa C, De Luigi A, Pausa M, De Simoni MG, Tedesco F. Intracerebroventricular injection of the terminal complement complex causes inflammatory reaction in the rat brain. Eur. J. Immunol.33, 1260–1270 (2003).
  • Xiong ZQ, Qian W, Suzuki K, McNamara JO. Formation of complement membrane attack complex in mammalian cerebral cortex evokes seizures and neurodegeneration. J. Neurosci.23, 955–960 (2003).
  • Kyrkanides S, O’Banion MK, Whiteley PE, Daeschner JC, Olschowka JA. Enhanced glial activation and expression of specific CNS inflammation-related molecules in aged versus young rats following cortical stab injury. J. Neuroimmunol.119, 269–277 (2001).
  • Rancan M, Morganti-Kossmann MC, Barnum SR et al. Central nervous system-targeted complement inhibition mediates neuroprotection after closed head injury in transgenic mice. J. Cereb. Blood Flow Metab.23, 1070–1074 (2003).
  • Keeling KL, Hicks RR, Mahesh J, Billings BB, Kotwal GJ. Local neutrophil influx following lateral fluid-percussion brain injury in rats is associated with accumulation of complement activation fragments of the third component (C3) of the complement system. J. Neuroimmunol.105, 20–30 (2000).
  • Kossmann T, Stahel PF, Morganti-Kossmann MC, Jones JL, Barnum SR. Elevated levels of the complement components C3 and factor B in ventricular cerebrospinal fluid of patients with traumatic brain injury. J. Neuroimmunol.73, 63–69 (1997).
  • Kaczorowski SL, Schiding JK, Toth CA, Kochanek PM. Effect of soluble complement receptor-1 on neutrophil accumulation after traumatic brain injury in rats. J. Cereb. Blood Flow Metab.15, 860–864 (1995).
  • Sewell DL, Nacewicz B, Liu F et al. Complement C3 and C5 play critical roles in traumatic brain cryoinjury: blocking effects on neutrophil extravasation by C5a receptor antagonist. J. Neuroimmunol.155, 55–63 (2004).
  • Leinhase I, Schmidt OI, Thurman JM et al. Pharmacological complement inhibition at the C3 convertase level promotes neuronal survival, neuroprotective intracerebral gene expression, and neurological outcome after traumatic brain injury. Exp. Neurol. (2006) (In Press).
  • Quigg RJ, Kozono Y, Berthiaume D et al. Blockade of antibody-induced glomerulonephritis with Crry-Ig, a soluble murine complement inhibitor. J. Immunol.160, 4553–4560 (1998).
  • McIntyre P. Should dexamethasone be part of routine therapy of bacterial meningitis in industrialised countries? Adv. Exp. Med. Biol.568, 189–197 (2005).
  • Gomes JA, Stevens RD, Lewin JJ III, Mirski MA, Bhardwaj A. Glucocorticoid therapy in neurologic critical care. Crit. Care Med.33, 1214–1224 (2005).
  • Paul R, Koedel U, Pfister HW. Development of adjunctive therapies for bacterial meningitis and lessons from knockout mice. Neurocrit. Care2, 313–324 (2005).
  • Koedel U, Scheld WM, Pfister HW. Pathogenesis and pathophysiology of pneumococcal meningitis. Lancet Infect. Dis.2, 721–736 (2002).
  • Scheld WM, Koedel U, Nathan B, Pfister HW. Pathophysiology of bacterial meningitis: mechanism(s) of neuronal injury. J. Infect. Dis.186(Suppl. 2), S225–S233 (2002).
  • Stahel PF, Barnum SR. Bacterial meningitis: complement gene expression in the central nervous system. Immunopharmacology 38, 65–72 (1997).
  • Brandtzaeg P, Hogasen K, Kierulf P, Mollnes TE. The excessive complement activation in fulminant meningococcal septicemia is predominantly caused by alternative pathway activation. J. Infect. Dis.173, 647–655 (1996).
  • Johansson L, Rytkonen A, Bergman P et al. CD46 in meningococcal disease. Science301, 373–375 (2003).
  • Fothergill LD. Observations on the presence of complement in the cerebrospinal fluid in various pathologic conditions of the central nervous system. J. Pediatrics6, 374–381 (1935).
  • Spicer S, Appelbaum E, Rutstein DD. Complement and its component fractions in cerebrospinal fluid in cerebrospinal inflammatory disease. J. Clin. Invest.28, 389–393 (1949).
  • Faustmann PM, Krause D, Dux R, Dermietzel R. Morphological study in the early stages of complement C5a fragment- induced experimental meningitis: activation of macrophages and astrocytes. Acta Neuropathol.89, 239–247 (1995).
  • Ernst JD, Hartiala KT, Goldstein IM, Sande MA. Complement (C5)-derived chemotactic activity accounts for accumulation of polymorphonuclear leukocytes in cerebrospinal fluid of rabbits with pneumococcal meningitis. Infect. Immun.46, 81–86 (1984).
  • Stahel PF, Nadal D, Pfister HW, Paradisis M, Barnum SR. Complement C3 and factor B cerebrospinal fluid concentrations in bacterial and aseptic meningitis. Lancet349, 1886–1887 (1997).
  • Tatomirovic Z, Bokun R, Bokonjic D. Intrathecal synthesis of complement components C3c and C4 in the central nervous system infections with signs of the acute serous meningitis syndrome. Vojnosanit Pregl.59, 265–270 (2002).
  • Mamelka B, Lobos M, Sass-Just M et al. [Does the assay of acute phase protein concentrations in cerebrospinal fluid and/or in serum in patient with viral meningitis have a diagnostic value? Part II. Lymphocytic meningitis caused by echo 30 virus]. Przegl Epidemiol.58, 351–359 (2004).
  • Gasque P, Dean YD, McGreal EP, Van Beek J, Morgan BP. Complement components of the innate immune system in health and disease in the CNS. Immunopharmacology49, 171–186 (2000).
  • Lucchinetti C, Bruck W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann. Neurol.47, 707–717 (2000).
  • Barnum SR, Szalai AJ. Complement as a biomarker in multiple sclerosis. J. Neuropathol. Exp. Neurol.64, 741 (2005).
  • Miller DH, Khan OA, Sheremata WA et al. A controlled trial of natalizumab for relapsing multiple sclerosis. N. Engl. J. Med.348, 15–23 (2003).
  • van Beek J, Nicole O, Ali C et al. Complement anaphylatoxin C3a is selectively protective against NMDA-induced neuronal cell death. Neuroreport12, 289–293 (2001).
  • Heese K, Hock C, Otten U. Inflammatory signals induce neurotrophin expression in human microglial cells. J. Neurochem.70, 699–707 (1998).
  • Francis K, Lewis BM, Akatsu H et al. Complement C3a receptors in the pituitary gland: a novel pathway by which an innate immune molecule releases hormones involved in the control of inflammation. Faseb. J.17, 2266–2268 (2003).
  • Boos L, Szalai AJ, Barnum SR. C3a expressed in the central nervous system protects against LPS-induced shock. Neurosci. Lett.387, 68–71 (2005).
  • Hicks RR, Keeling KL, Yang MY, Smith SA, Simons AM, Kotwal GJ. Vaccinia virus complement control protein enhances functional recovery after traumatic brain injury. J. Neurotrauma19, 705–714 (2002).
  • Pillay NS, Kellaway LA, Kotwal GJ. Administration of vaccinia virus complement control protein shows significant cognitive improvement in a mild injury model. Ann. NY Acad. Sci.1056, 450–461 (2005).
  • Bhole D, Stahl GL. Therapeutic potential of targeting the complement cascade in critical care medicine. Crit. Care Med.31, S97–S104 (2003).
  • Morgan BP, Harris CL. Complement therapeutics; history and current progress. Mol. Immunol.40, 159–170 (2003).
  • Holers VM, Thurman JM. The alternative pathway of complement in disease: opportunities for therapeutic targeting. Mol. Immunol.41, 147–152 (2004).
  • Brook E, Herbert AP, Jenkins HT, Soares DC, Barlow PN. Opportunities for new therapies based on the natural regulators of complement activation. Ann. NY Acad. Sci.1056, 176–188 (2005).
  • Holland MC, Morikis D, Lambris JD. Synthetic small-molecule complement inhibitors. Curr. Opin. Investig. Drugs5, 1164–1173 (2004).
  • Bullard DC, Hu X, Schoeb TR, Axtell RC, Raman C, Barnum SR. Critical requirement of CD11b (Mac-1) on T cells and accessory cells for development of experimental autoimmune encephalomyelitis. J. Immunol.175, 6327–6333 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.