98
Views
7
CrossRef citations to date
0
Altmetric
Review

Pattern recognition receptors: an update

&
Pages 569-583 | Published online: 10 Jan 2014

References

  • Janeway CA Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb. Symp. Quant. Biol.54(Pt 1), 1–13 (1989).
  • Anderson KV, Bokla L, Nusslein-Volhard C. Establishment of dorsal-ventral polarity in the Drosophila embryo: the induction of polarity by the Toll gene product. Cell42(3), 791–798 (1985).
  • Hoffmann JA. The immune response of Drosophila. Nature426(6962), 33–38 (2003).
  • Medzhitov R, Preston-Hurlburt P, Janeway CA Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature388(6640), 394–397 (1997).
  • Akira S, Takeda K. Toll-like receptor signalling. Nat. Rev. Immunol.4(7), 499–511 (2004).
  • Latz E, Schoenemeyer A, Visintin A et al. TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nat. Immunol.5(2), 190–198 (2004).
  • Barton GM, Kagan JC, Medzhitov R. Intracellular localization of Toll-like receptor 9 prevents recognition of self DNA but facilitates access to viral DNA. Nat. Immunol.7(1), 49–56 (2006).
  • Bauer S. Toll-erating self DNA. Nat. Immunol.7(1), 13–15 (2006).
  • Dunne A, O’Neill LA. The interleukin-1 receptor/Toll-like receptor superfamily: signal transduction during inflammation and host defense. Sci. STKE2003(171), re3 (2003).
  • Bell JK, Mullen GE, Leifer CA, Mazzoni A, Davies DR, Segal DM. Leucine-rich repeats and pathogen recognition in Toll-like receptors. Trends Immunol.24(10), 528–533 (2003).
  • Vogel SN, Fitzgerald KA, Fenton MJ. TLRs: differential adapter utilization by Toll-like receptors mediates TLR-specific patterns of gene expression. Mol. Interv.3(8), 466–477 (2003).
  • Muzio M, Ni J, Feng P, Dixit VM. IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling. Science278(5343), 1612–1615 (1997).
  • Fitzgerald KA, Palsson-McDermott EM, Bowie AG et al. Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Nature413(6851), 78–83 (2001).
  • Horng T, Barton GM, Medzhitov R. TIRAP: an adapter molecule in the Toll signaling pathway. Nat. Immunol.2(9), 835–841 (2001).
  • Yamamoto M, Sato S, Mori K et al. Cutting edge: a novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-β promoter in the Toll-like receptor signaling. J. Immunol.169(12), 6668–6672 (2002).
  • Hoebe K, Du X, Georgel P et al. Identification of Lps2 as a key transducer of MyD88-independent TIR signalling. Nature424(6950), 743–748 (2003).
  • Oshiumi H, Matsumoto M, Funami K, Akazawa T, Seya T. TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-β induction. Nat. Immunol.4(2), 161–167 (2003).
  • Fitzgerald KA, Rowe DC, Barnes BJ et al. LPS-TLR4 signaling to IRF-3/7 and NF-κB involves the Toll adapters TRAM and TRIF. J. Exp. Med.198(7), 1043–1055 (2003).
  • Yamamoto M, Sato S, Hemmi H et al. TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway. Nat. Immunol.4(11), 1144–1150 (2003).
  • Oshiumi H, Sasai M, Shida K, Fujita T, Matsumoto M, Seya T. TICACM-2: a bridging adapter recruiting to Toll-like receptor 4 TICAM-1 that induces interferon-β. J. Biol. Chem.278(50), 49751–49762 (2003).
  • Liberati NT, Fitzgerald KA, Kim DH, Feinbaum R, Golenbock DT, Ausubel FM. Requirement for a conserved Toll/interleukin-1 resistance domain protein in the Caenorhabditis elegans immune response. Proc. Natl Acad. Sci. USA101(17), 6593–6598 (2004).
  • Cao Z, Henzel WJ, Gao X. IRAK: a kinase associated with the interleukin-1 receptor. Science271(5252), 1128–1131 (1996).
  • Li S, Strelow A, Fontana EJ, Wesche H. IRAK-4: a novel member of the IRAK family with the properties of an IRAK-kinase. Proc. Natl Acad. Sci. USA99(8), 5567–5572 (2002).
  • Qin J, Jiang Z, Qian Y, Casanova JL, Li X. IRAK4 kinase activity is redundant for interleukin-1 (IL-1) receptor-associated kinase phosphorylation and IL-1 responsiveness. J. Biol. Chem.279(25), 26748–26753 (2004).
  • Cao Z, Xiong J, Takeuchi M, Kurama T, Goeddel DV. TRAF6 is a signal transducer for interleukin-1. Nature383(6599), 443–446 (1996).
  • Wang C, Deng L, Hong M, Akkaraju GR, Inoue J, Chen ZJ. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature412(6844), 346–351 (2001).
  • Sun L, Deng L, Ea CK, Xia ZP, Chen ZJ. The TRAF6 ubiquitin ligase and TAK1 kinase mediate IKK activation by BCL10 and MALT1 in T lymphocytes. Mol. Cell14(3), 289–301 (2004).
  • Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature413(6857), 732–738 (2001).
  • Yamamoto M, Sato S, Hemmi H et al. Role of adaptor TRIF in the MyD88-independent Toll-like receptor signaling pathway. Science301(5633), 640–643 (2003).
  • Meylan E, Burns K, Hofmann K et al. RIP1 is an essential mediator of Toll-like receptor 3-induced NF-kappa B activation. Nat. Immunol.5(5), 503–507 (2004).
  • Cusson-Hermance N, Khurana S, Lee TH, Fitzgerald KA, Kelliher MA. Rip1 mediates the Trif-dependent Toll-like receptor 3- and 4-induced NF-{κ}B activation but does not contribute to interferon regulatory factor 3 activation. J. Biol. Chem.280(44), 36560–36566 (2005).
  • Covert MW, Leung TH, Gaston JE, Baltimore D. Achieving stability of lipopolysaccharide-induced NF-κB activation. Science309(5742), 1854–1857 (2005).
  • Werner SL, Barken D, Hoffmann A. Stimulus specificity of gene expression programs determined by temporal control of IKK activity. Science309(5742), 1857–1861 (2005).
  • Maniatis T. Mechanisms of human β-interferon gene regulation. Harvey Lect.82, 71–104 (1986).
  • Honda K, Yanai H, Mizutani T et al. Role of a transductional-transcriptional processor complex involving MyD88 and IRF-7 in Toll-like receptor signaling. Proc. Natl Acad. Sci. USA101(43), 15416–15421 (2004).
  • Kawai T, Sato S, Ishii KJ et al. Interferon-a induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nat. Immunol.5(10), 1061–1068 (2004).
  • Schoenemeyer A, Barnes BJ, Mancl ME et al. The interferon regulatory factor, IRF5, is a central mediator of Toll-like receptor 7 signaling. J. Biol. Chem.280(17), 17005–17012 (2005).
  • Hacker H, Redecke V, Blagoev B et al. Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature439(7073), 204–207 (2006).
  • Oganesyan G, Saha SK, Guo B et al. Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response. Nature439(7073), 208–211 (2006).
  • Fitzgerald KA, McWhirter SM, Faia KL et al. IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat. Immunol.4(5), 491–496 (2003).
  • Sharma S, tenOever BR, Grandvaux N, Zhou GP, Lin R, Hiscott J. Triggering the interferon antiviral response through an IKK-related pathway. Science300(5622), 1148–1151 (2003).
  • McWhirter SM, Fitzgerald KA, Rosains J, Rowe DC, Golenbock DT, Maniatis T. IFN-regulatory factor 3-dependent gene expression is defective in Tbk1-deficient mouse embryonic fibroblasts. Proc. Natl Acad. Sci. USA101(1), 233–238 (2004).
  • Hemmi H, Takeuchi O, Sato S et al. The roles of two IkB kinase-related kinases in lipopolysaccharide and double stranded RNA signaling and viral infection. J. Exp. Med.199(12), 1641–1650 (2004).
  • Perry AK, Chow EK, Goodnough JB, Yeh WC, Cheng G. Differential requirement for TANK-binding kinase-1 in type I interferon responses to Toll-like receptor activation and viral infection. J. Exp. Med.199(12), 1651–1658 (2004).
  • Uematsu S, Sato S, Yamamoto M et al. Interleukin-1 receptor-associated kinase-1 plays an essential role for Toll-like receptor (TLR)7- and TLR9-mediated interferon-{alpha} induction. J. Exp. Med.201(6), 915–923 (2005).
  • Barnes BJ, Kellum MJ, Pinder KE, Frisancho JA, Pitha PM. Interferon regulatory factor 5, a novel mediator of cell cycle arrest and cell death. Cancer Res.63(19), 6424–6431 (2003).
  • Takaoka A, Yanai H, Kondo S et al. Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors. Nature434(7030), 243–249 (2005).
  • Brint EK, Xu D, Liu H et al. ST2 is an inhibitor of interleukin 1 receptor and Toll-like receptor 4 signaling and maintains endotoxin tolerance. Nat. Immunol.5(4), 373–379 (2004).
  • Wald D, Qin J, Zhao Z et al. SIGIRR, a negative regulator of Toll-like receptor-interleukin 1 receptor signaling. Nat. Immunol.4(9), 920–927 (2003).
  • Divanovic S, Trompette A, Atabani SF et al. Negative regulation of Toll-like receptor 4 signaling by the Toll-like receptor homolog RP105. Nat. Immunol.6(6), 571–578 (2005).
  • Diehl GE, Yue HH, Hsieh K et al. TRAIL-R as a negative regulator of innate immune cell responses. Immunity21(6), 877–889 (2004).
  • Hamerman JA Ogasawara K, Lanier LL. Cutting edge: Toll-like receptor signaling in macrophages induces ligands for the NKG2D receptor. J. Immunol.172(4), 2001–2005 (2004).
  • Janssens S, Burns K, Vercammen E, Tschopp J, Beyaert R. MyD88S, a splice variant of MyD88, differentially modulates NF-κB- and AP-1-dependent gene expression. FEBS Lett.548(1–3), 103–107 (2003).
  • Kobayashi K, Hernandez LD, Galan JE, Janeway CA Jr, Medzhitov R, Flavell RA. IRAK-M is a negative regulator of Toll-like receptor signaling. Cell110(2), 191–202 (2002).
  • Negishi H, Ohba Y, Yanai H et al. Negative regulation of Toll-like-receptor signaling by IRF-4. Proc. Natl Acad. Sci. USA102(44), 15989–15994 (2005).
  • Baetz A, Frey M, Heeg K, Dalpke AH. Suppressor of cytokine signaling (SOCS) proteins indirectly regulate Toll-like receptor signaling in innate immune cells. J. Biol. Chem.279(52), 54708–54715 (2004).
  • Mansell A, Smith R, Doyle SL et al. Suppressor of cytokine signaling 1 negatively regulates Toll-like receptor signaling by mediating Mal degradation. Nat. Immunol.7(2), 148–155 (2006).
  • Boone DL, Turer EE, Lee EG et al. The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nat. Immunol.5(10), 1052–1060 (2004).
  • Gon Y, Asai Y, Hashimoto S et al. A20 inhibits toll-like receptor 2- and 4-mediated interleukin-8 synthesis in airway epithelial cells. Am. J. Respir. Cell Mol. Biol.31(3), 330–336 (2004).
  • O’Reilly SM, Moynagh PN. Regulation of Toll-like receptor 4 signalling by A20 zinc finger protein. Biochem. Biophys. Res. Commun.303(2), 586–593 (2003).
  • Fukao T, Koyasu S. PI3K and negative regulation of TLR signaling. Trends Immunol.24(7), 358–363 (2003).
  • Liew FY, Xu D, Brint EK, O’Neill LA. Negative regulation of Toll-like receptor-mediated immune responses. Nat. Rev. Immunol.5(6), 446–458 (2005).
  • Currie AJ, Davidson DJ, Reid GS et al. Primary immunodeficiency to pneumococcal infection due to a defect in Toll-like receptor signaling. J. Pediatr.144(4), 512–518 (2004).
  • Medvedev AE, Thomas K, Awomoyi A et al. Cutting edge: expression of IL-1 receptor-associated kinase-4 (IRAK-4) proteins with mutations identified in a patient with recurrent bacterial infections alters normal IRAK-4 interaction with components of the IL-1 receptor complex. J. Immunol.174(11), 6587–6591 (2005).
  • Yang K, Puel A, Zhang S et al. Human TLR-7-, -8-, and -9-mediated induction of IFN-α/β and -λ. Is IRAK-4 dependent and redundant for protective immunity to viruses. Immunity23(5), 465–478 (2005).
  • Cook DN, Pisetsky DS, Schwartz DA. Toll-like receptors in the pathogenesis of human disease. Nat. Immunol.5(10), 975–979 (2004).
  • Beutler B, Ulevitch RJ. Genetic analysis of host responses in sepsis. Curr. Infect. Dis. Rep.3(5), 419–426 (2001).
  • Bjorkbacka H, Kunjathoor VV, Moore KJ et al. Reduced atherosclerosis in MyD88-null mice links elevated serum cholesterol levels to activation of innate immunity signaling pathways. Nat. Med.10(4), 416–421 (2004).
  • Kiechl S, Lorenz E, Reindl M et al. Toll-like receptor 4 polymorphisms and atherogenesis. N. Engl. J. Med.347(3), 185–192 (2002).
  • Anders HJ. A Toll for lupus. Lupus14(6), 417–422 (2005).
  • Anders HJ, Banas B, Schlondorff D. Signaling danger: Toll-like receptors and their potential roles in kidney disease. J. Am. Soc. Nephrol.15(4), 854–867 (2004).
  • Inohara Chamaillard, McDonald C, Nunez G. NOD-LRR proteins: role in host–microbial interactions and inflammatory disease. Annu. Rev. Biochem.74, 355–383 (2005).
  • Inohara N, Nunez G. NODs: intracellular proteins involved in inflammation and apoptosis. Nat. Rev. Immunol.3(5), 371–382 (2003).
  • Girardin SE, Boneca IG, Carneiro LA et al. NOD1 detects a unique muropeptide from Gram-negative bacterial peptidoglycan. Science300(5625), 1584–1587 (2003).
  • Girardin SE, Philpott DJ. Mini-review: the role of peptidoglycan recognition in innate immunity. Eur. J. Immunol.34(7), 1777–1182 (2004).
  • Carneiro LA, Travassos LH, Philpott DJ. Innate immune recognition of microbes through Nod1 and Nod2: implications for disease. Microbes Infect.6(6), 609–616 (2004).
  • Tanabe T, Chamaillard M, Ogura Y et al. Regulatory regions and critical residues of NOD2 involved in muramyl dipeptide recognition. EMBO J.23(7), 1587–1597 (2004).
  • Martinon F, Agostini L, Meylan E, Tschopp J. Identification of bacterial muramyl dipeptide as activator of the NALP3/cryopyrin inflammasome. Curr. Biol.14(21), 1929–1934 (2004).
  • Dziarski R. Recognition of bacterial peptidoglycan by the innate immune system. Cell. Mol. Life Sci.60(9), 1793–1804 (2003).
  • Poyet JL, Srinivasula SM, Tnani M, Razmara M, Fernandes-Alnemri T, Alnemri ES. Identification of Ipaf, a human caspase-1-activating protein related to Apaf-1. J. Biol. Chem.276(30), 28309–28313 (2001).
  • Mariathasan S, Newton K, Monack DM et al. Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature430(6996), 213–218 (2004).
  • Wright EK, Goodart SA, Growney JD et al. Naip5 affects host susceptibility to the intracellular pathogen Legionella pneumophila. Curr. Biol.13(1), 27–36 (2003).
  • Hayashi F, Smith KD, Ozinsky A et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature410(6832), 1099–1103 (2001).
  • Smith KD, Andersen-Nissen E, Hayashi F et al. Toll-like receptor 5 recognizes a conserved site on flagellin required for protofilament formation and bacterial motility. Nat. Immunol.4(12), 1247–1253 (2003).
  • Kobayashi K, Inohara N, Hernandez LD et al. RICK/Rip2/CARDIAK mediates signalling for receptors of the innate and adaptive immune systems. Nature416(6877), 194–199 (2002).
  • Chin AI, Dempsey PW, Bruhn K, Miller JF, Xu Y, Cheng G. Involvement of receptor-interacting protein 2 in innate and adaptive immune responses. Nature416(6877), 190–194 (2002).
  • O’Connor W Jr, Harton JA, Zhu X, Linhoff MW, Ting JP. Cutting edge: CIAS1/cryopyrin/PYPAF1/NALP3/CATERPILLER 1.1 is an inducible inflammatory mediator with NF-κB suppressive properties. J. Immunol.171(12), 6329–6333 (2003).
  • Petrilli V, Papin S, Tschopp J. The inflammasome. Curr. Biol.15(15), R581 (2005).
  • Grenier JM, Wang L, Manji GA et al. Functional screening of five PYPAF family members identifies PYPAF5 as a novel regulator of NF-κB and caspase-1. FEBS Lett.530(1–3), 73–78 (2002).
  • Masumoto J, Dowds TA, Schaner P et al. ASC is an activating adaptor for NF-κB and caspase-8-dependent apoptosis. Biochem. Biophys. Res. Commun.303(1), 69–73 (2003).
  • Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature440(7081), 237–241 (2006).
  • Mariathasan S, Weiss DS, Newton K et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature440(7081), 228–232 (2006).
  • Kanneganti TD, Ozoren N, Body-Malapel M et al. Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3. Nature440(7081), 233–236 (2006).
  • Yu JW, Wu J, Zhang Z et al. Cryopyrin and pyrin activate caspase-1, but not NF-κB, via ASC oligomerization. Cell Death Differ.13(2), 236–249 (2006).
  • Srinivasula SM, Poyet JL, Razmara M, Datta P, Zhang Z, Alnemri ES. The PYRIN-CARD protein ASC is an activating adaptor for caspase-1. J. Biol. Chem.277(24), 21119–21122 (2002).
  • Shi Y, Evans JE, Rock KL. Molecular identification of a danger signal that alerts the immune system to dying cells. Nature425(6957), 516–521 (2003).
  • Bonen DK, Ogura Y, Nicolae DL et al. Crohn’s disease-associated NOD2 variants share a signaling defect in response to lipopolysaccharide and peptidoglycan. Gastroenterology124(1), 140–146 (2003).
  • Aganna E, Martinon F, Hawkins PN et al. Association of mutations in the NALP3/CIAS1/PYPAF1 gene with a broad phenotype including recurrent fever, cold sensitivity, sensorineural deafness, and AA amyloidosis. Arthritis Rheum.46(9), 2445–2452 (2002).
  • Agostini L, Martinon F, Burns K, McDermott MF, Hawkins PN, Tschopp J. NALP3 forms an IL-1β-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity20(3), 319–325 (2004).
  • Honda K, Yanai H, Negishi H et al. IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature434(7034), 772–777 (2005).
  • Ogura Y, Bonen DK, Inohara N et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature411(6837), 603–606 (2001).
  • Vavassori P, Borgiani P, D’Apice MR et al. 3020insC mutation within the NOD2 gene in Crohn’s disease: frequency and association with clinical pattern in an Italian population. Dig. Liver Dis.34(2), 153 (2002).
  • Folwaczny M, Glas J, Torok HP, Mauermann D, Folwaczny C. The 3020insC mutation of the NOD2/CARD15 gene in patients with periodontal disease. Eur. J. Oral Sci.112(4), 316–319 (2004).
  • Guo QS, Xia B, Jiang Y, Qu Y, Li J. NOD2 3020insC frameshift mutation is not associated with inflammatory bowel disease in Chinese patients of Han nationality. World J. Gastroenterol.10(7), 1069–1071 (2004).
  • Kurzawski G, Suchy J, Kladny J et al. The NOD2 3020insC mutation and the risk of colorectal cancer. Cancer Res.64(5), 1604–1606 (2004).
  • Yoneyama M, Kikuchi M, Natsukawa T et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat. Immunol.5(7), 730–737 (2004).
  • Kang DC, Gopalkrishnan RV, Lin L et al. Expression analysis and genomic characterization of human melanoma differentiation associated gene-5, mda-5: a novel type I interferon-responsive apoptosis-inducing gene. Oncogene23(9), 1789–1800 (2004).
  • Kang DC, Gopalkrishnan RV, Wu Q, Jankowsky E, Pyle AM, Fisher PB. mda-5: an interferon-inducible putative RNA helicase with double-stranded RNA-dependent ATPase activity and melanoma growth-suppressive properties. Proc. Natl Acad. Sci. USA99(2), 637–642 (2002).
  • Sumpter R Jr, Loo YM, Foy E et al. Regulating intracellular antiviral defense and permissiveness to hepatitis C virus RNA replication through a cellular RNA helicase, RIG-I. J. Virol.79(5), 2689–2699 (2005).
  • Rothenfusser S, Goutagny N, DiPerna G et al. The RNA helicase Lgp2 inhibits TLR-independent sensing of viral replication by retinoic acid-inducible gene-I. J. Immunol.175(8), 5260–5268 (2005).
  • Kato H, Sato S, Yoneyama M et al. Cell type-specific involvement of RIG-I in antiviral response. Immunity23(1), 19–28 (2005).
  • Kawai T, Takahashi K, Sato S et al. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat. Immunol.6(10), 981–988 (2005).
  • Meylan E, Curran J, Hofmann K et al. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature437(7062), 1167–1172 (2005).
  • Seth RB, Sun L, Ea CK, Chen ZJ. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF3. Cell122(5), 669–682 (2005).
  • Xu LG, Wang YY, Han KJ, Li LY, Zhai Z, Shu HB. VISA is an adapter protein required for virus-triggered IFN-β signaling. Mol. Cell19(6), 727–740 (2005).
  • Foy E, Li K, Sumpter R Jr et al. Control of antiviral defenses through hepatitis C virus disruption of retinoic acid-inducible gene-I signaling. Proc. Natl Acad. Sci. USA102(8), 2986–2991 (2005).
  • Li XD, Sun L, Seth RB, Pineda G, Chen ZJ. Hepatitis C virus protease NS3/4A cleaves mitochondrial antiviral signaling protein off the mitochondria to evade innate immunity. Proc. Natl Acad. Sci. USA102(49), 17717–17722 (2005).
  • Andrejeva J, Childs KS, Young DF et al. The V proteins of paramyxoviruses bind the IFN-inducible RNA helicase, mda-5, and inhibit its activation of the IFN-β promoter. Proc. Natl Acad. Sci. USA101(49), 17264–17269 (2004).
  • Cui Y, Li M, Walton KD et al. The Stat3/5 locus encodes novel endoplasmic reticulum and helicase-like proteins that are preferentially expressed in normal and neoplastic mammary tissue. Genomics78(3), 129–134 (2001).
  • Yoneyama M, Kikuchi M, Matsumoto K et al. Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J. Immunol.175(5), 2851–2858 (2005).
  • Stetson DB, Medzhitov R. Recognition of cytosolic DNA activates an IRF3-dependent innate immune response. Immunity24(1), 93–103 (2006).
  • Ishii KJ, Coban C, Kato H et al. A Toll-like receptor-independent antiviral response induced by double-stranded B-form DNA. Nat. Immunol.7(1), 40–48 (2006).
  • Fraser IP, Koziel H, Ezekowitz RA. The serum mannose-binding protein and the macrophage mannose receptor are pattern recognition molecules that link innate and adaptive immunity. Semin. Immunol.10(5), 363–372 (1998).
  • Gasque P. Complement: a unique innate immune sensor for danger signals. Mol. Immunol.41(11), 1089–1098 (2004).
  • Cambi A, Koopman M, Figdor CG. How C-type lectins detect pathogens. Cell. Microbiol.7(4), 481–488 (2005).
  • Mukhopadhyay S, Gordon S. The role of scavenger receptors in pathogen recognition and innate immunity. Immunobiology209(1–2), 39–49 (2004).
  • Zelensky AN, Gready JE. The C-type lectin-like domain superfamily. FEBS J.272(24), 6179–6217 (2005).
  • Lee SJ, Zheng NY, Clavijo M, Nussenzweig MC. Normal host defense during systemic candidiasis in mannose receptor-deficient mice. Infect. Immun.71(1), 437–445 (2003).
  • Geijtenbeek TB, Krooshoop DJ, Bleijs DA et al. DC-SIGN–ICAM-2 interaction mediates dendritic cell trafficking. Nat. Immunol.1(4), 353–357 (2000).
  • Geijtenbeek TB, Torensma R, van Vliet SJ et al. Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell100(5), 575–585 (2000).
  • van Kooyk Y, Geijtenbeek TB. DC-SIGN: escape mechanism for pathogens. Nat. Rev. Immunol.3(9), 697–709 (2003).
  • Geijtenbeek TB, Kwon DS, Torensma R et al. DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell100(5), 587–597 (2000).
  • Geijtenbeek TB, van Kooyk Y. DC-SIGN: a novel HIV receptor on DCs that mediates HIV-1 transmission. Curr. Top. Microbiol. Immunol.276, 31–54 (2003).
  • Patterson S, Rae A, Hockey N, Gilmour J, Gotch F. Plasmacytoid dendritic cells are highly susceptible to human immunodeficiency virus type 1 infection and release infectious virus. J. Virol.75(14), 6710–6713 (2001).
  • Pohlmann S, Leslie GJ, Edwards TG et al. DC-SIGN interactions with human immunodeficiency virus: virus binding and transfer are dissociable functions. J. Virol.75(21), 10523–10526 (2001).
  • Gagliardi MC, Teloni R, Giannoni F et al.Mycobacterium bovis Bacillus Calmette–Guerin infects DC-SIGN–dendritic cell and causes the inhibition of IL-12 and the enhancement of IL-10 production. J. Leukoc. Biol.78(1), 106–113 (2005).
  • Brown GD. Dectin-1: a signalling non-TLR pattern-recognition receptor. Nat. Rev. Immunol.6(1), 33–43 (2005).
  • Brown GD, Gordon S. Immune recognition. A new receptor for β-glucans. Nature413(6851), 36–37 (2001).
  • Brown GD, Herre J, Williams DL, Willment JA, Marshall AS, Gordon S. Dectin-1 mediates the biological effects of β-glucans. J. Exp. Med.197(9), 1119–1124 (2003).
  • Underhill DM, Ozinsky A, Smith KD, Aderem A. Toll-like receptor-2 mediates mycobacteria-induced proinflammatory signaling in macrophages. Proc. Natl Acad. Sci. USA96(25), 14459–14463 (1999).
  • Underhill DM, Rossnagle E, Lowell CA, Simmons RM. Dectin-1 activates Syk tyrosine kinase in a dynamic subset of macrophages for reactive oxygen production. Blood106(7), 2543–2550 (2005).
  • Arredouani M, Yang Z, Ning Y et al. The scavenger receptor MARCO is required for lung defense against pneumococcal pneumonia and inhaled particles. J. Exp. Med.200(2), 267–272 (2004).
  • Scarselli E, Ansuini H, Cerino R et al. The human scavenger receptor class B type I is a novel candidate receptor for the hepatitis C virus. EMBO J.21(19), 5017–5025 (2002).
  • Philips JA, Rubin EJ, Perrimon N. Drosophila RNAi screen reveals CD36 family member required for mycobacterial infection. Science309(5738), 1251–1253 (2005).
  • Stuart LM, Deng J, Silver JM et al. Response to Staphylococcus aureus requires CD36-mediated phagocytosis triggered by the COOH-terminal cytoplasmic domain. J. Cell. Biol.170(3), 477–485 (2005).
  • Hoebe K, Georgel P, Rutschmann S et al. CD36 is a sensor of diacylglycerides. Nature433(7025), 523–527 (2005).
  • Serghides L, Smith TG, Patel SN, Kain KC. CD36 and malaria: friends or foes? Trends Parasitol.19(10), 461–469 (2003).
  • Baruch DI, Gormely JA, Ma C, Howard RJ, Pasloske BL. Plasmodium falciparum erythrocyte membrane protein 1 is a parasitized erythrocyte receptor for adherence to CD36, thrombospondin, and intercellular adhesion molecule 1. Proc. Natl Acad. Sci. USA93(8), 3497–3502 (1996).
  • Aitman TJ, Cooper LD, Norsworthy PJ et al. Malaria susceptibility and CD36 mutation. Nature405(6790), 1015–1016 (2000).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.