45
Views
1
CrossRef citations to date
0
Altmetric
Review

Antigen presentation and the regulation of CD4 memory generation to influenza

, &
Pages 601-611 | Published online: 10 Jan 2014

References

  • Seder RA, Ahmed R. Similarities and differences in CD4+ and CD8+ effector and memory T cell generation. Nat. Immunol.4, 835–842 (2003).
  • Schiemann M, Busch V, Linkemann K, Huster KM, Busch DH. Differences in maintenance of CD8+ and CD4+ bacteria-specific effector-memory T cell populations. Eur. J. Immunol.33, 2875–2885 (2003).
  • Lamb R, Krug R. Orthomyxoviridae: the viruses and their replication. In: Fundamental Virology (4th Edition). Knipe D, Howley P (Eds). Lippincott, Williams & Wilkins, PA, USA, 725–769 (2001).
  • Fouchier RA, Munster V, Wallensten A et al. Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls. J. Virol.79, 2814–2822 (2005).
  • Couch RB. An overview of serum antibody responses to influenza virus antigens. Dev. Biol. (Basel)115, 25–30 (2003).
  • Ghedin E, Sengamalay NA, Shumway M et al. Large-scale sequencing of human influenza reveals the dynamic nature of viral genome evolution. Nature437, 1162–1166 (2005).
  • Alexander DJ. Avian influenza viruses and human health. Dev. Biol. (Basel)124, 77–84 (2006).
  • Lanzavecchia A, Sallusto F. Progressive differentiation and selection of the fittest in the immune response. Nat. Rev. Immunol.2, 982–987 (2002).
  • Jelley-Gibbs DM, Lepak NM, Yen M, Swain SL. Two distinct stages in the transition from naive CD4 T cells to effectors, early antigen-dependent and late cytokine-driven expansion and differentiation. J. Immunol.165, 5017–5026 (2000).
  • Patke DS, Ahmadzadeh M, Bingaman AW, Farber DL. Anti-CD3 priming generates heterogeneous antigen-specific memory CD4 T cells. Clin. Immunol.117, 125–132 (2005).
  • Jelley-Gibbs DM, Dibble JP, Filipson S, Haynes L, Kemp RA, Swain SL. Repeated stimulation of CD4 effector T cells can limit their protective function. J. Exp. Med.201, 1101–1112 (2005).
  • Langenkamp A, Casorati G, Garavaglia C, Dellabona P, Lanzavecchia A, Sallusto F. T cell priming by dendritic cells: thresholds for proliferation, differentiation and death and intraclonal functional diversification. Eur. J. Immunol.32, 2046–2054 (2002).
  • Szabo SJ, Sullivan BM, Stemmann C, Satoskar AR, Sleckman BP, Glimcher LH. Distinct effects of T-bet in TH1 lineage commitment and IFN-gamma production in CD4 and CD8 T cells. Science295, 338–342 (2002).
  • Afkarian M, Sedy JR, Yang J et al. T-bet is a STAT1-induced regulator of IL-12R expression in naive CD4+ T cells. Nat. Immunol.3, 549–557 (2002).
  • Swain SL, Hu H, Huston G. Class II-independent generation of CD4 memory T cells from effectors. Science286, 1381–1383 (1999).
  • Kondrack RM, Harbertson J, Tan JT, McBreen ME, Surh CD, Bradley LM. Interleukin 7 regulates the survival and generation of memory CD4 cells. J. Exp. Med.198, 1797–1806 (2003).
  • Bradley LM, Haynes L, Swain SL. IL-7: maintaining T-cell memory and achieving homeostasis. Trends Immunol.26, 172–176 (2005).
  • Li J, Huston G, Swain SL. IL-7 promotes the transition of CD4 effectors to persistent memory cells. J. Exp. Med.198, 1807–1815 (2003).
  • Marrack P, Kappler J. Control of T cell viability. Annu. Rev. Immunol.22, 765–787 (2004).
  • Feuerer M, Beckhove P, Mahnke Y et al. Bone marrow microenvironment facilitating dendritic cell: CD4 T cell interactions and maintenance of CD4 memory. Int. J. Oncol.25, 867–876 (2004).
  • Jelley-Gibbs DM, Brown DM, Dibble JP, Haynes L, Eaton SM, Swain SL. Unexpected prolonged presentation of influenza antigens promotes CD4 T cell memory generation. J. Exp. Med.202, 697–706 (2005).
  • Zammit DJ, Turner DL, Klonowski KD, Lefrancois L, Cauley LS. Residual antigen presentation after influenza virus infection affects CD8 T cell activation and migration. Immunity24, 438–449 (2006).
  • Wang X, Mosmann T. In vivo priming of CD4 T cells that produce interleukin (IL)-2 but not IL-4 or interferon (IFN)-gamma, and can subsequently differentiate into IL-4- or IFN-gamma-secreting cells. J. Exp. Med.194, 1069–1080 (2001).
  • Kaech SM, Wherry EJ, Ahmed R. Effector and memory T-cell differentiation: implications for vaccine development. Nat. Rev. Immunol.2, 251–262 (2002).
  • Matzinger P. The danger model: a renewed sense of self. Science296, 301–305 (2002).
  • Raimondi G, Zanoni I, Citterio S, Ricciardi-Castagnoli P, Granucci F. Induction of peripheral T cell tolerance by antigen-presenting B cells. I. Relevance of antigen presentation persistence. J. Immunol.176, 4012–4020 (2006).
  • Kawamura K, Kadowaki N, Suzuki R et al. Dendritic cells that endocytosed antigen-containing IgG-liposomes elicit effective antitumor immunity. J. Immunother.29, 165–174 (2006).
  • Bachmann MF, Kalinke U, Althage A et al. The role of antibody concentration and avidity in antiviral protection. Science276, 2024–2027 (1997).
  • Topham DJ, Tripp RA, Hamilton-Easton AM, Sarawar SR, Doherty PC. Quantitative analysis of the influenza virus-specific CD4+ T cell memory in the absence of B cells and Ig. J. Immunol.157, 2947–2952 (1996).
  • Graham MB, Braciale TJ. Resistance to and recovery from lethal influenza virus infection in B lymphocyte-deficient mice. J. Exp. Med.186, 2063–2068 (1997).
  • Mozdzanowska K, Furchner M, Zharikova D, Feng J, Gerhard W. Roles of CD4+ T-cell-independent and -dependent antibody responses in the control of influenza virus infection: evidence for noncognate CD4+ T-cell activities that enhance the therapeutic activity of antiviral antibodies. J. Virol.79, 5943–5951 (2005).
  • Malaspina A, Moir S, Orsega SM et al. Compromised B cell responses to influenza vaccination in HIV-infected individuals. J. Infect. Dis.191, 1442–1450 (2005).
  • Sangster MY, Riberdy JM, Gonzalez M, Topham DJ, Baumgarth N, Doherty PC. An early CD4+ T cell-dependent immunoglobulin A response to influenza infection in the absence of key cognate T–B interactions. J. Exp. Med.198, 1011–1021 (2003).
  • Kelsoe G. Life and death in germinal centers (redux). Immunity4, 107–111 (1996).
  • MacLennan IC. Germinal centers. Annu. Rev. Immunol.12, 117–139 (1994).
  • McHeyzer-Williams LJ, McHeyzer-Williams MG. Antigen-specific memory B cell development. Annu. Rev. Immunol.23, 487–513 (2005).
  • Liu YJ, Oldfield S, MacLennan IC. Memory B cells in T cell-dependent antibody responses colonize the splenic marginal zones. Eur. J. Immunol.18, 355–362 (1988).
  • Gerhard W. The role of the antibody response in influenza virus infection. Curr. Top. Microbiol. Immunol.260, 171–190 (2001).
  • Lee BO, Moyron-Quiroz J, Rangel-Moreno J et al. CD40, but not CD154, expression on B cells is necessary for optimal primary B cell responses. J. Immunol.171, 5707–5717 (2003).
  • Vieira P, Rajewsky K. The half-lives of serum immunoglobulins in adult mice. Eur. J. Immunol.18, 313–316 (1988).
  • Manz RA, Lohning M, Cassese G, Thiel A, Radbruch A. Survival of long-lived plasma cells is independent of antigen. Int. Immunol.10, 1703–1711 (1998).
  • Manz RA, Hauser AE, Hiepe F, Radbruch A. Maintenance of serum antibody levels. Annu. Rev. Immunol.23, 367–386 (2005).
  • Cassese G, Arce S, Hauser AE et al. Plasma cell survival is mediated by synergistic effects of cytokines and adhesion-dependent signals. J. Immunol.171, 1684–1690 (2003).
  • Schittek B, Rajewsky K. Maintenance of B-cell memory by long-lived cells generated from proliferating precursors. Nature346, 749–751 (1990).
  • Maruyama M, Lam KP, Rajewsky K. Memory B-cell persistence is independent of persisting immunizing antigen. Nature407, 636–642 (2000).
  • Hebeis BJ, Klenovsek K, Rohwer P et al. Activation of virus-specific memory B cells in the absence of T cell help. J. Exp. Med.199, 593–602 (2004).
  • Slifka MK, Antia R, Whitmire JK, Ahmed R. Humoral immunity due to long-lived plasma cells. Immunity8, 363–372 (1998).
  • Plas DR, Rathmell JC, Thompson CB. Homeostatic control of lymphocyte survival: potential origins and implications. Nat. Immunol.3, 515–521 (2002).
  • Lee BO, Rangel-Moreno J, Moyron-Quiroz JE et al. CD4 T cell-independent antibody response promotes resolution of primary influenza infection and helps to prevent reinfection. J. Immunol.175, 5827–5838 (2005).
  • Shimoda M, Li T, Pihkala JP, Koni PA. Role of MHC class II on memory B cells in post-germinal center B cell homeostasis and memory response. J. Immunol.176, 2122–2133 (2006).
  • Husmann LA, Bevan MJ. Cooperation between helper T cells and cytotoxic T lymphocyte precursors. Ann. NY Acad. Sci.532, 158–169 (1988).
  • Guerder S, Matzinger P. A fail-safe mechanism for maintaining self-tolerance. J. Exp. Med.176, 553–564 (1992).
  • Krieger NR, Yin DP, Fathman CG. CD4+ but not CD8+ cells are essential for allorejection. J. Exp. Med.184, 2013–2018 (1996).
  • Bennett SR, Carbone FR, Karamalis F, Miller JF, Heath WR. Induction of a CD8+ cytotoxic T lymphocyte response by cross-priming requires cognate CD4+ T cell help. J. Exp. Med.186, 65–70 (1997).
  • Kast WM, Bronkhorst AM, de Waal LP, Melief CJ. Cooperation between cytotoxic and helper T lymphocytes in protection against lethal Sendai virus infection. Protection by T cells is MHC-restricted and MHC-regulated; a model for MHC-disease associations. J. Exp. Med.164, 723–738 (1986).
  • Schoenberger SP, Toes Re, van der Voort EI, Offringa R, Melief CJ. T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature393, 480–483 (1998).
  • Cardin RD, Brooks JW, Sarawar SR, Doherty PC. Progressive loss of CD8+ T cell-mediated control of a gamma-herpesvirus in the absence of CD4+ T cells. J. Exp. Med.184, 863–871 (1996).
  • Ahmed R, Butler LD, Bhatti L. T4+ T helper cell function in vivo: differential requirement for induction of antiviral cytotoxic T-cell and antibody responses. J. Virol.62, 2102–2106 (1988).
  • Buller RM, Holmes KL, Hugin A, Frederickson TN, Morse HC III. Induction of cytotoxic T-cell responses in vivo in the absence of CD4 helper cells. Nature328, 77–79 (1987).
  • Liu Y, Mullbacher A. The generation and activation of memory class I MHC restricted cytotoxic T cell responses to influenza A virus in vivo do not require CD4+ T cells. Immunol. Cell Biol.67(Pt 6), 413–420 (1989).
  • Nash AA, Jayasuriya A, Phelan J, Cobbold SP, Waldmann H, Prospero T. Different roles for L3T4+ and Lyt 2+ T cell subsets in the control of an acute herpes simplex virus infection of the skin and nervous system. J. Gen. Virol.68(Pt 3), 825–833 (1987).
  • Bourgeois C, Veiga-Fernandes H, Joret AM, Rocha B, Tanchot C. CD8 lethargy in the absence of CD4 help. Eur. J. Immunol.32, 2199–2207 (2002).
  • Janssen EM, Lemmens EE, Wolfe T, Christen U, von Herrath MG, Schoenberger SP. CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature421, 852–856 (2003).
  • Shedlock DJ, Shen H. Requirement for CD4 T cell help in generating functional CD8 T cell memory. Science300, 337–339 (2003).
  • von Herrath MG, Yokoyama M, Dockter J, Oldstone MB, Whitton JL. CD4-deficient mice have reduced levels of memory cytotoxic T lymphocytes after immunization and show diminished resistance to subsequent virus challenge. J. Virol.70, 1072–1079 (1996).
  • Belz GT, Wodarz D, Diaz G, Nowak MA, Doherty PC. Compromised influenza virus-specific CD8(+)-T-cell memory in CD4(+)-T-cell-deficient mice. J. Virol.76, 12388–12393 (2002).
  • Smith CM, Wilson NS, Waithman J et al. Cognate CD4(+) T cell licensing of dendritic cells in CD8(+) T cell immunity. Nat. Immunol.5, 1143–1148 (2004).
  • Sun JC, Williams MA, Bevan MJ. CD4+ T cells are required for the maintenance, not programming, of memory CD8+ T cells after acute infection. Nat. Immunol.5, 927–933 (2004).
  • Matzinger P. Immunology. Memories are made of this? Nature369, 605–606 (1994).
  • Bennett SR, Carbone FR, Karamalis F, Flavell RA, Miller JF, Heath WR. Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature393, 478–480 (1998).
  • Ridge JP, Di Rosa F, Matzinger P. A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature393, 474–478 (1998).
  • Lee BO, Hartson L, Randall TD. CD40-deficient, influenza-specific CD8 memory T cells develop and function normally in a CD40-sufficient environment. J. Exp. Med.198, 1759–1764 (2003).
  • Curtsinger JM, Johnson CM, Mescher MF. CD8 T cell clonal expansion and development of effector function require prolonged exposure to antigen, costimulation, and signal 3 cytokine. J. Immunol.171, 5165–5171 (2003).
  • Diehl L, van Mierlo GJ, den Boer AT et al.In vivo triggering through 4–1BB enables Th-independent priming of CTL in the presence of an intact CD28 costimulatory pathway. J. Immunol.168, 3755–3762 (2002).
  • Prilliman KR, Lemmens EE, Palioungas G et al. Cutting edge: a crucial role for B7-CD28 in transmitting T help from APC to CTL. J. Immunol.169, 4094–4097 (2002).
  • Cassell D, Forman J. Linked recognition of helper and cytotoxic antigenic determinants for the generation of cytotoxic T lymphocytes. Ann. NY Acad. Sci.532, 51–60 (1988).
  • Juretic A, Malenica B, Juretic E, Klein J, Nagy ZA. Helper effects required during in vivo priming for a cytolytic response to the H-Y antigen in nonresponder mice. J. Immunol.134, 1408–1414 (1985).
  • Shirai M, Pendleton CD, Ahlers J, Takeshita T, Newman M, Berzofsky JA. Helper–cytotoxic T lymphocyte (CTL) determinant linkage required for priming of anti-HIV CD8+ CTL in vivo with peptide vaccine constructs. J. Immunol.152, 549–556 (1994).
  • Lanzavecchia A. Immunology. Licence to kill. Nature393, 413–414 (1998).
  • Tanchot C, Rocha B. CD8 and B cell memory: same strategy, same signals. Nat. Immunol.4, 431–432 (2003).

Website

  • Cumulative Number of Confirmed Human Cases of Avian Influenza A/(H5N1) Reported to WHO www.who.int/csr/disease/avian_influenza/ country/cases_table_2006_03_13/en/ index.html

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.