51
Views
4
CrossRef citations to date
0
Altmetric
Drug Profile

Mycophenolate mofetil: long-term outcomes in solid organ transplantation

, &
Pages 495-518 | Published online: 10 Jan 2014

References

  • Takemoto SK. Patterns and outcomes for maintenance immunosuppression in the UNOS Renal Transplant Registry. Am. J. Transplant.2(Suppl. 3), A42 (2002).
  • Immunosuppression: 1993–2003 OPTN/SRTR Annual Report (2006).
  • Kaufman DB, Shapiro R, Lucey MR, Cherikh WS, Bustami T, Dyke DB. Immunosuppression: practice and trends. Am. J. Transplant.4(Suppl. 9), 38–53 (2004).
  • Allison AC, Eugui EM, Sollinger HW. Mycophenolate mofetil (RS-61443): mechanisms of action and effects in transplantation. Transplant. Reviews7, 129–139 (1993).
  • Giblett ER, Anderson JE, Cohen F, Pollara B, Meuwissen HJ. Adenosine-deaminase deficiency in two patients with severely impaired cellular immunity. Lancet2(7786), 1067–1069 (1972).
  • Allison AC, Hovi T, Watts RW, Webster AD. Immunological observations on patients with Lesch-Nyhan syndrome, and on the role of de-novo purine synthesis in lymphocyte transformation. Lancet2(7946), 1179–1183 (1975).
  • Allison AC, Hovi T, Watts RW, Webster AD. The role of de novo purine synthesis in lymphocyte transformation. Ciba Found Symp.48, 207–224 (1977).
  • Franklin TJ, Cook JM. The inhibition of nucleic acid synthesis by mycophenolic acid. Biochem. J.113(3), 515–524 (1969).
  • Allison AC, Eugui EM. Purine metabolism and immunosuppressive effects of mycophenolate mofetil (MMF). Clin. Transplant.10(1 Pt 2), 77–84 (1996).
  • Allison AC, Eugui EM. Mycophenolate mofetil and its mechanisms of action. Immunopharmacology47(2–3), 85–118 (2000).
  • Mele TS, Halloran PF. The use of mycophenolate mofetil in transplant recipients. Immunopharmacology47(2–3), 215–245 (2000).
  • Allison AC, Eugui EM. Mechanisms of action of mycophenolate mofetil in preventing acute and chronic allograft rejection. Transplantation80(2 Suppl.), S181–S190 (2005).
  • Eugui EM, Almquist SJ, Muller CD, Allison AC. Lymphocyte-selective cytostatic and immunosuppressive effects of mycophenolic acid in vitro: role of deoxyguanosine nucleotide depletion. Scand. J. Immunol.33(2), 161–173 (1991).
  • Allison AC, Kowalski WJ, Muller CJ, Waters RV, Eugui EM. Mycophenolic acid and brequinar, inhibitors of purine and pyrimidine synthesis, block the glycosylation of adhesion molecules. Transplant. Proc.25(3 Suppl. 2), 67–70 (1993).
  • Haug C, Schmid-Kotsas A, Linder T et al. The immunosuppressive drug mycophenolic acid reduces endothelin-1 synthesis in endothelial cells and renal epithelial cells. Clin. Sci. (Lond.)103(Suppl. 48), 76S–80S (2002).
  • Wilasrusmee C, Da Silva M, Singh B et al. Morphological and biochemical effects of immunosuppressive drugs in a capillary tube assay for endothelial dysfunction. Clin. Transplant.17(Suppl. 9), 6–12 (2003).
  • Nadeau KC, Azuma H, Tilney NL. Sequential cytokine expression in renal allografts in rats immunosuppressed with maintenance cyclosporine or mycophenolate mofetil. Transplantation62(9), 1363–1366 (1996).
  • Remuzzi G, Zoja C, Gagliardini E, Corna D, Abbate M, Benigni A. Combining an antiproteinuric approach with mycophenolate mofetil fully suppresses progressive nephropathy of experimental animals. J. Am. Soc. Nephrol.10(7), 1542–1549 (1999).
  • Senda M, DeLustro B, Eugui E, Natsumeda Y. Mycophenolic acid, an inhibitor of IMP dehydrogenase that is also an immunosuppressive agent, suppresses the cytokine-induced nitric oxide production in mouse and rat vascular endothelial cells. Transplantation60(10), 1143–1148 (1995).
  • Rodriguez-Iturbe B, Quiroz Y, Nava M et al. Reduction of renal immune cell infiltration results in blood pressure control in genetically hypertensive rats. Am. J. Physiol. Renal Physiol.282(2), F191–F201 (2002).
  • Morris RE, Hoyt EG, Murphy MP, Eugui EM, Allison AC. Mycophenolic acid morpholinoethylester (RS-61443) is a new immunosuppressant that prevents and halts heart allograft rejection by selective inhibition of T- and B-cell purine synthesis. Transplant. Proc.22(4), 1659–1662 (1990).
  • Morris RE, Wang J, Blum JR et al. Immunosuppressive effects of the morpholinoethyl ester of mycophenolic acid (RS-61443) in rat and nonhuman primate recipients of heart allografts. Transplant. Proc.23(2 Suppl. 2), 19–25 (1991).
  • Hao L, Lafferty KJ, Allison AC, Eugui EM. RS-61443 allows islet allografting and specific tolerance induction in adult mice. Transplant. Proc.22(2), 876–879 (1990).
  • Sollinger HW. A few memories from the beginning. Transplantation80(2 Suppl.), S178–S180 (2005).
  • Bullingham R, Monroe S, Nicholls A, Hale M. Pharmacokinetics and bioavailability of mycophenolate mofetil in healthy subjects after single-dose oral and intravenous administration. J. Clin. Pharmacol.36(4), 315–324 (1996).
  • Bullingham RE, Nicholls A, Hale M. Pharmacokinetics of mycophenolate mofetil (RS61443), a short review. Transplant. Proc.28(2), 925–929 (1996).
  • Shaw LM, Korecka M, Venkataramanan R, Goldberg L, Bloom R, Brayman KL. Mycophenolic acid pharmacodynamics and pharmacokinetics provide a basis for rational monitoring strategies. Am. J. Transplant.3(5), 534–542 (2003).
  • Shipkova M, Wieland E, Schutz E et al. The acyl glucuronide metabolite of mycophenolic acid inhibits the proliferation of human mononuclear leukocytes. Transplant. Proc.33(1–2), 1080–1081 (2001).
  • Shipkova M, Strassburg CP, Braun F et al. Glucuronide and glucoside conjugation of mycophenolic acid by human liver, kidney and intestinal microsomes. Br. J. Pharmacol.132(5), 1027–1034 (2001).
  • Shipkova M, Armstrong VW, Oellerich M, Wieland E. Acyl glucuronide drug metabolites: toxicological and analytical implications. Ther. Drug Monit.25(1), 1–16 (2003).
  • Weber LT, Shipkova M, Lamersdorf T et al. Pharmacokinetics of mycophenolic acid (MPA) and determinants of MPA free fraction in pediatric and adult renal transplant recipients. German Study group on Mycophenolate Mofetil Therapy in Pediatric Renal Transplant Recipients. J. Am. Soc. Nephrol.9(8), 1511–1520 (1998).
  • Kaplan B, Meier-Kriesche HU, Friedman G et al. The effect of renal insufficiency on mycophenolic acid protein binding. J. Clin. Pharmacol.39(7), 715–720 (1999).
  • Bullingham R, Nicholls AJ, Kamm BR. Clinical pharmacokinetics of mycophenolate mofetil. Clin. Pharmacokinet.34, 429–455 (1998).
  • Weber LT, Lamersdorf T, Shipkova M et al. Area under the plasma concentration-time curve for total, but not for free, mycophenolic acid increases in the stable phase after renal transplantation: a longitudinal study in pediatric patients. German Study Group on Mycophenolate Mofetil Therapy in Pediatric Renal Transplant Recipients. Ther. Drug Monit.21(5), 498–506 (1999).
  • Johnson HJ, Swan SK, Heim-Duthoy KL, Nicholls AJ, Tsina I, Tarnowski T. The pharmacokinetics of a single oral dose of mycophenolate mofetil in patients with varying degrees of renal function. Clin. Pharmacol. Ther.63(5), 512–518 (1998).
  • Kaplan B, Gruber SA, Nallamathou R, Katz SM, Shaw LM. Decreased protein binding of mycophenolic acid associated with leukopenia in a pancreas transplant recipient with renal failure. Transplantation65(8), 1127–1129 (1998).
  • Meier-Kriesche HU, Shaw LM, Korecka M, Kaplan B. Pharmacokinetics of mycophenolic acid in renal insufficiency. Ther. Drug Monit.22(1), 27–30 (2000).
  • Nowak I, Shaw LM. Mycophenolic acid binding to human serum albumin: characterization and relation to pharmacodynamics. Clin. Chem.41(7), 1011–1017 (1995).
  • Zucker K, Tsaroucha A, Olson L, Esquenazi V, Tzakis A, Miller J. Evidence that tacrolimus augments the bioavailability of mycophenolate mofetil through the inhibition of mycophenolic acid glucuronidation. Ther. Drug Monit.21(1), 35–43 (1999).
  • Morii M, Ueno K, Ogawa A et al. Impairment of mycophenolate mofetil absorption by iron ion. Clin. Pharmacol. Ther.68(6), 613–616 (2000).
  • van Gelder T, Klupp J, Barten MJ, Christians U, Morris RE. Comparison of the effects of tacrolimus and cyclosporine on the pharmacokinetics of mycophenolic acid. Ther. Drug Monit.23(2), 119–128 (2001).
  • Shipkova M, Armstrong VW, Kuypers D et al. Effect of cyclosporine withdrawal on mycophenolic acid pharmacokinetics in kidney transplant recipients with deteriorating renal function: preliminary report. Ther. Drug Monit.23(6), 717–721 (2001).
  • Smak Gregoor PJ, van Gelder T, Hesse CJ, van der Mast BJ, van Besouw NM, Weimar W. Mycophenolic acid plasma concentrations in kidney allograft recipients with or without cyclosporin: a cross-sectional study. Nephrol. Dial. Transplant.14(3), 706–708 (1999).
  • Zucker K, Rosen A, Tsaroucha A et al. Unexpected augmentation of mycophenolic acid pharmacokinetics in renal transplant patients receiving tacrolimus and mycophenolate mofetil in combination therapy, and analogous in vitro findings. Transpl. Immunol.5(3), 225–232 (1997).
  • Zucker K, Rosen A, Tsaroucha A et al. Augmentation of mycophenolate mofetil pharmacokinetics in renal transplant patients receiving Prograf and CellCept in combination therapy. Transplant. Proc.29(1–2), 334–336 (1997).
  • Flechner SM, Goldfarb D, Modlin C et al. Kidney transplantation without calcineurin inhibitor drugs: a prospective, randomized trial of sirolimus versus cyclosporine. Transplantation74(8), 1070–1076 (2002).
  • Cattaneo D, Perico N, Gaspari F, Gotti E, Remuzzi G. Glucocorticoids interfere with mycophenolate mofetil bioavailability in kidney transplantation. Kidney Int.62(3), 1060–1067 (2002).
  • Langman LJ, Shapiro AM, Lakey JR, LeGatt DF, Kneteman NM, Yatscoff RW. Pharmacodynamic assessment of mycophenolic acid-induced immunosuppression by measurement of inosine monophosphate dehydrogenase activity in a canine model. Transplantation61(1), 87–92 (1996).
  • Millan O, Oppenheimer F, Brunet M et al. Assessment of mycophenolic acid-induced immunosuppression: a new approach. Clin. Chem.46(9), 1376–1383 (2000).
  • Glander P, Hambach P, Braun KP et al. Pre-transplant inosine monophosphate dehydrogenase activity is associated with clinical outcome after renal transplantation. Am. J. Transplant.4(12), 2045–2051 (2004).
  • Danovitch GM. Mycophenolate mofetil in renal transplantation: results from the U.S. randomized trials. Kidney Int. Suppl.52, S93–S96 (1995).
  • Halloran P, Mathew T, Tomlanovich S, Groth C, Hooftman L, Barker C. Mycophenolate mofetil in renal allograft recipients: a pooled efficacy analysis of three randomized, double-blind, clinical studies in prevention of rejection. The International Mycophenolate Mofetil Renal Transplant Study Groups. Transplantation63(1), 39–47 (1997).
  • Sollinger HW, Deierhoi MH, Belzer FO, Diethelm AG, Kauffman RS. RS-61443 – a phase I clinical trial and pilot rescue study. Transplantation53(2), 428–432 (1992).
  • Deierhoi MH, Kauffman RS, Hudson SL et al. Experience with mycophenolate mofetil (RS61443) in renal transplantation at a single center. Ann. Surg.217(5), 476–482 (1993).
  • Deierhoi MH, Sollinger HW, Diethelm AG, Belzer FO, Kauffman RS. One-year follow-up results of a phase I trial of mycophenolate mofetil (RS61443) in cadaveric renal transplantation. Transplant. Proc.25(1 Pt 1), 693–694 (1993).
  • Matas AJ, Gillingham KJ, Payne WD, Najarian JS. The impact of an acute rejection episode on long-term renal allograft survival (t1/2). Transplantation57(6), 857–859 (1994).
  • Sollinger HW. Mycophenolate mofetil for the prevention of acute rejection in primary cadaveric renal allograft recipients. U.S. Renal Transplant Mycophenolate Mofetil Study Group. Transplantation60(3), 225–232 (1995).
  • Placebo-controlled study of mycophenolate mofetil combined with cyclosporin and corticosteroids for prevention of acute rejection. European Mycophenolate Mofetil Cooperative Study Group. Lancet345(8961), 1321–1325 (1995).
  • A blinded, randomized clinical trial of mycophenolate mofetil for the prevention of acute rejection in cadaveric renal transplantation. The Tricontinental Mycophenolate Mofetil Renal Transplantation Study Group. Transplantation61(7), 1029–1037 (1996).
  • Neylan JF. Immunosuppressive therapy in high-risk transplant patients: dose-dependent efficacy of mycophenolate mofetil in African–American renal allograft recipients. U.S. Renal Transplant Mycophenolate Mofetil Study Group. Transplantation64(9), 1277–1282 (1997).
  • Mycophenolate mofetil in renal transplantation: 3-year results from the placebo-controlled trial. European Mycophenolate Mofetil Cooperative Study Group. Transplantation68(3), 391–396 (1999).
  • Buell JF, Gross TG, Woodle ES. Malignancy after transplantation. Transplantation80(2 Suppl.), S254–S264 (2005).
  • Corna D, Morigi M, Facchinetti D, Bertani T, Zoja C, Remuzzi G. Mycophenolate mofetil limits renal damage and prolongs life in murine lupus autoimmune disease. Kidney Int.51(5), 1583–1589 (1997).
  • Weir MR, Anderson L, Fink JC et al. A novel approach to the treatment of chronic allograft nephropathy. Transplantation64(12), 1706–1710 (1997).
  • Dickinson DM, Bryant PC, Williams MC et al. Transplant data: sources, collection, and caveats. Am. J. Transplant.4(Suppl. 9), 13–26 (2004).
  • Merion RM. 2004 SRTR Report on the State of Transplantation. Am. J. Transplant.5(4 Pt 2), 841–842 (2005).
  • Meier-Kriesche H, Ojo AO, Arndorfer JA et al. Mycophenolate mofetil decreases the risk for chronic renal allograft failure. Transplant. Proc.33(1–2), 1005–1006 (2001).
  • Meier-Kriesche HU, Ojo AO, Leichtman AB et al. Effect of mycophenolate mofetil on long-term outcomes in African american renal transplant recipients. J. Am. Soc. Nephrol.11(12), 2366–2370 (2000).
  • Meier-Kriesche HU, Ojo AO, Leichtman AB et al. Interaction of mycophenolate mofetil and HLA matching on renal allograft survival. Transplantation71(3), 398–401 (2001).
  • Meier-Kriesche HU, Steffen BJ, Hochberg AM et al. Long-term use of mycophenolate mofetil is associated with a reduction in the incidence and risk of late rejection. Am. J. Transplant.3(1), 68–73 (2003).
  • Meier-Kriesche HU, Steffen BJ, Hochberg AM et al. Mycophenolate mofetil versus azathioprine therapy is associated with a significant protection against long-term renal allograft function deterioration. Transplantation75(8), 1341–1346 (2003).
  • Ojo AO, Meier-Kriesche HU, Hanson JA et al. Mycophenolate mofetil reduces late renal allograft loss independent of acute rejection. Transplantation69(11), 2405–2409 (2000).
  • Kaplan B, Schold J, Meier-Kriesche HU. Overview of large database analysis in renal transplantation. Am. J. Transplant.3(9), 1052–1056 (2003).
  • Hill AB. Statistical evidence and inference. In: Principles of Medical Statistics. Hill AB (Ed.), The Lancet Limited, London, UK, 309–323 (1971).
  • Opelz G. Correlation of HLA matching with kidney graft survival in patients with or without cyclosporine treatment. Transplantation40(3), 240–243 (1985).
  • Johnson C, Ahsan N, Gonwa T et al. Randomized trial of tacrolimus (Prograf) in combination with azathioprine or mycophenolate mofetil versus cyclosporine (Neoral) with mycophenolate mofetil after cadaveric kidney transplantation. Transplantation69(5), 834–841 (2000).
  • Meier-Kriesche HU, Steffen BJ, Chu AH et al. Sirolimus with neoral versus mycophenolate mofetil with neoral is associated with decreased renal allograft survival. Am. J. Transplant.4(12), 2058–2066 (2004).
  • Kahan BD. Efficacy of sirolimus compared with azathioprine for reduction of acute renal allograft rejection: a randomised multicentre study. The Rapamune US Study Group. Lancet356(9225), 194–202 (2000).
  • MacDonald AS. A worldwide, phase III, randomized, controlled, safety and efficacy study of a sirolimus/cyclosporine regimen for prevention of acute rejection in recipients of primary mismatched renal allografts. Transplantation71(2), 271–280 (2001).
  • Andoh TF, Lindsley J, Franceschini N, Bennett WM. Synergistic effects of cyclosporine and rapamycin in a chronic nephrotoxicity model. Transplantation62(3), 311–316 (1996).
  • Ciancio G, Burke GW, Gaynor JJ et al. A randomized long-term trial of tacrolimus/sirolimus versus tacrolimus/mycophenolate mofetil versus cyclosporine (NEORAL)/sirolimus in renal transplantation. II. Survival, function, and protocol compliance at 1 year. Transplantation77(2), 252–258 (2004).
  • Ciancio G, Burke GW, Gaynor JJ et al. A randomized long-term trial of tacrolimus and sirolimus versus tacrolimus and mycophenolate mofetil versus cyclosporine (NEORAL) and sirolimus in renal transplantation. I. Drug interactions and rejection at one year. Transplantation77(2), 244–251 (2004).
  • Kahan BD. Efficacy of sirolimus compared with azathioprine for reduction of acute renal allograft rejection: a randomised multicentre study. The Rapamune US Study Group. Lancet356(9225), 194–202 (2000).
  • MacDonald AS. A worldwide, phase III, randomized, controlled, safety and efficacy study of a sirolimus/cyclosporine regimen for prevention of acute rejection in recipients of primary mismatched renal allografts. Transplantation71(2), 271–280 (2001).
  • Formica RN Jr, Lorber KM, Friedman AL et al. Sirolimus-based immunosuppression with reduce dose cyclosporine or tacrolimus after renal transplantation. Transplant. Proc.35(3 Suppl.), 95S–98S (2003).
  • MacDonald A. Improving tolerability of immunosuppressive regimens. Transplantation72(12 Suppl.), S105–S112 (2001).
  • MacDonald AS. Rapamycin in combination with cyclosporine or tacrolimus in liver, pancreas, and kidney transplantation. Transplant. Proc.35(3 Suppl.), 201S–208S (2003).
  • Mendez R, Gonwa T, Yang HC, Weinstein S, Jensik S, Steinberg S. A prospective randomized trial of tacrolimus in combination with sirolimus or mycophenolate mofetil in kidney transplantation; Results at one year. Transplantation80(3), 303–309 (2005).
  • Meier-Kriesche HU, Schold JD, Srinivas TR, Howard R, Fujita S, Kaplan B. Rapamycin in combination with Tacrolimus is associated with worse renal allograft survival compared to Mycophenolate Mofetil combined with Tacrolimus. Am. J. Transplant. (2005) (In Press).
  • Flechner SM, Kurian SM, Solez K et al. De novo kidney transplantation without use of calcineurin inhibitors preserves renal structure and function at two years. Am. J. Transplant.4(11), 1776–1785 (2004).
  • Larson TS, Dean PG, Stegall MD et al. Complete avoidance of calcineurin inhibitors in renal transplantation: a randomized trial comparing sirolimus and tacrolimus. Am. J. Transplant.6(3), 514–522 (2006).
  • Meier-Kriesche HU, Hricik DE. Are we ready to give up on calcineurin inhibitors? Am. J. Transplant.6(3), 445–446 (2006).
  • Halloran PF, Langone AJ, Helderman JH, Kaplan B. Assessing long-term nephron loss: is it time to kick the CAN grading system? Am. J. Transplant.4(11), 1729–1730 (2004).
  • Danovitch GM. Immunosuppressive medications and protocols. In: Handbook of Kidney Tranapslantation. Danovitch GM (Ed.), Lippincott Williams and Wilkins, PA, USA, 72–134 (2005).
  • Kuypers DR, Evenepoel P, Maes B, Coosemans W, Pirenne J, Vanrenterghem Y. The use of an anti-CD25 monoclonal antibody and mycophenolate mofetil enables the use of a low-dose tacrolimus and early withdrawal of steroids in renal transplant recipients. Clin. Transplant.17(3), 234–241 (2003).
  • Humar A, Parr E, Drangstveit MB, Kandaswamy R, Gruessner AC, Sutherland DE. Steroid withdrawal in pancreas transplant recipients. Clin. Transplant.14(1), 75–78 (2000).
  • Kasiske BL, Chakkera HA, Louis TA, Ma JZ. A meta-analysis of immunosuppression withdrawal trials in renal transplantation. J. Am. Soc. Nephrol.11(10), 1910–1917 (2000).
  • Matas AJ, Kandaswamy R, Humar A et al. Long-term immunosuppression, without maintenance prednisone, after kidney transplantation. Ann. Surg.240(3), 510–516 (2004).
  • Kumar MS, Xiao SG, Fyfe B et al. Steroid avoidance in renal transplantation using basiliximab induction, cyclosporine-based immunosuppression and protocol biopsies. Clin. Transplant.19(1), 61–69 (2005).
  • Kaufman DB, Leventhal JR, Koffron AJ et al. A prospective study of rapid corticosteroid elimination in simultaneous pancreas-kidney transplantation: comparison of two maintenance immunosuppression protocols: tacrolimus/mycophenolate mofetil versus tacrolimus/sirolimus. Transplantation73(2), 169–177 (2002).
  • Paul LC. Chronic allograft nephropathy: an update. Kidney Int.56(3), 783–793 (1999).
  • Mauiyyedi S, Pelle PD, Saidman S et al. Chronic humoral rejection: identification of antibody-mediated chronic renal allograft rejection by C4d deposits in peritubular capillaries. J. Am. Soc. Nephrol.12(3), 574–582 (2001).
  • Terasaki PI. Humoral theory of transplantation. Am. J. Transplant.3(6), 665–673 (2003).
  • Mihatsch MJ, Morozumi K, Strom EH, Ryffel B, Gudat F, Thiel G. Renal transplant morphology after long-term therapy with cyclosporine. Transplant. Proc.27(1), 39–42 (1995).
  • Weir MR, Ward MT, Blahut SA et al. Long-term impact of discontinued or reduced calcineurin inhibitor in patients with chronic allograft nephropathy. Kidney Int.59(4), 1567–1573 (2001).
  • Dudley C, Pohanka E, Riad H et al. Mycophenolate mofetil substitution for cyclosporine a in renal transplant recipients with chronic progressive allograft dysfunction: the “creeping creatinine” study. Transplantation79(4), 466–475 (2005).
  • Theruvath TP, Saidman SL, Mauiyyedi S et al. Control of antidonor antibody production with tacrolimus and mycophenolate mofetil in renal allograft recipients with chronic rejection. Transplantation72(1), 77–83 (2001).
  • David KM, Morris JA, Steffen BJ, Chi-Burris KS, Gotz VP, Gordon RD. Mycophenolate mofetil vs. azathioprine is associated with decreased acute rejection, late acute rejection, and risk for cardiovascular death in renal transplant recipients with pre-transplant diabetes. Clin. Transplant.19(2), 279–285 (2005).
  • Cattaneo D, Perico N, Gaspari F, Gotti E, Remuzzi G. Glucocorticoids interfere with mycophenolate mofetil bioavailability in kidney transplantation. Kidney Int.62(3), 1060–1067 (2002).
  • Rischen-Vos J, van der Woude FJ, Tegzess AM et al. Increased morbidity and mortality in patients with diabetes mellitus after kidney transplantation as compared with non-diabetic patients. Nephrol. Dial. Transplant.7(5), 433–437 (1992).
  • Kumar S, Merchant MR, Dyer P et al. Increased mortality due to cardiovascular disease in type 1 diabetic patients transplanted for end-stage renal failure. Diabet. Med.11(10), 987–991 (1994).
  • Meier-Kriesche HU, Baliga R, Kaplan B. Decreased renal function is a strong risk factor for cardiovascular death after renal transplantation. Transplantation75(8), 1291–1295 (2003).
  • Robson R, Cecka JM, Opelz G, Budde M, Sacks S. Prospective registry-based observational cohort study of the long-term risk of malignancies in renal transplant patients treated with mycophenolate mofetil. Am. J. Transplant.5(12), 2954–2960 (2005).
  • Funch DP, Ko HH, Travasso J et al. Posttransplant lymphoproliferative disorder among renal transplant patients in relation to the use of mycophenolate mofetil. Transplantation80(9), 1174–1180 (2005).
  • Mauiyyedi S, Colvin RB. Humoral rejection in kidney transplantation: new concepts in diagnosis and treatment. Curr. Opin. Nephrol. Hypertens.11(6), 609–618 (2002).
  • Mauiyyedi S, Crespo M, Collins AB et al. Acute humoral rejection in kidney transplantation: II. Morphology, immunopathology, and pathologic classification. J. Am. Soc. Nephrol.13(3), 779–787 (2002).
  • Crespo M, Pascual M, Tolkoff-Rubin N et al. Acute humoral rejection in renal allograft recipients: I. Incidence, serology and clinical characteristics. Transplantation71(5), 652–658 (2001).
  • Pascual M, Saidman S, Tolkoff-Rubin N et al. Plasma exchange and tacrolimus-mycophenolate rescue for acute humoral rejection in kidney transplantation. Transplantation66(11), 1460–1464 (1998).
  • Theruvath TP, Saidman SL, Mauiyyedi S et al. Control of antidonor antibody production with tacrolimus and mycophenolate mofetil in renal allograft recipients with chronic rejection. Transplantation72(1), 77–83 (2001).
  • Katznelson S, Takemoto SK, Cecka JM. Histocompatibility testing, crossmatching, and allocation of cadaveric kidney transplants. In: Handbook of Kidney Transplantation. Danovitch GM (Ed.), Lippincott, PA, USA, 39–61 (2001).
  • Jordan S, Cunningham-Rundles C, McEwan R. Utility of intravenous immune globulin in kidney transplantation: efficacy, safety, and cost implications. Am. J. Transplant.3(6), 653–664 (2003).
  • Tanabe K, Takahashi K, Sonda K et al. ABO-incompatible living kidney donor transplantation: results and immunological aspects. Transplant. Proc.27(1), 1020–1023 (1995).
  • Tanabe K, Takahashi K, Sonda K et al. Long-term results of ABO-incompatible living kidney transplantation: a single-center experience. Transplantation65(2), 224–228 (1998).
  • Tanabe K, Tokumoto T, Ishikawa N et al. ABO-incompatible living donor kidney transplantation under tacrolimus immunosuppression. Transplant. Proc.32(7), 1711–1713 (2000).
  • Ishida H, Tanabe K, Furusawa M et al. Mycophenolate mofetil suppresses the production of anti-blood type anitbodies after renal transplantation across the abo blood barrier: ELISA to detect humoral activity. Transplantation74(8), 1187–1189 (2002).
  • Sonnenday CJ, Ratner LE, Zachary AA et al. Preemptive therapy with plasmapheresis/intravenous immunoglobulin allows successful live donor renal transplantation in patients with a positive cross-match. Transplant. Proc.34(5), 1614–1616 (2002).
  • Schweitzer EJ, Wilson JS, Fernandez-Vina M et al. A high panel-reactive antibody rescue protocol for cross-match-positive live donor kidney transplants. Transplantation70(10), 1531–1536 (2000).
  • Rayhill SC, Sollinger HW. Mycophenolate mofetil: experimental and clinical experience. In: Transplantation. Ginns LC, Cosimi AB, Morris PJ (Eds), Blackwell, MO, USA, 147–166 (1999).
  • Auchincloss H, Shaffer D. Pancreas Transplantation. In: Transplantation. Ginns LC, Cosimi AB, Morris PJ (Eds), Blackwell, MO, USA, 395–421 (1999).
  • Stratta RJ. Immunosuppression in pancreas transplantation: progress, problems and perspective. Transpl. Immunol.6(2), 69–77 (1998).
  • Stratta RJ, Gaber AO, Shokouh-Amiri MH et al. Evolution in pancreas transplantation techniques: simultaneous kidney-pancreas transplantation using portal-enteric drainage without antilymphocyte induction. Ann. Surg.229(5), 701–708 (1999).
  • Sollinger HW, Odorico JS, Knechtle SJ, D'Alessandro AM, Kalayoglu M, Pirsch JD. Experience with 500 simultaneous pancreas-kidney transplants. Ann. Surg.228(3), 284–296 (1998).
  • Odorico JS, Pirsch JD, Knechtle SJ, D’Alessandro AM, Sollinger HW. A study comparing mycophenolate mofetil to azathioprine in simultaneous pancreas-kidney transplantation. Transplantation66(12), 1751–1759 (1998).
  • Gruessner RW, Sutherland DE, Drangstveit MB, Wrenshall L, Humar A, Gruessner AC. Mycophenolate mofetil in pancreas transplantation. Transplantation66(3), 318–323 (1998).
  • Stegall MD, Simon M, Wachs ME, Chan L, Nolan C, Kam I. Mycophenolate mofetil decreases rejection in simultaneous pancreas-kidney transplantation when combined with tacrolimus or cyclosporine. Transplantation64(12), 1695–1700 (1997).
  • Gruessner AC, Sutherland DE. Analysis of United States (US) and non-US pancreas transplants reported to the United network for organ sharing (UNOS) and the international pancreas transplant registry (IPTR) as of October 2001. Clin. Transpl.41–72 (2001).
  • Taylor DO, Ensley RD, Olsen SL, Dunn D, Renlund DG. Mycophenolate mofetil (RS-61443), preclinical, clinical, and three-year experience in heart transplantation. J. Heart Lung Transplant.13(4), 571–582 (1994).
  • Ensley RD, Bristow MR, Olsen SL et al. The use of mycophenolate mofetil (RS-61443) in human heart transplant recipients. Transplantation56(1), 75–82 (1993).
  • Kirklin JK, Bourge RC, Naftel DC et al. Treatment of recurrent heart rejection with mycophenolate mofetil (RS-61443), initial clinical experience. J. Heart Lung Transplant.13(3), 444–450 (1994).
  • Kobashigawa J, Miller L, Renlund D et al. A randomized active-controlled trial of mycophenolate mofetil in heart transplant recipients. Mycophenolate Mofetil Investigators. Transplantation66(4), 507–515 (1998).
  • Hosenpud JD, Bennett LE. Mycophenolate mofetil versus azathioprine in patients surviving the initial cardiac transplant hospitalization: an analysis of the Joint UNOS/ISHLT Thoracic Registry. Transplantation72(10), 1662–1665 (2001).
  • Kobashigawa JA, Tobis JM, Mentzer RM et al. Mycophenolate mofetil reduces intimal thickness by intravascular ultrasound after heart transplant: reanalysis of the multicenter trial. Am. J. Transplant.6(5 Pt 1), 993–997 (2006).
  • Mehra MR, Uber PA, Scott RL, Park MH. Ethnic disparity in clinical outcome after heart transplantation is abrogated using tacrolimus and mycophenolate mofetil-based immunosuppression. Transplantation74(11), 1568–1573 (2002).
  • Baryalei M, Zenker D, Pieske B, Tondo K, Dalichau H, Aleksic I. Renal function and safety of heart transplant recipients switched to mycophenolate mofetil and low-dose cyclosporine. Transplant. Proc.35(4), 1539–1542 (2003).
  • Wiesner R, Rabkin J, Klintmalm G et al. A randomized double-blind comparative study of mycophenolate mofetil and azathioprine in combination with cyclosporine and corticosteroids in primary liver transplant recipients. Liver Transpl.7(5), 442–450 (2001).
  • Palmer SM, Baz MA, Sanders L et al. Results of a randomized, prospective, multicenter trial of mycophenolate mofetil versus azathioprine in the prevention of acute lung allograft rejection. Transplantation71(12), 1772–1776 (2001).
  • Nelson DR, Soldevila-Pico C, Reed A et al. Anti-interleukin-2 receptor therapy in combination with mycophenolate mofetil is associated with more severe hepatitis C recurrence after liver transplantation. Liver Transpl.7(12), 1064–1070 (2001).
  • Wiesner RH, Shorr JS, Steffen BJ, Chu AH, Gordon RD, Lake JR. Mycophenolate mofetil combination therapy improves long-term outcomes after liver transplantation in patients with and without hepatitis C. Liver Transpl.11(7), 750–759 (2005).
  • Schlitt HJ, Barkmann A, Boker KH et al. Replacement of calcineurin inhibitors with mycophenolate mofetil in liver-transplant patients with renal dysfunction: a randomised controlled study. Lancet357(9256), 587–591 (2001).
  • Zuckermann A, Reichenspurner H, Birsan T et al. Cyclosporine A versus tacrolimus in combination with mycophenolate mofetil and steroids as primary immunosuppression after lung transplantation: one-year results of a 2-center prospective randomized trial. J. Thorac. Cardiovasc. Surg.125(4), 891–900 (2003).
  • Zuckermann A, Klepetko W, Birsan T et al. Comparison between mycophenolate mofetil- and azathioprine-based immunosuppressions in clinical lung transplantation. J. Heart Lung Transplant.18(5), 432–440 (1999).
  • Soccal PM, Gasche Y, Favre H, Spiliopoulos A, Nicod LP. Improvement of drug-induced chronic renal failure in lung transplantation. Transplantation68(1), 164–165 (1999).
  • Kaplan B, Srinivas TR, Meier-Kriesche HU. Factors associated with long-term renal allograft survival. Ther. Drug Monit.24(1), 36–39 (2002).
  • Shaw LM, Kaplan B, DeNofrio D, Korecka M, Brayman KL. Pharmacokinetics and concentration-control investigations of mycophenolic acid in adults after transplantation. Ther. Drug Monit.22(1), 14–19 (2000).
  • Cox VC, Ensom MH. Mycophenolate mofetil for solid organ transplantation: does the evidence support the need for clinical pharmacokinetic monitoring? Ther. Drug Monit.25(2), 137–157 (2003).
  • Hale MD, Nicholls AJ, Bullingham RE et al. The pharmacokinetic-pharmacodynamic relationship for mycophenolate mofetil in renal transplantation. Clin. Pharmacol. Ther.64(6), 672–683 (1998).
  • van Gelder T, Hilbrands LB, Vanrenterghem Y et al. A randomized double-blind, multicenter plasma concentration controlled study of the safety and efficacy of oral mycophenolate mofetil for the prevention of acute rejection after kidney transplantation. Transplantation68(2), 261–266 (1999).
  • Le Meur Y, Buchler M, Lavaud S et al. Concentration controled versus fixed dose of mmf in kidney transplant recipients: preliminary results of a french multicenter randomized study. (Abstract Presented at the American Transplant Congress 2005). Am. J. Transplant.5, A338 (2005).
  • van Gelder T, Meur YL, Shaw LM et al. Therapeutic drug monitoring of mycophenolate mofetil in transplantation. Ther. Drug Monit.28(2), 145–154 (2006).
  • Weber LT, Shipkova M, Armstrong VW et al. Comparison of the Emit immunoassay with HPLC for therapeutic drug monitoring of mycophenolic acid in pediatric renal-transplant recipients on mycophenolate mofetil therapy. Clin. Chem.48(3), 517–525 (2002).
  • Weber LT, Shipkova M, Armstrong VW et al. The pharmacokinetic-pharmacodynamic relationship for total and free mycophenolic Acid in pediatric renal transplant recipients: a report of the german study group on mycophenolate mofetil therapy. J. Am. Soc. Nephrol.13(3), 759–768 (2002).
  • Weber LT, Schutz E, Lamersdorf T et al. Therapeutic drug monitoring of total and free mycophenolic acid (MPA) and limited sampling strategy for determination of MPA-AUC in paediatric renal transplant recipients. The German Study Group on Mycophenolate Mofetil (MMF) Therapy. Nephrol. Dial. Transplant.14(Suppl 4), 34–35 (1999).
  • Meiser BM, Pfeiffer M, Schmidt D et al. Combination therapy with tacrolimus and mycophenolate mofetil following cardiac transplantation: importance of mycophenolic acid therapeutic drug monitoring. J. Heart Lung Transplant.18(2), 143–149 (1999).
  • Filler G, Mai I. Limited sampling strategy for mycophenolic acid area under the curve. Ther. Drug Monit.22(2), 169–173 (2000).
  • Willis C, Taylor PJ, Salm P, Tett SE, Pillans PI. Evaluation of limited sampling strategies for estimation of 12-hour mycophenolic acid area under the plasma concentration-time curve in adult renal transplant patients. Ther. Drug Monit.22(5), 549–554 (2000).
  • Chan TM, Li FK, Tang CS et al. Efficacy of mycophenolate mofetil in patients with diffuse proliferative lupus nephritis. Hong Kong-Guangzhou Nephrology Study Group. N. Engl. J. Med.343(16), 1156–1162 (2000).
  • Contreras G, Pardo V, Leclercq B et al. Sequential therapies for proliferative lupus nephritis. N. Engl. J. Med.350(10), 971–980 (2004).
  • Ginzler EM, Dooley MA, Aranow C et al. Mycophenolate mofetil or intravenous cyclophosphamide for lupus nephritis. N. Engl. J. Med.353(21), 2219–2228 (2005).
  • Joy MS, Hogan SL, Jennette JC, Falk RJ, Nachman PH. A pilot study using mycophenolate mofetil in relapsing or resistant ANCA small vessel vasculitis. Nephrol. Dial. Transplant.20(12), 2725–2732 (2005).
  • Appel GB, Radhakrishnan J, Ginzler EM. Use of mycophenolate mofetil in autoimmune and renal diseases. Transplantation80(2 Suppl.), S265–S271 (2005).
  • Meier-Kriesche HU, Schold JD, Srinivas TR, Kaplan B. Lack of improvement in renal allograft survival despite a marked decrease in acute rejection rates over the most recent era. Am. J. Transplant.4(3), 378–383 (2004).
  • Ramos E, Drachenberg CB, Portocarrero M et al. BK virus nephropathy diagnosis and treatment: experience at the University of Maryland Renal Transplant Program. Clin. Transpl.143–153 (2002).
  • Brennan DC, Agha I, Bohl DL et al. Incidence of BK with tacrolimus versus cyclosporine and impact of preemptive immunosuppression reduction. Am. J. Transplant.5(3), 582–594 (2005).
  • Lipshutz GS, Flechner SM, Govani MV, Vincenti F. BK nephropathy in kidney transplant recipients treated with a calcineurin inhibitor-free immunosuppression regimen. Am. J. Transplant.4(12), 2132–2134 (2004).
  • Budde K, Curtis J, Knoll G et al. Enteric-coated mycophenolate sodium can be safely administered in maintenance renal transplant patients: results of a 1-year study. Am. J. Transplant.4(2), 237–243 (2004).
  • Salvadori M. Long-term administration of enteric-coated mycophenolate sodium in kidney transplant patients. Transplant. Proc.37(2), 909–911 (2005).
  • Budde K, Knoll G, Curtis J et al. Safety and efficacy after conversion from mycophenolate mofetil to enteric-coated mycophenolate sodium: results of a 1-year extension study. Transplant. Proc.37(2), 912–915 (2005).
  • Kaplan MJ. FK-778 Astellas. Curr. Opin. Investig. Drugs6(5), 526–536 (2005).
  • Vincenti F, Larsen C, Durrbach A et al. Costimulation blockade with belatacept in renal transplantation. N. Engl. J. Med.353(8), 770–781 (2005).

Websites

  • US FDA. FDA approves new Rapamune labeling likely to improve transplanted kidney function. 2003 www.fda.gov/bbs/topics/answers/2003/ ans01211.html
  • UNOS. Patient data source website www.patients.unos.org/tpd

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.