40
Views
0
CrossRef citations to date
0
Altmetric
Review

Chronic myeloid leukemia and allogeneic natural killer cells: a surprising dialogue

, &
Pages 627-637 | Published online: 10 Jan 2014

References

  • Rowley JD. Chromosomal patterns in myelocytic leukemia. N. Engl. J. Med.289, 220–221 (1973).
  • Melo JV. The diversity of BCR-ABL fusion proteins and their relationship to leukemia phenotype. Blood88, 2375–2384 (1996).
  • Issaad C, Ahmed M, Novault S et al. Biological effects induced by variable levels of BCR-ABL protein in the pluripotent hematopoietic cell line UT-7. Leukemia14(4), 662–670 (2000).
  • Barnes DJ, Schultheis B, Adedeji S, Melo JV. Dose-dependent effects of Bcr-Abl in cell line models of different stages of chronic myeloid leukemia. Oncogene24, 6432–6440 (2005).
  • Sawyers CL. Chronic myeloid leukemia. N. Engl. J. Med.340, 1330–1340 (1999).
  • Druker BJ, Sawyers CL, Capdeville R, Ford JM, Baccarani M, Goldman JM. Chronic myelogenous leukemia. Hematology Am. Soc. Hematol. Educ. Program87–112 (2001).
  • Druker BJ, Talpaz M, Resta DJ et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med.344(14), 1031–1037 (2001).
  • Talpaz M, Silver RT, Druker BJ et al. Imatinib induces durable hematologic and cytogenetic responses in patients with accelerated phase chronic myeloid leukemia: results of a phase 2 study. Blood99(6), 1928–1937 (2002).
  • Mauro MJ, O’Dwyer ME, Druker BJ. ST1571, a tyrosine kinase inhibitor for the treatment of chronic myelogenous leukemia: validating the promise of molecularly targeted therapy. Cancer Chemother. Pharmacol.48(Suppl. 1), S77–S78 (2001).
  • O’Dwyer M, Druker B. STI571: an inhibitor of the BCR-ABL tyrosine kinase for the treatment of chronic myelogenous leukaemia. Lancet Oncol.1, 207–211 (2000).
  • Margolis J, Borrello I, Flinn I. New approaches to treating malignances with stem cell transplantation. Semin. Oncol.27, 524–530 (2000).
  • Luznik L, Fuchs E. Donor lymphocyte infusions to treat hematologic malignancies in relapse after allogeneic blood or marrow transplantation. Cancer Control9, 123–137 (2002).
  • Farag S, Fehniger T, Ruggeri L, Velardi A, Caligiuri M. Natural killer cells: biology and application in stem-cell transplantation. Cytotherapy4, 445–446 (2002).
  • Ruggeri L, Capanni M, Casucci M et al. Role of natural killer cell alloreactivity in HLA-mismatched hematopoietic stem cell transplantation. Blood94(1), 333–339 (1999).
  • Ruggeri L, Capanni M, Urbani E et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science295(5562), 2097–2100 (2002).
  • Trinchieri G. Biology of natural killer cells. Adv. Immunol.47, 187–376 (1989).
  • Grimm EA, Mazumder A, Zhang HZ, Rosenberg SA. Lymphokine-activated killer cell phenomenon. Lysis of natural killer-resistant fresh solid tumor cells by interleukin 2-activated autologous human peripheral blood lymphocytes. J. Exp. Med.155, 1823–1841 (1982).
  • Ljunggren HG, Karre K. In search of the ‘missing self’: MHC molecules and NK cell recognition. Immunol. Today11, 237–244 (1990).
  • Moretta A, Bottino C, Vitale M et al. Receptors for HLA class-I molecules in human natural killer cells. Ann. Rev. Immunol.14, 619–648 (1996).
  • Moretta A, Bottino C, Millo R, Biassoni R. HLA-specific and non-HLA-specific human NK receptors. Cur.r Top. Microbiol. Immunol.244, 69–84 (1999).
  • Moretta L, Moretta A. Unravelling natural killer cell function: triggering and inhibitory human NK receptors. EMBO J.23, 255–259 (2004).
  • Moretta A, Biassoni R, Bottino C, Mingari M, Moretta L. Natural cytotoxicity receptors that trigger human NK-cell-mediated cytolysis. Immunol. Today21, 228–234 (2000).
  • Cooper M, Fehniger T, Caligiuri M. The biology of human natural killer-cell subsets. Trends Immunol.22, 633–640 (2001).
  • Billadeau D, Upshaw J, Schoon R, Dick C, Leibson P. NKG2D-DAP10 triggers human NK cell-mediated killing via a Syk-independent regulatory pathway. Nat. Immunol.4, 557–564 (2003).
  • Lanier L. Natural killer cell receptors and MHC class I interactions. Curr. Opin. Immunol.9, 126–131 (1997).
  • Braud V, Allan DS, O’Callaghan CA et al. HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature391(6669), 795–799 (1998).
  • Davis D, Chiu I, Fassett G, Mandelboim O, Strominger J. The human natural killer cell immune synapse. Proc. Natl Acad. Sci. USA96, 15062–15067 (1999).
  • Davis DM. Assembly of the immunological synapse for T cells and NK cells. Trends Immunol.23, 356–363 (2002).
  • Vyas YM, Mehta KM, Morgan M et al. Spatial organization of signal transduction molecules in the NK cell immune synapses during MHC class I-regulated noncytolytic and cytolytic interactions. J. Immunol.167(8), 4358–4367 (2001).
  • Vyas YM, Maniar H, Dupont B. Visualization of signaling pathways and cortical cytoskeleton in cytolytic and noncytolytic natural killer cell immune synapses. Immunol. Rev.189, 161–178 (2002).
  • Pierson BA, Miller JS. CD56+bright and CD56+dim natural killer cells in patients with chronic myelogenous leukemia progressively decrease in number, respond less to stimuli that recruit clonogenic natural killer cells, and exhibit decreased proliferation on a per cell basis. Blood88, 2279–2287 (1996).
  • Cho EK, Heo DS, Seol JG et al. Ontogeny of natural killer cells and T cells by analysis of BCR-ABL rearrangement from patients with chronic myelogenous leukaemia. Br. J. Haematol.111(1), 216–222 (2000).
  • Verfaillie C, Kay N, Miller W, McGlave P. Diminished A-LAK cytotoxicity and proliferation accompany disease progression in chronic myelogenous leukemia. Blood76, 401–408 (1990).
  • Miller JS, Verfaillie C, McGlave P. The generation of human natural killer cells from CD34+/DR- primitive progenitors in long-term bone marrow culture. Blood80, 2182–2187 (1992).
  • Tagaya Y, Bamford RN, DeFilippis AP, Waldmann TA. IL-15: a pleiotropic cytokine with diverse receptor/signaling pathways whose expression is controlled at multiple levels. Immunity4, 329–336 (1996).
  • Miller JS, Alley KA, McGlave P. Differentiation of natural killer (NK) cells from human primitive marrow progenitors in a stroma-based long-term culture system: identification of a CD34+7+ NK progenitor. Blood83, 2594–2601 (1994).
  • Mrozek E, Anderson P, Caligiuri M. Role of interleukin-15 in the development of human CD56+ natural killer cells from CD34+ hematopoietic progenitor cells. Blood87, 2632–2640 (1996).
  • Carayol G, Robin C, Bourhis JH et al. NK cells differentiated from bone marrow, cord blood and peripheral blood stem cells exhibit similar phenotype and functions. Eur. J. Immunol.28(6), 1991–2002 (1998).
  • Yu H, Fehniger TA, Fuchshuber P et al. Flt3 ligand promotes the generation of a distinct CD34(+) human natural killer cell progenitor that responds to interleukin-15. Blood92(10), 3647–3657 (1998).
  • Carayol G, Giron-Michel J, Azzarone B et al. Altered natural killer cell differentiation in CD34+ progenitors from chronic myeloid leukemia patients. Oncogene19(23), 2758–2766 (2000).
  • Nakajima H, Zhao R, Lund TC et al. The BCR/ABL transgene causes abnormal NK cell differentiation and can be found in circulating NK cells of advanced phase chronic myelogenous leukemia patients. J. Immunol.168(2), 643–650 (2002).
  • Komatsu F, Moriyama K. Lymphokine-activated killer cells can discriminate CD34+ leukemia cells from normal hematopoietic progenitor cells. J. Hematother.5, 49–56 (1996).
  • Silla LM, Pincus SM, Locker JD et al. Generation of activated natural killer (A-NK) cells in patients with chronic myelogenous leukaemia and their role in the in vitro disappearance of BCR/abl-positive targets. Br. J. Haematol.93(2), 375–385 (1996).
  • Roger R, Issaad C, Pallardy M et al. BCR-ABL does not prevent apoptotic death induced by human natural killer or lymphokine-activated killer cells. Blood87(3), 1113–1122 (1996).
  • Baron F, Turhan AG, Giron-Michel J et al. Leukemic target susceptibility to natural killer cytotoxicity: relationship with BCR-ABL expression. Blood99(6), 2107–2113 (2002).
  • Burchert A, Cai D, Hofbauer LC et al. Interferon consensus sequence binding protein (ICSBP; IRF-8) antagonizes BCR/ABL and down-regulates bcl-2. Blood103(9), 3480–3489 (2004).
  • Tamura T, Kong HJ, Tunyaplin C, Tsujimura H, Calame K, Ozato K. ICSBP/IRF-8 inhibits mitogenic activity of p210 Bcr/Abl in differentiating myeloid progenitor cells. Blood102(13), 4547–4554 (2003).
  • Cebo C, Voutsadakis IA, Da Rocha S et al. Altered IFNgamma signaling and preserved susceptibility to activated natural killer cell-mediated lysis of BCR/ABL targets. Cancer Res.65(7), 2914–2920 (2005).
  • Schmidt M, Hochhaus A, Konig-Merediz SA et al. Expression of interferon regulatory factor 4 in chronic myeloid leukemia: correlation with response to interferon alfa therapy. J. Clin. Oncol.18, 3331–3338 (2000).
  • Schmidt M, Hochhaus A, Nitsche A, Hehlmann R, Neubauer A. Expression of nuclear transcription factor interferon consensus sequence binding protein in chronic myeloid leukemia correlates with pretreatment risk features and cytogenetic response to interferon-alpha. Blood97, 3648–3650 (2001).
  • Malmberg K, Levitsky V, Norell H et al. IFN-gamma protects short-term ovarian carcinoma cell lines from CTL lysis via a CD94/NKG2A-dependent mechanism. J. Clin. Invest.110(10), 1515–1523 (2002).
  • Molldrem JJ, Lee PP, Kant S et al. Chronic myelogenous leukemia shapes host immunity by selective deletion of high-avidity leukemia-specific T cells. J. Clin. Invest.111, 639–647 (2003).
  • Burchert A, Wolfl S, Schmidt M et al. Interferon-alpha, but not the ABL-kinase inhibitor imatinib (STI571), induces expression of myeloblastin and a specific T-cell response in chronic myeloid leukemia. Blood101, 259–264 (2003).
  • Cebo C, Da Rocha S, Wittnebel S et al. The decreased susceptibility of Bcr/Abl targets to NK cell-mediated lysis in response to imatinib mesylate involves modulation of nkg2d ligands, gm1 expression, and synapse formation. J. Immunol.176, 864–872 (2006).
  • Gasser S, Orsulic S, Brown EJ, Raulet DH. The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature436, 1186–1190 (2005).
  • Fernandez NC, Lozier A, Flament C et al. Dendritic cells directly trigger NK cell functions: cross-talk relevant in innate anti-tumor immune responses in vivo. Nat. Med.5, 405–411 (1999).
  • Valteau-Couanet D, Leboulaire C, Maincent K et al. Dendritic cells for NK/LAK activation: rationale for multicellular immunotherapy in neuroblastoma patients. Blood100, 2554–2561 (2002).
  • Ferlazzo G, Munz C. NK cell compartments and their activation by dendritic cells. J. Immunol.172, 1333–1339 (2004).
  • Zitvogel L. Dendritic and natural killer cells cooperate in the control/switch of innate immunity. J. Exp. Med.195, F9–F14 (2002).
  • Borg C, Jalil A, Laderach D et al. NK cell activation by dendritic cells (DCs) requires the formation of a synapse leading to IL-12 polarization in DCs. Blood104, 3267–3275 (2004).
  • Smit WM, Rijnbeek M, van Bergen CA et al. Generation of dendritic cells expressing bcr-abl from CD34-positive chronic myeloid leukemia precursor cells. Hum. Immunol.53, 216–223 (1997).
  • Dietz AB, Bulur PA, Erickson MR et al. Optimizing preparation of normal dendritic cells and bcr-abl+ mature dendritic cells derived from immunomagnetically purified CD14+ cells. J. Hematother. Stem Cell Res.9, 95–101 (2000).
  • Eisendle K, Wolf D, Gastl G, Kircher-Eibl B. Dendritic cells from patients with chronic myeloid leukemia: functional and phenotypic features. Leuk. Lymphoma46, 663–670 (2005).
  • Terme M, Borg C, Guilhot F et al. BCR/ABL promotes dendritic cell-mediated natural killer cell activation. Cancer Res.65, 6409–6417 (2005).
  • Dupont B, Hsu KC. Inhibitory killer Ig-like receptor genes and human leukocyte antigen class I ligands in haematopoietic stem cell transplantation. Curr. Opin. Immunol.16, 634–643 (2004).
  • Borg C, Terme M, Taieb J et al. Novel mode of action of c-kit tyrosine kinase inhibitors leading to NK cell-dependent antitumor effects. J. Clin. Invest.114, 379–388 (2004).
  • Taieb J, Maruyama K, Borg C, Terme M, Zitvogel L. Imatinib mesylate impairs Flt3L-mediated dendritic cell expansion and antitumor effects in vivo. Blood103, 1966–1967; author reply 1967 (2004).
  • Mortier E, Quemener A, Vusio P et al. Soluble interleukin-15 receptor alpha (IL-15R alpha)-sushi as a selective and potent agonist of IL-15 action through IL-15R beta/gamma. Hyperagonist IL-15 x IL-15R alpha fusion proteins. J. Biol. Chem.281, 1612–1619 (2006).
  • Giron-Michel J, Giuliani M, Fogli M et al. Membrane-bound and soluble IL-15/IL-15Rα complexes display differential signaling and functions on human hematopoietic progenitors. Blood106, 2302–2310 (2005).
  • Giron-Michel J, Caignard A, Fogli M et al. Differential STAT3, STAT5, and NF-kappaB activation in human hematopoietic progenitors by endogenous interleukin-15: implications in the expression of functional molecules. Blood102, 109–117 (2003).
  • Giron-Michel J, Fogli M, Gaggero A et al. Detection of a functional hybrid receptor gammac/GM-CSFRbeta in human hematopoietic CD34+ cells. J. Exp. Med.197, 763–775 (2003).
  • Carson WE, Fehniger TA, Haldar S et al. A potential role for interleukin-15 in the regulation of human natural killer cell survival. J. Clin. Invest.99, 937–943 (1997).
  • Ferlazzo G, Pack M, Thomas D et al. Distinct roles of IL-12 and IL-15 in human natural killer cell activation by dendritic cells from secondary lymphoid organs. Proc. Natl Acad. Sci. USA101, 16606–16611 (2004).
  • Alpdogan O, Eng JM, Muriglan SJ et al. Interleukin-15 enhances immune reconstitution after allogeneic bone marrow transplantation. Blood105, 865–873 (2005).
  • Passweg JR, Tichelli A, Meyer-Monard S et al. Purified donor NK-lymphocyte infusion to consolidate engraftment after haploidentical stem cell transplantation. Leukemia18, 1835–1838 (2004).
  • Passweg JR, Stern M, Koehl U, Uharek L, Tichelli A. Use of natural killer cells in hematopoetic stem cell transplantation. Bone Marrow Transplant.35, 637–643 (2005).
  • Miller JS, Soignier Y, Panoskaltsis-Mortari A et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood105, 3051–3057 (2005).
  • Aversa F, Tabilio A, Velardi A et al. Treatment of high-risk acute leukemia with T-cell-depleted stem cells from related donors with one fully mismatched HLA haplotype. N. Engl. J. Med.339, 1186–1193 (1998).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.