69
Views
16
CrossRef citations to date
0
Altmetric
Review

Toll-like receptors: a new target in rheumatoid arthritis?

, &
Pages 585-599 | Published online: 10 Jan 2014

References

  • Choy EH, Panayi GS. Cytokine pathways and joint inflammation in rheumatoid arthritis. N. Engl. J. Med.344(12), 907–916 (2001).
  • Feldmann M, Brennan FM, Maini RN. Rheumatoid arthritis. Cell85(3), 307–310 (1996).
  • Kirwan JR. The effect of glucocorticoids on joint destruction in rheumatoid arthritis. The arthritis and rheumatism council low-dose glucocorticoid study group. N. Engl. J. Med.333(3), 142–146 (1995).
  • Furst DE. The combination of methotrexate, sulfasalazine and hydroxychloroquine is highly effective in rheumatoid arthritis. Clin. Exp. Rheumatol.17(1), 39–40 (1999).
  • Elliott MJ, Maini RN, Feldmann M et al. Randomised double-blind comparison of chimeric monoclonal antibody to tumour necrosis factor α (cA2) versus placebo in rheumatoid arthritis. Lancet344(8930), 1105–1110. (1994).
  • Feldmann M, Maini RN. Anti-TNF-α therapy of rheumatoid arthritis: what have we learned? Ann. Rev. Immunol.19, 163–196 (2001).
  • Moreland LW, Schiff MH, Baumgartner SW et al. Etanercept therapy in rheumatoid arthritis. A randomized, controlled trial. Ann. Intern. Med.130(6), 478–486 (1999).
  • Weinblatt ME, Keystone EC, Furst DE et al. Adalimumab, a fully human anti-tumor necrosis factor α monoclonal antibody, for the treatment of rheumatoid arthritis in patients taking concomitant methotrexate: the ARMADA trial. Arthritis Rheum.48(1), 35–45 (2003).
  • Bresnihan B, Alvaro-Gracia JM, Cobby M et al. Treatment of rheumatoid arthritis with recombinant human interleukin-1 receptor antagonist. Arthritis Rheum.41(12), 2196–2204 (1998).
  • Campion GV, Lebsack ME, Lookabaugh J, Gordon G, Catalano M. Dose-range and dose-frequency study of recombinant human interleukin-1 receptor antagonist in patients with rheumatoid arthritis. The IL-1Ra Arthritis Study Group. Arthritis Rheum.39(7), 1092–1101 (1996).
  • Nishimoto N, Yoshizaki K, Miyasaka N et al. Treatment of rheumatoid arthritis with humanized anti-interleukin-6 receptor antibody: a multicenter, double-blind, placebo-controlled trial. Arthritis Rheum.50(6), 1761–1769 (2004).
  • Mueller DL, Jenkins MK, Schwartz RH. Clonal expansion versus functional clonal inactivation: a costimulatory signalling pathway determines the outcome of T cell antigen receptor occupancy. Ann. Rev. Immunol.7, 445–480 (1989).
  • Sacre SM, Andreakos E, Taylor P, Feldmann M, Foxwell BM. Molecular therapeutic targets in rheumatoid arthritis. Expert Rev. Mol. Med.7(16), 1–20 (2005).
  • Kremer JM, Westhovens R, Leon M et al. Treatment of rheumatoid arthritis by selective inhibition of T-cell activation with fusion protein CTLA4Ig. N. Engl. J. Med.349(20), 1907–1915 (2003).
  • Kremer JM, Dougados M, Emery P et al. Treatment of rheumatoid arthritis with the selective costimulation modulator abatacept: twelve-month results of a phase iib, double-blind, randomized, placebo-controlled trial. Arthritis Rheum.52(8), 2263–2271 (2005).
  • Ruderman EM, Pope RM. The evolving clinical profile of abatacept (CTLA4–Ig): a novel co-stimulatory modulator for the treatment of rheumatoid arthritis. Arthritis Res. Ther.7(Suppl. 2), S21–S25 (2005).
  • Keane J, Gershon S, Wise RP et al. Tuberculosis associated with infliximab, a tumor necrosis factor α-neutralizing agent. N. Engl. J. Med.345(15), 1098–1104. (2001).
  • Silman AJ, Newman J, MacGregor AJ. Cigarette smoking increases the risk of rheumatoid arthritis. Results from a nationwide study of disease-discordant twins. Arthritis Rheum.39(5), 732–735 (1996).
  • Krause A, Kamradt T, Burmester GR. Potential infectious agents in the induction of arthritides. Curr. Opin. Rheumatol.8(3), 203–209 (1996).
  • Silman AJ, MacGregor AJ, Thomson W et al. Twin concordance rates for rheumatoid arthritis: results from a nationwide study. Br. J. Rheumatol.32(10), 903–907 (1993).
  • Stastny P. Association of the B-cell alloantigen DRw4 with rheumatoid arthritis. N. Engl. J. Med.298(16), 869–871 (1978).
  • Corrigall VM, Panayi GS. Autoantigens and immune pathways in rheumatoid arthritis. Crit. Rev. Immunol.22(4), 281–293 (2002).
  • Vos K, Steenbakkers P, Miltenburg AM et al. Raised human cartilage glycoprotein-39 plasma levels in patients with rheumatoid arthritis and other inflammatory conditions. Ann. Rheum. Dis.59(7), 544–548 (2000).
  • Leadbetter EA, Rifkin IR, Hohlbaum AM, Beaudette BC, Shlomchik MJ, Marshak-Rothstein A. Chromatin–IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature416(6881), 603–607 (2002).
  • Halfon MS, Keshishian H. The Toll pathway is required in the epidermis for muscle development in the Drosophila embryo. Dev. Biol.199(1), 164–174 (1998).
  • Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell86(6), 973–983 (1996).
  • Radstake TR, Roelofs MF, Jenniskens YM et al. Expression of Toll-like receptors 2 and 4 in rheumatoid synovial tissue and regulation by proinflammatory cytokines interleukin-12 and interleukin-18 via interferon-γ. Arthritis Rheum.50(12), 3856–3865 (2004).
  • Seibl R, Birchler T, Loeliger S et al. Expression and regulation of Toll-like receptor 2 in rheumatoid arthritis synovium. Am. J. Pathol.162(4), 1221–1227 (2003).
  • Iwahashi M, Yamamura M, Aita T et al. Expression of Toll-like receptor 2 on CD16+ blood monocytes and synovial tissue macrophages in rheumatoid arthritis. Arthritis Rheum.50(5), 1457–1467 (2004).
  • Kawai T, Akira S. TLR signaling. Cell. Death Differ.13(5), 816–825 (2006).
  • Takeda K, Akira S. Toll-like receptors in innate immunity. Int. Immunol.17(1), 1–14 (2005).
  • Wesche H, Henzel WJ, Shillinglaw W, Li S, Cao Z. MyD88: an adapter that recruits IRAK to the IL-1 receptor complex. Immunity7(6), 837–847 (1997).
  • Burns K, Martinon F, Esslinger C et al. MyD88, an adapter protein involved in interleukin-1 signaling. J. Biol. Chem.273(20), 12203–12209 (1998).
  • Zhang FX, Kirschning CJ, Mancinelli R et al. Bacterial lipopolysaccharide activates nuclear factor-κB through interleukin-1 signaling mediators in cultured human dermal endothelial cells and mononuclear phagocytes. J. Biol. Chem.274(12), 7611–7614 (1999).
  • Muzio M, Ni J, Feng P, Dixit VM. IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling. Science278(5343), 1612–1615 (1997).
  • Kobayashi K, Hernandez LD, Galan JE, Janeway CA Jr, Medzhitov R, Flavell RA. IRAK-M is a negative regulator of Toll-like receptor signaling. Cell110(2), 191–202 (2002).
  • Han Z, Boyle DL, Manning AM, Firestein GS. AP-1 and NF-κB regulation in rheumatoid arthritis and murine collagen-induced arthritis. Autoimmunity28(4), 197–208 (1998).
  • Kawai T, Adachi O, Ogawa T, Takeda K, Akira S. Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity11(1), 115–122 (1999).
  • Fitzgerald KA, Palsson-McDermott EM, Bowie AG et al. Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Nature413(6851), 78–83 (2001).
  • Horng T, Barton GM, Medzhitov R. TIRAP: an adapter molecule in the Toll signaling pathway. Nat. Immunol.2(9), 835–841 (2001).
  • Yamamoto M, Sato S, Mori K et al. Cutting edge: a novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-β promoter in the Toll-like receptor signaling. J. Immunol.169(12), 6668–6672 (2002).
  • Oshiumi H, Matsumoto M, Funami K, Akazawa T, Seya T. TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-β induction. Nat. Immunol.4(2), 161–167 (2003).
  • Fitzgerald KA, Rowe DC, Barnes BJ et al. LPS-TLR4 signaling to IRF-3/7 and NF-{kappa}B involves the Toll adapters TRAM and TRIF. J. Exp. Med.198(7), 1043–1055 (2003).
  • Oshiumi H, Sasai M, Shida K, Fujita T, Matsumoto M, Seya T. TIR-containing adapter molecule (TICAM)-2, a bridging adapter recruiting to Toll-like receptor 4 TICAM-1 that induces interferon-β. J. Biol. Chem.278(50), 49751–49762 (2003).
  • Hacker H, Redecke V, Blagoev B et al. Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature439(7073), 204–207 (2006).
  • Akira S, Takeda K. Toll-like receptor signalling. Nat. Rev. Immunol.4(7), 499–511 (2004).
  • Kawai T, Takeuchi O, Fujita T et al. Lipopolysaccharide stimulates the MyD88-independent pathway and results in activation of IFN-regulatory factor 3 and the expression of a subset of lipopolysaccharide-inducible genes. J. Immunol.167(10), 5887–5894 (2001).
  • Takaoka A, Yanai H, Kondo S et al. Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors. Nature434(7030), 243–249 (2005).
  • Cusson-Hermance N, Khurana S, Lee TH, Fitzgerald KA, Kelliher MA. Rip1 mediates the Trif-dependent Toll-like receptor 3- and 4-induced NF-{kappa}B activation but does not contribute to interferon regulatory factor 3 activation. J. Biol. Chem.280(44), 36560–36566 (2005).
  • Covert MW, Leung TH, Gaston JE, Baltimore D. Achieving stability of lipopolysaccharide-induced NF-κB activation. Science309(5742), 1854–1857 (2005).
  • Tsan MF, Gao B. Endogenous ligands of Toll-like receptors. J. Leukoc. Biol.76(3), 514–519 (2004).
  • Rifkin IR, Leadbetter EA, Busconi L, Viglianti G, Marshak-Rothstein A. Toll-like receptors, endogenous ligands, and systemic autoimmune disease. Immunol. Rev.204, 27–42 (2005).
  • Sacre SM, Drexler SK, Foxwell BM. Toll-like receptors and rheumatoid arthritis: is there a connection? In: Toll-like Receptors in Inflammation. O’Neill LAJ, Brint E (Eds), Birkhauser, Basel, Switzerland, 19–40 (2005).
  • Brentano F, Kyburz D, Schorr O, Gay R, Gay S. The role of Toll-like receptor signalling in the pathogenesis of arthritis. Cell Immunol.233(2), 90–96 (2005).
  • Searle J, Kerr JF, Bishop CJ. Necrosis and apoptosis: distinct modes of cell death with fundamentally different significance. Pathol. Ann.17(Pt 2), 229–259 (1982).
  • Edinger AL, Thompson CB. Death by design: apoptosis, necrosis and autophagy. Curr. Opin. Cell. Biol.16(6), 663–669 (2004).
  • Platt N, da Silva RP, Gordon S. Recognizing death: the phagocytosis of apoptotic cells. Trends Cell Biol.8(9), 365–372 (1998).
  • Sauter B, Albert ML, Francisco L, Larsson M, Somersan S, Bhardwaj N. Consequences of cell death: exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. J. Exp. Med.191(3), 423–434 (2000).
  • Gallucci S, Lolkema M, Matzinger P. Natural adjuvants: endogenous activators of dendritic cells. Nat. Med.5(11), 1249–1255 (1999).
  • Vollmer J, Tluk S, Schmitz C et al. Immune stimulation mediated by autoantigen binding sites within small nuclear RNAs involves Toll-like receptors 7 and 8. J. Exp. Med.202(11), 1575–1585 (2005).
  • Vabulas RM, Ahmad-Nejad P, da Costa C et al. Endocytosed HSP60s use Toll-like receptor 2 (TLR2) and TLR4 to activate the Toll/interleukin-1 receptor signaling pathway in innate immune cells. J. Biol. Chem.276(33), 31332–31339 (2001).
  • Vabulas RM, Ahmad-Nejad P, Ghose S, Kirschning CJ, Issels RD, Wagner H. HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway. J. Biol. Chem.277(17), 15107–15112 (2002).
  • Vabulas RM, Braedel S, Hilf N et al. The endoplasmic reticulum-resident heat shock protein Gp96 activates dendritic cells via the Toll-like receptor 2/4 pathway. J. Biol. Chem.277(23), 20847–20853 (2002).
  • Roelofs MF, Boelens WC, Joosten LA et al. Identification of small heat shock protein B8 (HSP22) as a novel TLR4 ligand and potential involvement in the pathogenesis of rheumatoid arthritis. J. Immunol.176(11), 7021–7027 (2006).
  • Wallin RP, Lundqvist A, More SH, von Bonin A, Kiessling R, Ljunggren HG. Heat-shock proteins as activators of the innate immune system. Trends Immunol.23(3), 130–135 (2002).
  • Gao B, Tsan MF. Endotoxin contamination in recombinant human heat shock protein 70 (Hsp70) preparation is responsible for the induction of tumor necrosis factor α release by murine macrophages. J. Biol. Chem.278(1), 174–179 (2003).
  • Bausinger H, Lipsker D, Ziylan U et al. Endotoxin-free heat-shock protein 70 fails to induce APC activation. Eur. J. Immunol.32(12), 3708–3713 (2002).
  • Reed RC, Berwin B, Baker JP, Nicchitta CV. GRP94/gp96 elicits ERK activation in murine macrophages. A role for endotoxin contamination in NF-κB activation and nitric oxide production. J. Biol. Chem.278(34), 31853–31860 (2003).
  • Liu B, Dai J, Zheng H, Stoilova D, Sun S, Li Z. Cell surface expression of an endoplasmic reticulum resident heat shock protein gp96 triggers MyD88-dependent systemic autoimmune diseases. Proc. Natl Acad. Sci. USA100(26), 15824–15829 (2003).
  • Baker-LePain JC, Sarzotti M, Nicchitta CV. Glucose-regulated protein 94/glycoprotein 96 elicits bystander activation of CD4+ T cell Th1 cytokine production in vivo.J. Immunol.172(7), 4195–4203 (2004).
  • Andersson U, Wang H, Palmblad K et al. High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes. J. Exp. Med.192(4), 565–570 (2000).
  • Fiuza C, Bustin M, Talwar S et al. Inflammation-promoting activity of HMGB1 on human microvascular endothelial cells. Blood101(7), 2652–2660 (2003).
  • Park JS, Arcaroli J, Yum HK et al. Activation of gene expression in human neutrophils by high mobility group box 1 protein. Am. J. Physiol. Cell Physiol.284(4), C870–C879 (2003).
  • Park JS, Svetkauskaite D, He Q et al. Involvement of Toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J. Biol. Chem.279(9), 7370–7377 (2004).
  • Park JS, Gamboni-Robertson F, He Q et al. High mobility group box 1 protein interacts with multiple Toll-like receptors. Am. J. Physiol. Cell Physiol.290(3), C917–C924 (2006).
  • Yanagishita M, Hascall VC. Cell surface heparan sulfate proteoglycans. J. Biol. Chem.267(14), 9451–9454 (1992).
  • Kainulainen V, Wang H, Schick C, Bernfield M. Syndecans, heparan sulfate proteoglycans maintain the proteolytic balance of acute wound fluids. J. Biol. Chem.273(19), 11563–11569 (1998).
  • Lohmander LS, Dahlberg L, Ryd L, Heinegard D. Increased levels of proteoglycan fragments in knee joint fluid after injury. Arthritis Rheum.32(11), 1434–1442 (1989).
  • Oragui EE, Nadel S, Kyd P, Levin M. Increased excretion of urinary glycosaminoglycans in meningococcal septicemia and their relationship to proteinuria. Crit. Care Med.28(8), 3002–3008 (2000).
  • Weigel PH, Fuller GM, LeBoeuf RD. A model for the role of hyaluronic acid and fibrin in the early events during the inflammatory response and wound healing. J. Theor. Biol.119(2), 219–234 (1986).
  • Johnson GB, Brunn GJ, Kodaira Y, Platt JL. Receptor-mediated monitoring of tissue well-being via detection of soluble heparan sulfate by Toll-like receptor 4. J. Immunol.168(10), 5233–5239 (2002).
  • Termeer C, Benedix F, Sleeman J et al. Oligosaccharides of hyaluronan activate dendritic cells via Toll-like receptor 4. J. Exp. Med.195(1), 99–111 (2002).
  • Taylor KR, Trowbridge JM, Rudisill JA, Termeer CC, Simon JC, Gallo RL. Hyaluronan fragments stimulate endothelial recognition of injury through TLR4. J. Biol. Chem.279(17), 17079–17084 (2004).
  • Schaefer L, Babelova A, Kiss E et al. The matrix component biglycan is proinflammatory and signals through Toll-like receptors 4 and 2 in macrophages. J. Clin. Invest.115(8), 2223–2233 (2005).
  • Jarnagin WR, Rockey DC, Koteliansky VE, Wang SS, Bissell DM. Expression of variant fibronectins in wound healing: cellular source and biological activity of the EIIIA segment in rat hepatic fibrogenesis. J. Cell Biol.127(6 Pt 2), 2037–2048 (1994).
  • George J, Wang SS, Sevcsik AM et al. Transforming growth factor-β initiates wound repair in rat liver through induction of the EIIIA-fibronectin splice isoform. Am. J. Pathol.156(1), 115–124 (2000).
  • Saito S, Yamaji N, Yasunaga K et al. The fibronectin extra domain A activates matrix metalloproteinase gene expression by an interleukin-1-dependent mechanism. J. Biol. Chem.274(43), 30756–30763 (1999).
  • Hino K, Shiozawa S, Kuroki Y et al. EDA-containing fibronectin is synthesized from rheumatoid synovial fibroblast-like cells. Arthritis Rheum.38(5), 678–683 (1995).
  • Okamura Y, Watari M, Jerud ES et al. The extra domain A of fibronectin activates Toll-like receptor 4. J. Biol. Chem.276(13), 10229–10233 (2001).
  • Dvorak HN, Senger DR, Dvorak AM, Harvey VS, McDonagh J. Regulation of extravascular coagulation by microvascular permeability. Science227(4690), 1059–1061 (1985).
  • Smiley ST, King JA, Hancock WW. Fibrinogen stimulates macrophage chemokine secretion through Toll-like receptor 4. J. Immunol.167(5), 2887–2894 (2001).
  • Biragyn A, Ruffini PA, Leifer CA et al. Toll-like receptor 4-dependent activation of dendritic cells by β-defensin 2. Science298(5595), 1025–1029 (2002).
  • Yang D, Chertov O, Bykovskaia SN et al. β-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science286(5439), 525–528 (1999).
  • Biragyn A, Surenhu M, Yang D et al. Mediators of innate immunity that target immature, but not mature, dendritic cells induce antitumor immunity when genetically fused with nonimmunogenic tumor antigens. J. Immunol.167(11), 6644–6653 (2001).
  • Kariko K, Ni H, Capodici J, Lamphier M, Weissman D. mRNA is an endogenous ligand for Toll-like receptor 3. J. Biol. Chem.279(13), 12542–12550 (2004).
  • Heil F, Hemmi H, Hochrein H et al. Species-specific recognition of single-stranded RNA via Toll-like receptor 7 and 8. Science303(5663), 1526–1529 (2004).
  • Panet A. Regulation of the antiviral and anticellular activities of interferon by exogenous double-stranded RNA. Mol. Cell Biochem.52(2), 153–160 (1983).
  • Lau CM, Broughton C, Tabor AS et al. RNA-associated autoantigens activate B cells by combined B cell antigen receptor/Toll-like receptor 7 engagement. J. Exp. Med.202(9), 1171–1177 (2005).
  • Krieg AM, Yi AK, Matson S et al. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature374(6522), 546–549 (1995).
  • Richardson B. Impact of aging on DNA methylation. Ageing Res. Rev.2(3), 245–261 (2003).
  • Richardson B, Scheinbart L, Strahler J, Gross L, Hanash S, Johnson M. Evidence for impaired T cell DNA methylation in systemic lupus erythematosus and rheumatoid arthritis. Arthritis Rheum.33(11), 1665–1673 (1990).
  • Sun S, Beard C, Jaenisch R, Jones P, Sprent J. Mitogenicity of DNA from different organisms for murine B cells. J. Immunol.159(7), 3119–3125 (1997).
  • Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R. Recognition of commensal microflora by Toll-like receptors is required for intestinal homeostasis. Cell118(2), 229–241 (2004).
  • Jiang D, Liang J, Fan J et al. Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nat. Med.11(11), 1173–1179 (2005).
  • van der Heijden IM, Wilbrink B, Tchetverikov I et al. Presence of bacterial DNA and bacterial peptidoglycans in joints of patients with rheumatoid arthritis and other arthritides. Arthritis Rheum.43(3), 593–598 (2000).
  • Schumacher HR Jr, Arayssi T, Crane M et al. Chlamydia trachomatis nucleic acids can be found in the synovium of some asymptomatic subjects. Arthritis Rheum.42(6), 1281–1284 (1999).
  • Gerard HC, Wang Z, Wang GF et al. Chromosomal DNA from a variety of bacterial species is present in synovial tissue from patients with various forms of arthritis. Arthritis Rheum.44(7), 1689–1697 (2001).
  • Kempsell KE, Cox CJ, Hurle M et al. Reverse transcriptase-PCR analysis of bacterial rRNA for detection and characterization of bacterial species in arthritis synovial tissue. Infect. Immun.68(10), 6012–6026 (2000).
  • Chen T, Rimpilainen M, Luukkainen R et al. Bacterial components in the synovial tissue of patients with advanced rheumatoid arthritis or osteoarthritis: analysis with gas chromatography-mass spectrometry and pan-bacterial polymerase chain reaction. Arthritis Rheum.49(3), 328–334 (2003).
  • Schett G, Redlich K, Xu Q et al. Enhanced expression of heat shock protein 70 (HSP70) and heat shock factor 1 (HSF1) activation in rheumatoid arthritis synovial tissue. Differential regulation of HSP70 expression and HSF1 activation in synovial fibroblasts by proinflammatory cytokines, shear stress, and antiinflammatory drugs. J. Clin. Invest.102(2), 302–311 (1998).
  • Scott DL, Delamere JP, Walton KW. The distribution of fibronectin in the pannus in rheumatoid arthritis. Br. J. Exp. Pathol.62(4), 362–368 (1981).
  • Yu D, Rumore PM, Liu Q, Steinman CR. Soluble oligonucleosomal complexes in synovial fluid from inflamed joints. Arthritis Rheum.40(4), 648–654 (1997).
  • Taniguchi N, Kawahara K, Yone K et al. High mobility group box chromosomal protein 1 plays a role in the pathogenesis of rheumatoid arthritis as a novel cytokine. Arthritis Rheum.48(4), 971–981 (2003).
  • Cromartie WJ, Craddock JG, Schwab JH, Anderle SK, Yang CH. Arthritis in rats after systemic injection of streptococcal cells or cell walls. J. Exp. Med.146(6), 1585–1602 (1977).
  • Joosten LA, Koenders MI, Smeets RL et al. Toll-like receptor 2 pathway drives streptococcal cell wall-induced joint inflammation: critical role of myeloid differentiation factor 88. J. Immunol.171(11), 6145–6153 (2003).
  • Pierer M, Rethage J, Seibl R et al. Chemokine secretion of rheumatoid arthritis synovial fibroblasts stimulated by Toll-like receptor 2 ligands. J. Immunol.172(2), 1256–1265 (2004).
  • Liu ZQ, Deng GM, Foster S, Tarkowski A. Staphylococcal peptidoglycans induce arthritis. Arthritis Res.3(6), 375–380 (2001).
  • Choe JY, Crain B, Wu SR, Corr M. Interleukin 1 receptor dependence of serum transferred arthritis can be circumvented by Toll-like receptor 4 signaling. J. Exp. Med.197(4), 537–542 (2003).
  • Brentano F, Schorr O, Gay RE, Gay S, Kyburz D. RNA released from necrotic synovial fluid cells activates rheumatoid arthritis synovial fibroblasts via Toll-like receptor 3. Arthritis Rheum.52(9), 2656–2665 (2005).
  • Roelofs MF, Joosten LA, Abdollahi-Roodsaz S et al. The expression of Toll-like receptors 3 and 7 in rheumatoid arthritis synovium is increased and costimulation of Toll-like receptors 3, 4, and 7/8 results in synergistic cytokine production by dendritic cells. Arthritis Rheum.52(8), 2313–2322 (2005).
  • Kyburz D, Rethage J, Seibl R et al. Bacterial peptidoglycans but not CpG oligodeoxynucleotides activate synovial fibroblasts by Toll-like receptor signaling. Arthritis Rheum.48(3), 642–650 (2003).
  • Wang H, Bloom O, Zhang M et al. HMG-1 as a late mediator of endotoxin lethality in mice. Science285(5425), 248–251 (1999).
  • Kokkola R, Sundberg E, Ulfgren AK et al. High mobility group box chromosomal protein 1: a novel proinflammatory mediator in synovitis. Arthritis Rheum.46(10), 2598–2603 (2002).
  • Kilding R, Akil M, Till S et al. A biologically important single nucleotide polymorphism within the Toll-like receptor-4 gene is not associated with rheumatoid arthritis. Clin. Exp. Rheumatol.21(3), 340–342 (2003).
  • Lamb RM, Zeggini E, Thomson W, Donn R. Toll-like receptor 4 (TLR4) gene polymorphisms and susceptibility to juvenile idiopathic arthritis. Ann. Rheum. Dis.64(5), 767–769 (2004).
  • Sanchez E, Orozco G, Lopez-Nevot MA, Jimenez-Alonso J, Martin J. Polymorphisms of Toll-like receptor 2 and 4 genes in rheumatoid arthritis and systemic lupus erythematosus. Tissue Antigens63(1), 54–57 (2004).
  • Radstake TR, Franke B, Hanssen S et al. The Toll-like receptor 4 Asp299Gly functional variant is associated with decreased rheumatoid arthritis disease susceptibility but does not influence disease severity and/or outcome. Arthritis Rheum.50(3), 999–1001 (2004).
  • Hong Z, Jiang Z, Liangxi W et al. Chloroquine protects mice from challenge with CpG ODN and LPS by decreasing proinflammatory cytokine release. Int. Immunopharmacol.4(2), 223–234 (2004).
  • Jang CH, Choi JH, Byun MS, Jue DM. Chloroquine inhibits production of TNF-α, IL-1β and IL-6 from lipopolysaccharide-stimulated human monocytes/macrophages by different modes. Rheumatology (Oxford)45(6), 703–710 (2006).
  • Ogawa S, Lozach J, Benner C et al. Molecular determinants of crosstalk between nuclear receptors and Toll-like receptors. Cell122(5), 707–721 (2005).
  • Liew FY, Xu D, Brint EK, O’Neill LA. Negative regulation of Toll-like receptor-mediated immune responses. Nat. Rev. Immunol.5(6), 446–458 (2005).
  • Han J, Ulevitch RJ. Limiting inflammatory responses during activation of innate immunity. Nat. Immunol.6(12), 1198–1205 (2005).
  • Kopp E, Medzhitov R, Carothers J et al. ECSIT is an evolutionarily conserved intermediate in the Toll/IL-1 signal transduction pathway. Genes Dev.13(16), 2059–2071 (1999).
  • Iotsova V, Caamano J, Loy J, Yang Y, Lewin A, Bravo R. Osteopetrosis in mice lacking NF-κB1 and NF-κB2. Nat. Med.3(11), 1285–1289 (1997).
  • de Crombrugghe B, Lefebvre V, Behringer RR, Bi W, Murakami S, Huang W. Transcriptional mechanisms of chondrocyte differentiation. Matrix Biol.19(5), 389–394 (2000).
  • Murakami S, Lefebvre V, de Crombrugghe B. Potent inhibition of the master chondrogenic factor Sox9 gene by interleukin-1 and tumor necrosis factor-α. J. Biol. Chem.275(5), 3687–3692 (2000).
  • Asahara H, Asanuma M, Ogawa N, Nishibayashi S, Inoue H. High DNA-binding activity of transcription factor NF-κB in synovial membranes of patients with rheumatoid arthritis. Biochem. Mol. Biol. Int.37(5), 827–832 (1995).
  • Handel ML, McMorrow LB, Gravallese EM. Nuclear factor-κB in rheumatoid synovium. Localization of p50 and p65. Arthritis Rheum.38(12), 1762–1770 (1995).
  • Marok R, Winyard PG, Coumbe A et al. Activation of the transcription factor nuclear factor-κB in human inflamed synovial tissue. Arthritis Rheum.39(4), 583–591 (1996).
  • Foxwell B, Browne K, Bondeson J et al. Efficient adenoviral infection with IκBα reveals that macrophage tumor necrosis factor α production in rheumatoid arthritis is NF-κB dependent. Proc. Natl Acad. Sci. USA95(14), 8211–8215 (1998).
  • Smith C, Andreakos E, Crawley JB, Brennan FM, Feldmann M, Foxwell BM. NF-κB-inducing kinase is dispensable for activation of NF-κB in inflammatory settings but essential for lymphotoxin β receptor activation of NF-κB in primary human fibroblasts. J. Immunol.167(10), 5895–5903 (2001).
  • Bondeson J, Foxwell B, Brennan F, Feldmann M. Defining therapeutic targets by using adenovirus: blocking NF-κB inhibits both inflammatory and destructive mechanisms in rheumatoid synovium but spares anti-inflammatory mediators. Proc. Natl Acad. Sci. USA96(10), 5668–5673 (1999).
  • Miagkov AV, Kovalenko DV, Brown CE et al. NF-κB activation provides the potential link between inflammation and hyperplasia in the arthritic joint. Proc. Natl Acad. Sci. USA95(23), 13859–13864 (1998).
  • Palombella VJ, Conner EM, Fuseler JW et al. Role of the proteasome and NF-κB in streptococcal cell wall-induced polyarthritis. Proc. Natl Acad. Sci. USA95(26), 15671–15676 (1998).
  • Tsao PW, Suzuki T, Totsuka R et al. The effect of dexamethasone on the expression of activated NF-κB in adjuvant arthritis. Clin. Immunol. Immunopathol.83(2), 173–178 (1997).
  • Karin M, Yamamoto Y, Wang QM. The IKK NF-κB system: a treasure trove for drug development. Nature Rev. Drug Discov.3(1), 17–26 (2004).
  • Han Z, Boyle DL, Aupperle KR, Bennett B, Manning AM, Firestein GS. Jun N-terminal kinase in rheumatoid arthritis. J. Pharmacol. Exp. Ther.291(1), 124–130 (1999).
  • Schett G, Tohidast-Akrad M, Smolen JS et al. Activation, differential localization, and regulation of the stress-activated protein kinases, extracellular signal-regulated kinase, c-JUN N-terminal kinase, and p38 mitogen-activated protein kinase, in synovial tissue and cells in rheumatoid arthritis. Arthritis Rheum.43(11), 2501–2512 (2000).
  • Dean JL, Brook M, Clark AR, Saklatvala J. p38 mitogen-activated protein kinase regulates cyclooxygenase-2 mRNA stability and transcription in lipopolysaccharide-treated human monocytes. J. Biol. Chem.274(1), 264–269 (1999).
  • Ridley SH, Dean JL, Sarsfield SJ, Brook M, Clark AR, Saklatvala J. A p38 MAP kinase inhibitor regulates stability of interleukin-1-induced cyclooxygenase-2 mRNA. FEBS Lett.439(1–2), 75–80 (1998).
  • Rutault K, Hazzalin CA, Mahadevan LC. Combinations of ERK and p38 MAPK inhibitors ablate tumor necrosis factor-alpha (TNF-α) mRNA induction. Evidence for selective destabilization of TNF-α transcripts. J. Biol. Chem.276(9), 6666–6674. (2001).
  • Campbell J, Ciesielski CJ, Hunt AE et al. A novel mechanism for TNF-α regulation by p38 MAPK: involvement of NF-κB with implications for therapy in rheumatoid arthritis. J. Immunol.173(11), 6928–6937 (2004).
  • Badger AM, Bradbeer JN, Votta B, Lee JC, Adams JL, Griswold DE. Pharmacological profile of SB 203580, a selective inhibitor of cytokine suppressive binding protein/p38 kinase, in animal models of arthritis, bone resorption, endotoxin shock and immune function. J. Pharmacol. Exp. Ther.279(3), 1453–1461 (1996).
  • Jackson JR, Bolognese B, Hillegass L et al. Pharmacological effects of SB 220025, a selective inhibitor of P38 mitogen-activated protein kinase, in angiogenesis and chronic inflammatory disease models. J. Pharmacol. Exp. Ther.284(2), 687–692 (1998).
  • Badger AM, Griswold DE, Kapadia R et al. Disease-modifying activity of SB 242235, a selective inhibitor of p38 mitogen-activated protein kinase, in rat adjuvant-induced arthritis. Arthritis Rheum.43(1), 175–183 (2000).
  • Wadsworth SA, Cavender DE, Beers SA et al. RWJ 67657, a potent, orally active inhibitor of p38 mitogen-activated protein kinase. J. Pharmacol. Exp. Ther.291(2), 680–687 (1999).
  • McLay LM, Halley F, Souness JE et al. The discovery of RPR 200765A, a p38 MAP kinase inhibitor displaying a good oral anti-arthritic efficacy. Bioorg. Med. Chem.9(2), 537–554 (2001).
  • Medvedev AE, Lentschat A, Kuhns DB et al. Distinct mutations in IRAK-4 confer hyporesponsiveness to lipopolysaccharide and interleukin-1 in a patient with recurrent bacterial infections. J. Exp. Med.198(4), 521–531 (2003).
  • Picard C, Puel A, Bonnet M et al. Pyogenic bacterial infections in humans with IRAK-4 deficiency. Science299(5615), 2076–2079 (2003).
  • Kuhns DB, Long Priel DA, Gallin JI. Endotoxin and IL-1 hyporesponsiveness in a patient with recurrent bacterial infections. J. Immunol.158(8), 3959–3964 (1997).
  • Hain R, Reif HJ, Krause E et al. Disease resistance results from foreign phytoalexin expression in a novel plant. Nature361(6408), 153–156 (1993).
  • Hain R, Bieseler B, Kindl H, Schroder G, Stocker R. Expression of a stilbene synthase gene in Nicotiana tabacum results in synthesis of the phytoalexin resveratrol. Plant Mol. Biol.15(2), 325–335 (1990).
  • Bhat KP, Pezzuto JM. Cancer chemopreventive activity of resveratrol. Ann. NY Acad. Sci957, 210–229 (2002).
  • Pervaiz S. Resveratrol: from grapevines to mammalian biology. FASEB J.17(14), 1975–1985 (2003).
  • Youn HS, Lee JY, Fitzgerald KA, Young HA, Akira S, Hwang DH. Specific inhibition of MyD88-independent signaling pathways of TLR3 and TLR4 by resveratrol: molecular targets are TBK1 and RIP1 in TRIF complex. J. Immunol.175(5), 3339–3346 (2005).
  • Ahn JY, Choi IS, Shim JY et al. The immunomodulator ginsan induces resistance to experimental sepsis by inhibiting Toll-like receptor-mediated inflammatory signals. Eur. J. Immunol.36(1), 37–45 (2006).
  • Provvedini DM, Tsoukas CD, Deftos LJ, Manolagas SC. 1,25-dihydroxyvitamin D3 receptors in human leukocytes. Science221(4616), 1181–1183 (1983).
  • Asakura H, Aoshima K, Suga Y et al. Beneficial effect of the active form of vitamin D3 against LPS-induced DIC but not against tissue-factor-induced DIC in rat models. Thromb. Haemost.85(2), 287–290 (2001).
  • Sadeghi K, Wessner B, Laggner U et al. Vitamin D3 down-regulates monocyte TLR expression and triggers hyporesponsiveness to pathogen-associated molecular patterns. Eur. J. Immunol.36(2), 361–370 (2006).
  • Duramad O, Fearon KL, Chang B et al. Inhibitors of TLR-9 act on multiple cell subsets in mouse and man in vitro and prevent death in vivo from systemic inflammation. J. Immunol.174(9), 5193–5200 (2005).
  • Dong L, Ito S, Ishii KJ, Klinman DM. Suppressive oligonucleotides protect against collagen-induced arthritis in mice. Arthritis Rheum.50(5), 1686–1689 (2004).
  • Ehlers M, Fukuyama H, McGaha TL, Aderem A, Ravetch JV. TLR9/MyD88 signaling is required for class switching to pathogenic IgG2a and 2b autoantibodies in SLE. J. Exp. Med.203(3), 553–561 (2006).
  • Barrat FJ, Meeker T, Gregorio J et al. Nucleic acids of mammalian origin can act as endogenous ligands for Toll-like receptors and may promote systemic lupus erythematosus. J. Exp. Med.202(8), 1131–1139 (2005).
  • Boule MW, Broughton C, Mackay F, Akira S, Marshak-Rothstein A, Rifkin IR. Toll-like receptor 9-dependent and -independent dendritic cell activation by chromatin–immunoglobulin G complexes. J. Exp. Med.199(12), 1631–1640 (2004).
  • Libby P. Inflammation in atherosclerosis. Nature420(6917), 868–874 (2002).
  • Lee JY, Sohn KH, Rhee SH, Hwang D. Saturated fatty acids, but not unsaturated fatty acids, induce the expression of cyclooxygenase-2 mediated through Toll-like receptor 4. J. Biol. Chem.276(20), 16683–16689 (2001).
  • Lee JY, Zhao L, Youn HS et al. Saturated fatty acid activates but polyunsaturated fatty acid inhibits Toll-like receptor 2 dimerized with Toll-like receptor 6 or 1. J. Biol. Chem.279(17), 16971–16979 (2004).
  • Miller YI, Viriyakosol S, Binder CJ, Feramisco JR, Kirkland TN, Witztum JL. Minimally modified LDL binds to CD14, induces macrophage spreading via TLR4/MD-2, and inhibits phagocytosis of apoptotic cells. J. Biol. Chem.278(3), 1561–1568 (2003).
  • Walton KA, Hsieh X, Gharavi N et al. Receptors involved in the oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine-mediated synthesis of interleukin-8. A role for Toll-like receptor 4 and a glycosylphosphatidylinositol-anchored protein. J. Biol. Chem.278(32), 29661–29666 (2003).
  • Reddick RL, Zhang SH, Maeda N. Atherosclerosis in mice lacking apo E. Evaluation of lesional development and progression. Arterioscler. Thromb.14(1), 141–147 (1994).
  • Michelsen KS, Wong MH, Shah PK et al. Lack of Toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E. Proc. Natl Acad. Sci. USA101(29), 10679–10684 (2004).
  • Wright SD, Burton C, Hernandez M et al. Infectious agents are not necessary for murine atherogenesis. J. Exp. Med.191(8), 1437–1442 (2000).
  • Bjorkbacka H, Kunjathoor VV, Moore KJ et al. Reduced atherosclerosis in MyD88-null mice links elevated serum cholesterol levels to activation of innate immunity signaling pathways. Nat. Med.10(4), 416–421 (2004).
  • Kirii H, Niwa T, Yamada Y et al. Lack of interleukin-1β decreases the severity of atherosclerosis in ApoE-deficient mice. Arterioscler. Thromb. Vasc. Biol.23(4), 656–660 (2003).
  • Elhage R, Jawien J, Rudling M et al. Reduced atherosclerosis in interleukin-18 deficient apolipoprotein E-knockout mice. Cardiovasc. Res.59(1), 234–240 (2003).
  • Nishina PM, Wang J, Toyofuku W, Kuypers FA, Ishida BY, Paigen B. Atherosclerosis and plasma and liver lipids in nine inbred strains of mice. Lipids28(7), 599–605 (1993).
  • Kiechl S, Lorenz E, Reindl M et al. Toll-like receptor 4 polymorphisms and atherogenesis. N. Engl. J. Med.347(3), 185–192 (2002).
  • Ameziane N, Beillat T, Verpillat P et al. Association of the Toll-like receptor 4 gene Asp299Gly polymorphism with acute coronary events. Arterioscler. Thromb. Vasc. Biol.23(12), e61–e64 (2003).
  • Roep BO. T-cell responses to autoantigens in IDDM. The search for the Holy Grail. Diabetes45(9), 1147–1156 (1996).
  • Lang KS, Recher M, Junt T et al. Toll-like receptor engagement converts T-cell autoreactivity into overt autoimmune disease. Nat. Med.11(2), 138–145 (2005).
  • Hron JD, Peng SL. Type I IFN protects against murine lupus. J. Immunol.173(3), 2134–2142 (2004).
  • Jingwu Z, Medaer R, Hashim GA, Chin Y, van den Berg-Loonen E, Raus JC. Myelin basic protein-specific T lymphocytes in multiple sclerosis and controls: precursor frequency, fine specificity, and cytotoxicity. Ann. Neurol.32(3), 330–338 (1992).
  • Ota K, Matsui M, Milford EL, Mackin GA, Weiner HL, Hafler DA. T-cell recognition of an immunodominant myelin basic protein epitope in multiple sclerosis. Nature346(6280), 183–187 (1990).
  • Martin R, Voskuhl R, Flerlage M, McFarlin DE, McFarland HF. Myelin basic protein-specific T-cell responses in identical twins discordant or concordant for multiple sclerosis. Ann. Neurol.34(4), 524–535 (1993).
  • Compston A, Coles A. Multiple sclerosis. Lancet359(9313), 1221–1231 (2002).
  • Casetta I, Granieri E. Prognosis of multiple sclerosis: environmental factors. Neurol. Sci.21(4 Suppl. 2), S839–S842 (2000).
  • Buljevac D, Flach HZ, Hop WC et al. Prospective study on the relationship between infections and multiple sclerosis exacerbations. Brain125(Pt 5), 952–960 (2002).
  • Waldner H, Collins M, Kuchroo VK. Activation of antigen-presenting cells by microbial products breaks self tolerance and induces autoimmune disease. J. Clin. Invest.113(7), 990–997 (2004).
  • Kerfoot SM, Long EM, Hickey MJ et al. TLR4 contributes to disease-inducing mechanisms resulting in central nervous system autoimmune disease. J. Immunol.173(11), 7070–7077 (2004).
  • Linthicum DS. Development of acute autoimmune encephalomyelitis in mice: factors regulating the effector phase of the disease. Immunobiology162(3), 211–220 (1982).
  • Hugot JP, Chamaillard M, Zouali H et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature411(6837), 599–603 (2001).
  • Ogura Y, Bonen DK, Inohara N et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature411(6837), 603–606 (2001).
  • Inohara N, Ogura Y, Fontalba A et al. Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn’s disease. J. Biol. Chem.278(8), 5509–5512 (2003).
  • Girardin SE, Boneca IG, Viala J et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J. Biol. Chem.278(11), 8869–8872 (2003).
  • van Heel DA, Ghosh S, Butler M et al. Synergistic enhancement of Toll-like receptor responses by NOD1 activation. Eur. J. Immunol.35(8), 2471–2476 (2005).
  • Watanabe T, Kitani A, Murray PJ, Strober W. NOD2 is a negative regulator of Toll-like receptor 2-mediated T helper type 1 responses. Nat. Immunol.5(8), 800–808 (2004).
  • Netea MG, Hijmans A, van Wissen S et al. Toll-like receptor-4 Asp299Gly polymorphism does not influence progression of atherosclerosis in patients with familial hypercholesterolaemia. Eur J. Clin. Invest.34(2), 94–99 (2004).
  • Torok HP, Glas J, Tonenchi L, Bruennler G, Folwaczny M, Folwaczny C. Crohn’s disease is associated with a Toll-like receptor-9 polymorphism. Gastroenterology127(1), 365–366 (2004).
  • Gewirtz AT, Vijay-Kumar M, Brant SR, Duerr RH, Nicolae DL, Cho JH. Dominant-negative TLR5 polymorphism reduces adaptive immune response to flagellin and negatively associates with Crohn’s disease. Am. J. Physiol. Gastrointest. Liver Physiol.290(6), G1157–G1163 (2006).
  • McCarty DJ. Crystals and arthritis. Dis. Mon.40(6), 255–299 (1994).
  • Bieber JD, Terkeltaub RA. Gout: on the brink of novel therapeutic options for an ancient disease. Arthritis Rheum.50(8), 2400–2414 (2004).
  • Liu-Bryan R, Pritzker K, Firestein GS, Terkeltaub R. TLR2 signaling in chondrocytes drives calcium pyrophosphate dihydrate and monosodium urate crystal-induced nitric oxide generation. J. Immunol.174(8), 5016–5023 (2005).
  • Liu-Bryan R, Scott P, Sydlaske A, Rose DM, Terkeltaub R. Innate immunity conferred by Toll-like receptors 2 and 4 and myeloid differentiation factor 88 expression is pivotal to monosodium urate monohydrate crystal-induced inflammation. Arthritis Rheum.52(9), 2936–2946 (2005).
  • Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature440(7081), 237–241 (2006).
  • Ting JP, Kastner DL, Hoffman HM. CATERPILLERs, pyrin and hereditary immunological disorders. Nat. Rev. Immunol.6(3), 183–195 (2006).
  • Martinon F, Agostini L, Meylan E, Tschopp J. Identification of bacterial muramyl dipeptide as activator of the NALP3/cryopyrin inflammasome. Curr. Biol.14(21), 1929–1934 (2004).
  • Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol. Cell10(2), 417–426 (2002).
  • Mariathasan S, Newton K, Monack DM et al. Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature430(6996), 213–218 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.