65
Views
22
CrossRef citations to date
0
Altmetric
Review

Role of macrophages in HIV infection and persistence

&
Pages 613-626 | Published online: 10 Jan 2014

References

  • Palella FJ Jr, Delaney KM, Moorman AC et al. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV Outpatient Study Investigators. N. Engl. J. Med.338(13), 853–860 (1998).
  • Simon V, Ho DD. HIV-1 dynamics in vivo: implications for therapy. Nat. Rev. Microbiol.1(3), 181–190 (2003).
  • Grossman Z, Meier-Schellersheim M, Sousa AE, Victorino RM, Paul WE. CD4+ T-cell depletion in HIV infection: are we closer to understanding the cause? Nat. Med.8(4), 319–323 (2002).
  • Levy JA. Pathogenesis of human immunodeficiency virus infection. Microbiol. Rev.57(1), 183–289 (1993).
  • Chernyak L, Tauber AI. The birth of immunology: Metchnikoff, the embryologist. Cell. Immunol.117(1), 218–233 (1988).
  • van Furth R, Cohn ZA. The origin and kinetics of mononuclear phagocytes. J. Exp. Med.128(3), 415–435 (1968).
  • Gordon S. The role of the macrophage in immune regulation. Res. Immunol.149(7–8), 685–688 (1998).
  • Hume DA, Ross IL, Himes SR et al. The mononuclear phagocyte system revisited. J. Leukoc. Biol.72(4), 621–627 (2002).
  • Karin M, Lawrence T, Nizet V. Innate immunity gone awry: linking microbial infections to chronic inflammation and cancer. Cell124(4), 823–835 (2006).
  • Unanue ER, Allen PM. Biochemistry and biology of antigen presentation by macrophages. Cell. Immunol.99(1), 3–6 (1986).
  • Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat. Rev. Immunol.5(12), 953–964 (2005).
  • van Furth R. Monocyte production during inflammation. Comp. Immunol. Microbiol. Infect. Dis.8(2), 205–211 (1985).
  • Weber C, Belge KU, von Hundelshausen P et al. Differential chemokine receptor expression and function in human monocyte subpopulations. J. Leukoc. Biol.67(5), 699–704 (2000).
  • Ziegler-Heitbrock HW, Fingerle G, Strobel M et al. The novel subset of CD14+/CD16+ blood monocytes exhibits features of tissue macrophages. Eur. J. Immunol.23(9), 2053–2058 (1993).
  • de Groot CJ, Huppes W, Sminia T, Kraal G, Dijkstra CD. Determination of the origin and nature of brain macrophages and microglial cells in mouse central nervous system, using non-radioactive in situ hybridization and immunoperoxidase techniques. Glia6(4), 301–309 (1992).
  • Clapham PR, McKnight A. HIV-1 receptors and cell tropism. Br. Med. Bull.58, 43–59 (2001).
  • Verani A, Gras G, Pancino G. Macrophages and HIV-1: dangerous liaisons. Mol. Immunol.42(2), 195–212 (2005).
  • Schmidtmayerova H, Alfano M, Nuovo G, Bukrinsky M. Human immunodeficiency virus type 1 T-lymphotropic strains enter macrophages via a CD4- and CXCR4-mediated pathway: replication is restricted at a postentry level. J. Virol.72(6), 4633–4642 (1998).
  • Yi Y, Rana S, Turner JD, Gaddis N, Collman RG. CXCR-4 is expressed by primary macrophages and supports CCR5-independent infection by dual-tropic but not T-tropic isolates of human immunodeficiency virus type 1. J. Virol.72(1), 772–777 (1998).
  • Lapham CK, Zaitseva MB, Lee S, Romanstseva T, Golding H. Fusion of monocytes and macrophages with HIV-1 correlates with biochemical properties of CXCR4 and CCR5. Nat. Med.5(3), 303–308 (1999).
  • Simmons G, Reeves JD, McKnight A et al. CXCR4 as a functional co-receptor for human immunodeficiency virus type 1 infection of primary macrophages. J. Virol.72(10), 8453–8457 (1998).
  • Verani A, Pesenti E, Polo S et al. CXCR4 is a functional coreceptor for infection of human macrophages by CXCR4-dependent primary HIV-1 isolates. J. Immunol.161(5), 2084–2088 (1998).
  • Yi Y, Isaacs SN, Williams DA et al. Role of CXCR4 in cell–cell fusion and infection of monocyte-derived macrophages by primary human immunodeficiency virus type 1 (HIV-1) strains: two distinct mechanisms of HIV-1 dual tropism. J. Virol.73(9), 7117–7125 (1999).
  • Yi Y, Chen W, Frank I et al. An unusual syncytia-inducing human immunodeficiency virus type 1 primary isolate from the central nervous system that is restricted to CXCR4, replicates efficiently in macrophages, and induces neuronal apoptosis. J. Neurovirol.9(4), 432–441 (2003).
  • Jayakumar P, Berger I, Autschbach F et al. Tissue-resident macrophages are productively infected ex vivo by primary X4 isolates of human immunodeficiency virus type 1. J. Virol.79(8), 5220–5226 (2005).
  • Gorry PR, Bristol G, Zack JA et al. Macrophage tropism of human immunodeficiency virus type 1 isolates from brain and lymphoid tissues predicts neurotropism independent of co-receptor specificity. J. Virol.75(21), 10073–10089 (2001).
  • Briggs DR, Tuttle DL, Sleasman JW, Goodenow MM. Envelope V3 amino acid sequence predicts HIV-1 phenotype (co-receptor usage and tropism for macrophages). AIDS14(18), 2937–2939 (2000).
  • Ghaffari G, Tuttle DL, Briggs D et al. Complex determinants in human immunodeficiency virus type 1 envelope gp120 mediate CXCR4-dependent infection of macrophages. J. Virol.79(21), 13250–13261 (2005).
  • Marechal V, Prevost MC, Petit C et al. Human immunodeficiency virus type 1 entry into macrophages mediated by macropinocytosis. J. Virol.75(22), 11166–11177 (2001).
  • Nguyen DG, Hildreth JE. Involvement of macrophage mannose receptor in the binding and transmission of HIV by macrophages. Eur. J. Immunol.33(2), 483–493 (2003).
  • Mondor I, Ugolini S, Sattentau QJ. Human immunodeficiency virus type 1 attachment to HeLa CD4 cells is CD4 independent and gp120 dependent and requires cell surface heparans. J. Virol.72(5), 3623–3634 (1998).
  • Saphire AC, Bobardt MD, Zhang Z, David G, Gallay PA. Syndecans serve as attachment receptors for human immunodeficiency virus type 1 on macrophages. J. Virol.75(19), 9187–9200 (2001).
  • Lafrenie RM, Lee SF, Hewlett IK, Yamada KM, Dhawan S. Involvement of integrin αvβ3 in the pathogenesis of human immunodeficiency virus type 1 infection in monocytes. Virology297(1), 31–38 (2002).
  • Montefiori DC. Role of complement and Fc receptors in the pathogenesis of HIV-1 infection. Springer Semin. Immunopathol.18(3), 371–390 (1997).
  • Ma G, Greenwell-Wild T, Lei K et al. Secretory leukocyte protease inhibitor binds to annexin II, a co-factor for macrophage HIV-1 infection. J. Exp. Med.200(10), 1337–1346 (2004).
  • von Lindern JJ, Rojo D, Grovit-Ferbas K et al. Potential role for CD63 in CCR5-mediated human immunodeficiency virus type 1 infection of macrophages. J. Virol.77(6), 3624–3633 (2003).
  • Collin M, Gordon S. The kinetics of human immunodeficiency virus reverse transcription are slower in primary human macrophages than in a lymphoid cell line. Virology200(1), 114–120 (1994).
  • O’Brien WA, Namazi A, Kalhor H et al. Kinetics of human immunodeficiency virus type 1 reverse transcription in blood mononuclear phagocytes are slowed by limitations of nucleotide precursors. J. Virol.68(2), 1258–1263 (1994).
  • Diamond TL, Roshal M, Jamburuthugoda VK et al. Macrophage tropism of HIV-1 depends on efficient cellular dNTP utilization by reverse transcriptase. J. Biol. Chem.279(49), 51545–51553 (2004).
  • Chiu YL, Greene WC. The APOBEC3 cytidine deaminases: distinct antiviral actions along the retroviral life cycle. J. Biol. Chem.30, 30 (2005).
  • McDonald D, Vodicka MA, Lucero G et al. Visualization of the intracellular behavior of HIV in living cells. J. Cell. Biol.159(3), 441–452 (2002).
  • Bukrinsky M. A hard way to the nucleus. Mol. Med.10(1–6), 1–5 (2004).
  • Zennou V, Petit C, Guetard D et al. HIV-1 genome nuclear import is mediated by a central DNA flap. Cell101(2), 173–185 (2000).
  • Yamashita M, Emerman M. The cell cycle independence of HIV infections is not determined by known karyophilic viral elements. PLoS Pathog.1(3), E18 (2005).
  • Fassati A, Gorlich D, Harrison I, Zaytseva L, Mingot JM. Nuclear import of HIV-1 intracellular reverse transcription complexes is mediated by importin 7. EMBO J.22(14), 3675–3685 (2003).
  • Zielske SP, Stevenson M. Importin 7 may be dispensable for human immunodeficiency virus type 1 and simian immunodeficiency virus infection of primary macrophages. J. Virol.79(17), 11541–11546 (2005).
  • Jacque JM, Stevenson M. The inner-nuclear-envelope protein emerin regulates HIV-1 infectivity. Nature441(7093), 641–645 (2006).
  • Gillim-Ross L, Cara A, Klotman ME. HIV-1 extrachromosomal 2-LTR circular DNA is long-lived in human macrophages. Viral Immunol.18(1), 190–196 (2005).
  • Liou LY, Herrmann CH, Rice AP. HIV-1 infection and regulation of Tat function in macrophages. Int. J. Biochem. Cell. Biol.36(9), 1767–1775 (2004).
  • Rohr O, Marban C, Aunis D, Schaeffer E. Regulation of HIV-1 gene transcription: from lymphocytes to microglial cells. J. Leukoc. Biol.74(5), 736–749 (2003).
  • Henderson AJ, Calame KL. CCAAT/enhancer binding protein (C/EBP) sites are required for HIV-1 replication in primary macrophages but not CD4(+) T cells. Proc. Natl Acad. Sci. USA94(16), 8714–8719 (1997).
  • Lee ES, Kalantari P, Tsutsui Section S et al. RON receptor tyrosine kinase, a negative regulator of inflammation, inhibits HIV-1 transcription in monocytes/macrophages and is decreased in brain tissue from patients with AIDS. J. Immunol.173(11), 6864–6872 (2004).
  • Ono A, Freed EO. Plasma membrane rafts play a critical role in HIV-1 assembly and release. Proc. Natl Acad. Sci. USA,98(24), 13925–13930 (2001).
  • Brugger B, Glass B, Haberkant P et al. The HIV lipidome: a raft with an unusual composition. Proc. Natl Acad. Sci. USA15, 15 (2006).
  • Orenstein JM, Meltzer MS, Phipps T, Gendelman HE. Cytoplasmic assembly and accumulation of human immunodeficiency virus types 1 and 2 in recombinant human colony-stimulating factor-1-treated human monocytes: an ultrastructural study. J. Virol.62(8), 2578–2586 (1988).
  • Raposo G, Moore M, Innes D et al. Human macrophages accumulate HIV-1 particles in MHC II compartments. Traffic3(10), 718–729 (2002).
  • Pelchen-Matthews A, Kramer B, Marsh M. Infectious HIV-1 assembles in late endosomes in primary macrophages. J. Cell. Biol.162(3), 443–455 (2003).
  • Kramer B, Pelchen-Matthews A, Deneka M et al. HIV interaction with endosomes in macrophages and dendritic cells. Blood Cells Mol. Dis.35(2), 136–142 (2005).
  • van’t Wout AB, Kootstra NA, Mulder-Kampinga GA et al. Macrophage-tropic variants initiate human immunodeficiency virus type 1 infection after sexual, parenteral, and vertical transmission. J. Clin. Invest.94(5), 2060–2067 (1994).
  • Schacker T, Little S, Connick E et al. Productive infection of T cells in lymphoid tissues during primary and early human immunodeficiency virus infection. J. Infect. Dis.183(4), 555–562 (2001).
  • Spira AI, Marx PA, Patterson BK et al. Cellular targets of infection and route of viral dissemination after an intravaginal inoculation of simian immunodeficiency virus into rhesus macaques. J. Exp. Med.183(1), 215–225 (1996).
  • Zhang Z, Schuler T, Zupancic M et al. Sexual transmission and propagation of SIV and HIV in resting and activated CD4+ T cells. Science286(5443), 1353–1357 (1999).
  • Smith PD, Meng G, Salazar-Gonzalez JF, Shaw GM. Macrophage HIV-1 infection and the gastrointestinal tract reservoir. J. Leukoc. Biol.74(5), 642–649 (2003).
  • Wahl SM, Greenwell-Wild T, Peng G et al. Viral and host cofactors facilitate HIV-1 replication in macrophages. J. Leukoc. Biol.74(5), 726–735 (2003).
  • Kawamura T, Kurtz SE, Blauvelt A, Shimada S. The role of Langerhans cells in the sexual transmission of HIV. J. Dermatol. Sci.40(3), 147–155 (2005).
  • Goodenow MM, Rose SL, Tuttle DL, Sleasman JW. HIV-1 fitness and macrophages. J. Leukoc. Biol.74(5), 657–666 (2003).
  • Crowe S, Zhu T, Muller WA. The contribution of monocyte infection and trafficking to viral persistence, and maintenance of the viral reservoir in HIV infection. J. Leukoc. Biol.74(5), 635–641 (2003).
  • Eckstein DA, Sherman MP, Penn ML et al. HIV-1 Vpr enhances viral burden by facilitating infection of tissue macrophages but not nondividing CD4+ T cells. J. Exp. Med.194(10), 1407–1419 (2001).
  • Igarashi T, Brown CR, Endo Y et al. Macrophage are the principal reservoir and sustain high virus loads in rhesus macaques after the depletion of CD4+ T cells by a highly pathogenic simian immunodeficiency virus/HIV type 1 chimera (SHIV): implications for HIV-1 infections of humans. Proc. Natl Acad. Sci. USA98(2), 658–663 (2001).
  • Imamichi H, Igarashi T, Imamichi T et al. Amino acid deletions are introduced into the V2 region of gp120 during independent pathogenic simian immunodeficiency virus/HIV chimeric virus (SHIV) infections of rhesus monkeys generating variants that are macrophage tropic. Proc. Natl Acad. Sci. USA99(21), 13813–13818 (2002).
  • Igarashi T, Donau OK, Imamichi H et al. Macrophage-tropic simian/human immunodeficiency virus chimeras use CXCR4, not CCR5, for infections of rhesus macaque peripheral blood mononuclear cells and alveolar macrophages. J. Virol.77(24), 13042–13052 (2003).
  • Garaci E, Aquaro S, Lapenta C et al. Anti-nerve growth factor Ab abrogates macrophage-mediated HIV-1 infection and depletion of CD4+ T lymphocytes in hu-SCID mice. Proc. Natl Acad. Sci. USA100(15), 8927–8932 (2003).
  • Gorry PR, Sterjovski J, Churchill M et al. The role of viral co-receptors and enhanced macrophage tropism in human immunodeficiency virus type 1 disease progression. Sex. Health1(1), 23–34 (2004).
  • Orenstein JM, Fox C, Wahl SM. Macrophages as a source of HIV during opportunistic infections. Science276(5320), 1857–1861 (1997).
  • Zhao C, Papadopoulou B, Tremblay MJ. Leishmania infantum enhances human immunodeficiency virus type-1 replication in primary human macrophages through a complex cytokine network. Clin. Immunol.113(1), 81–88 (2004).
  • Stevenson M. HIV-1 pathogenesis. Nat. Med.9(7), 853–860 (2003).
  • Swingler S, Mann A, Jacque J et al. HIV-1 Nef mediates lymphocyte chemotaxis and activation by infected macrophages. Nat. Med.5(9), 997–1003 (1999).
  • Swingler S, Brichacek B, Jacque JM et al. HIV-1 Nef intersects the macrophage CD40L signalling pathway to promote resting-cell infection. Nature424(6945), 213–219 (2003).
  • Sharova N, Swingler C, Sharkey M, Stevenson M. Macrophages archive HIV-1 virions for dissemination in trans. EMBO J.24(13), 2481–2489 (2005).
  • Herbein G, Mahlknecht U, Batliwalla F et al. Apoptosis of CD8+ T cells is mediated by macrophages through interaction of HIV gp120 with chemokine receptor CXCR4. Nature395(6698), 189–194 (1998).
  • Badley AD, Dockrell D, Simpson M et al. Macrophage-dependent apoptosis of CD4+ T lymphocytes from HIV-infected individuals is mediated by FasL and tumor necrosis factor. J. Exp. Med.185(1), 55–64 (1997).
  • Lieberman J, Shankar P, Manjunath N, Andersson J. Dressed to kill? A review of why antiviral CD8 T lymphocytes fail to prevent progressive immunodeficiency in HIV-1 infection. Blood98(6), 1667–1677 (2001).
  • Kedzierska K, Azzam R, Ellery P et al. Defective phagocytosis by human monocyte/macrophages following HIV-1 infection: underlying mechanisms and modulation by adjunctive cytokine therapy. J. Clin. Virol.26(2), 247–263 (2003).
  • Pugliese A, Vidotto V, Beltramo T, Torre D. Phagocytic activity in human immunodeficiency virus type 1 infection. Clin. Diagn. Lab. Immunol.12(8), 889–895 (2005).
  • Jaworowski A, Ellery P, Maslin CL et al. Normal CD16 expression and phagocytosis of mycobacterium avium complex by monocytes from a current cohort of HIV-1-infected patients. J. Infect. Dis.193(5), 693–697 (2006).
  • Vazquez N, Greenwell-Wild T, Marinos NJ et al. Human immunodeficiency virus type 1-induced macrophage gene expression includes the p21 gene, a target for viral regulation. J. Virol.79(7), 4479–4491 (2005).
  • Orenstein JM. The macrophage in HIV infection. Immunobiology204(5), 598–602 (2001).
  • Tyner JW, Uchida O, Kajiwara N et al. CCL5–CCR5 interaction provides antiapoptotic signals for macrophage survival during viral infection. Nat. Med.11(11), 1180–1187 (2005).
  • Persidsky Y, Gendelman HE. Mononuclear phagocyte immunity and the neuropathogenesis of HIV-1 infection. J. Leukoc. Biol.74(5), 691–701 (2003).
  • Gonzalez-Scarano F, Martin-Garcia J. The neuropathogenesis of AIDS. Nat. Rev. Immunol.5(1), 69–81 (2005).
  • Pereira CF, Paridaen JT. Anti-HIV drug development – an overview. Curr. Pharm. Des.10(32), 4005–4037 (2004).
  • Chun TW, Davey RT Jr, Ostrowski M et al. Relationship between pre-existing viral reservoirs and the re-emergence of plasma viremia after discontinuation of highly active anti-retroviral therapy. Nat. Med.6(7), 757–761 (2000).
  • Garbuglia AR, Calcaterra S, D’Offizi G et al. HIV-1 DNA burden dynamics in CD4 T cells and monocytes in patients undergoing a transient therapy interruption. J. Med. Virol.74(3), 373–381 (2004).
  • Schrager LK, D’Souza MP. Cellular and anatomical reservoirs of HIV-1 in patients receiving potent antiretroviral combination therapy. JAMA280(1), 67–71 (1998).
  • Geijtenbeek TB, Kwon DS, Torensma R et al. DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell100(5), 587–597 (2000).
  • Burleigh L, Lozach PY, Schiffer C et al. Infection of dendritic cells (DCs), not DC-SIGN-mediated internalization of human immunodeficiency virus, is required for long-term transfer of virus to T cells. J. Virol.80(6), 2949–2957 (2006).
  • Nobile C, Petit C, Moris A et al. Covert human immunodeficiency virus replication in dendritic cells and in DC-SIGN-expressing cells promotes long-term transmission to lymphocytes. J. Virol.79(9), 5386–5399 (2005).
  • Smythies LE, Sellers M, Clements RH et al. Human intestinal macrophages display profound inflammatory anergy despite avid phagocytic and bacteriocidal activity. J. Clin. Invest.115(1), 66–75 (2005).
  • Shikuma CM, Valcour VG, Ratto-Kim S et al. HIV-associated wasting in the era of highly active antiretroviral therapy: a syndrome of residual HIV infection in monocytes and macrophages? Clin. Infect. Dis.40(12), 1846–1848 (2005).
  • Medeiros RP, Munerato P, Diaz RS. HIV-1 viral load in blood and semen plasma of Brazilian patients under antiretroviral therapy. J. Clin. Virol.30(4), 346–347 (2004).
  • Blankson JN, Finzi D, Pierson TC et al. Biphasic decay of latently infected CD4+ T cells in acute human immunodeficiency virus type 1 infection. J. Infect. Dis.182(6), 1636–1642 (2000).
  • Haggerty S, Stevenson M. Predominance of distinct viral genotypes in brain and lymph node compartments of HIV-1-infected individuals. Viral Immunol.4(2), 123–131 (1991).
  • Wong JK, Ignacio CC, Torriani F et al. In vivo compartmentalization of human immunodeficiency virus: evidence from the examination of pol sequences from autopsy tissues. J. Virol.71(3), 2059–2071 (1997).
  • Zhang L, Rowe L, He T et al. Compartmentalization of surface envelope glycoprotein of human immunodeficiency virus type 1 during acute and chronic infection. J. Virol.76(18), 9465–9473 (2002).
  • Fulcher JA, Hwangbo Y, Zioni R et al. Compartmentalization of human immunodeficiency virus type 1 between blood monocytes and CD4+ T cells during infection. J. Virol.78(15), 7883–7893 (2004).
  • Delobel P, Sandres-Saune K, Cazabat M et al. Persistence of distinct HIV-1 populations in blood monocytes and naive and memory CD4 T cells during prolonged suppressive HAART. AIDS19(16), 1739–1750 (2005).
  • Thompson KA, Churchill MJ, Gorry PR et al. Astrocyte specific viral strains in HIV dementia. Ann. Neurol.56(6), 873–877 (2004).
  • Zhang L, Chung C, Hu BS et al. Genetic characterization of rebounding HIV-1 after cessation of highly active antiretroviral therapy. J. Clin. Invest.106(7), 839–845 (2000).
  • Garbuglia AR, Zaccarelli M, Calcaterra S et al. Dynamics of viral load in plasma and HIV DNA in lymphocytes during highly active antiretroviral therapy (HAART): high viral burden in macrophages after 1 year of treatment. J. Chemother.13(2), 188–194 (2001).
  • Perno CF, Balestra E, Francesconi M et al. Antiviral profile of HIV inhibitors in macrophages: implications for therapy. Curr. Top. Med. Chem.4(9), 1009–1015 (2004).
  • Aquaro S, Bagnarelli P, Guenci T et al. Long-term survival and virus production in human primary macrophages infected by human immunodeficiency virus. J. Med. Virol.68(4), 479–488 (2002).
  • Perno CF, Newcomb FM, Davis DA et al. Relative potency of protease inhibitors in monocytes/macrophages acutely and chronically infected with human immunodeficiency virus. J. Infect. Dis.178(2), 413–422 (1998).
  • Jong A, Huang SH. Blood–brain barrier drug discovery for central nervous system infections. Curr. Drug Targets Infect. Disord.5(1), 65–72 (2005).
  • Owen A, Chandler B, Back DJ. The implications of P-glycoprotein in HIV: friend or foe? Fundam. Clin. Pharmacol.19(3), 283–296 (2005).
  • Ghosn J, Chaix ML, Peytavin G et al. Penetration of enfuvirtide, tenofovir, efavirenz, and protease inhibitors in the genital tract of HIV-1-infected men. AIDS18(14), 1958–1961 (2004).
  • Siliciano JD, Siliciano RF. A long-term latent reservoir for HIV-1: discovery and clinical implications. J. Antimicrob. Chemother.54(1), 6–9 (2004).
  • Chun TW, Fauci AS. Latent reservoirs of HIV: obstacles to the eradication of virus. Proc. Natl Acad. Sci. USA96(20), 10958–10961 (1999).
  • Lehrman G, Hogue IB, Palmer S et al. Depletion of latent HIV-1 infection in vivo: a proof-of-concept study. Lancet366(9485), 549–555 (2005).
  • Magnani M, Balestra E, Fraternale A et al. Drug-loaded red blood cell-mediated clearance of HIV-1 macrophage reservoir by selective inhibition of STAT1 expression. J. Leukoc. Biol.74(5), 764–771 (2003).
  • Potula R, Poluektova L, Knipe B et al. Inhibition of indoleamine 2,3-dioxygenase (IDO) enhances elimination of virus-infected macrophages in an animal model of HIV-1 encephalitis. Blood106(7), 2382–2390 (2005).
  • Mebatsion T, Finke S, Weiland F, Conzelmann KK. A CXCR4/CD4 pseudotype rhabdovirus that selectively infects HIV-1 envelope protein-expressing cells. Cell90(5), 841–847 (1997).
  • Peretti S, Schiavoni I, Pugliese K, Federico M. Selective elimination of HIV-1-infected cells by Env-directed, HIV-1-based virus-like particles. Virology345(1), 115–126 (2006).
  • Keppler OT, Welte FJ, Ngo TA et al. Progress toward a human CD4/CCR5 transgenic rat model for de novo infection by human immunodeficiency virus type 1. J. Exp. Med.195(6), 719–736 (2002).
  • Nathwani AC, Davidoff AM, Linch DC. A review of gene therapy for haematological disorders. Br. J. Haematol.128(1), 3–17 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.