46
Views
6
CrossRef citations to date
0
Altmetric
Review

Influence of FOXP3 on CD4+CD25+ regulatory T cells

&
Pages 639-647 | Published online: 10 Jan 2014

References

  • Sakaguchi S, Sakaguchi N, Shimizu J et al. Immunologic tolerance maintained by CD25+ CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol. Rev.182, 18–32 (2001).
  • Sakaguchi S, Sakaguchi N. Thymus and autoimmunity: capacity of the normal thymus to produce pathogenic self-reactive T cells and conditions required for their induction of autoimmune disease. J. Exp. Med.172, 537–545 (1990).
  • Mottet C, Uhlig HH, Powrie F. Cutting edge: cure of colitis by CD4(+)CD25(+) regulatory T cells. J. Immunol.170, 3939–3943 (2003).
  • Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor α-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol.155, 1151–1164 (1995).
  • Shevach EM. CD4+ CD25+ suppressor T cells: more questions than answers. Nature Rev. Immunol.2, 389–400 (2002).
  • Baecher-Allan C, Brown JA, Freeman GJ, Hafler DA. CD4+CD25high regulatory cells in human peripheral blood. J. Immunol.167, 1245–1253 (2001).
  • Taams LS, Smith J, Rustin MH, Salmon M, Poulter LW, Akbar AN. Human anergic/suppressive CD4(+)CD25(+) T cells: a highly differentiated and apoptosis-prone population. Eur. J. Immunol.31, 1122–1131 (2001).
  • Taams LSM, Vukmanovic-Stejic, Smith J et al. Antigen-specific T cell suppression by human CD4+CD25+ regulatory T cells. Eur. J. Immunol.32, 1621–1630 (2002).
  • Ng WF, Duggan PJ, Ponchel F et al. Human CD4(+)CD25(+) cells: a naturally occurring population of regulatory T cells. Blood98, 2736–2744 (2001).
  • Tivol EA, Borriello F, Schweitzer AN, Lynch WP, Bluestone JA, Sharpe AH. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity3, 541–547 (1995).
  • Horak I, Lohler J, Ma A, Smith KA, Interleukin-2 deficient mice: a new model to study autoimmunity and self-tolerance. Immunol. Rev.148, 35–44 (1995).
  • Salomon B, Lenschow DJ, Rhee L et al. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity12, 431–440 (2000).
  • Lyon MF, Peters J, Glenister PH, Ball S, Wright E. The scurfy mouse mutant has previously unrecognized hematological abnormalities and resembles Wiskott-Aldrich syndrome. Proc. Natl Acad. Sci. USA87, 2433–2437 (1990).
  • Godfrey VL, Rouse BT, Wilkinson JE. Transplantation of T cell-mediated, lymphoreticular disease from the scurfy (sf) mouse. Am. J. Pathol.145, 281–286 (1994).
  • Fontenot JD, Gavin MA, Rudensky AY. FoxP3 programs the development and function of CD4+CD25+ regulatory T cells. Nature Immunol.4, 330–336 (2003).
  • Khattri R, Cox T, Yasayko SA, Ramsdell F. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nature Immunol.4, 337–342 (2003).
  • Schubert LA, Jeffery E, Zhang Y, Ramsdell F, Ziegler SF. Scurfin (FOXP3) acts as a repressor of transcription and regulates T cell activation. J. Biol. Chem.276, 37672–37679 (2001).
  • Waterhouse P, Penninger JM, Timms E et al. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4.Science270, 985–988 (1995).
  • Kanangat S, Blair P, Reddy R et al. Disease in the scurfy (sf) mouse is associated with overexpression of cytokine genes. Eur. J. Immunol.26, 161–165 (1996).
  • Clark LB, Appleby MW, Brunkow ME, Wilkinson JE, Ziegler SF, Ramsdell F. Cellular and molecular characterization of the scurfy mouse mutant. J. Immunol.162, 2546–2554 (1999).
  • Bettelli E, Dastrange M, Oukka M. FoxP3 interacts with nuclear factor of activated T cells and NF-κB to repress cytokine gene expression and effector functions of T helper cells. Proc. Natl Acad. Sci. USA102, 5138–5143 (2005).
  • Brunkow ME, Jeffery EW, Hjerrild KA et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nature Genet.27, 68–73 (2001).
  • Kaestner K, Knöchel W, Martinez D. Unified nomenclature for the winged-helix/forkhead transcription factors. Genes Dev.14, 142–146 (2000).
  • Kaufmann E, Knöchel W. Five years on the wings of fork head. Mech. Dev.57, 3–20 (1996).
  • Kaufmann E, Müller D, Knöchel W. DNA recognition site analysis of Xenopus winged helix proteins. J. Mol. Biol.248, 239–254 (1995).
  • Li C,Tucker PW. DNA-binding properties and secondary structural model of the hepatocyte nuclear factor 3/fork head domain. Proc. Natl Acad. Sci. USA90, 11583–11587 (1993).
  • Khattri R, Kasprowicz DJ, Cox T, S-Yasayko A, Ziegler SF, Ramsdell F. The amount of scurfin protein determines peripheral T cell number and responsiveness. J. Immunol.167, 6312–6320 (2001).
  • Kasprowicz DJ, Smallwood PS, Tyznik AJ, Ziegler SF. Scurfin (FoxP3) controls T-dependent immune responses in vivo through regulation of CD4+ T cell effector function. J. Immunol.171, 1216–1223 (2003).
  • Li S, Weidenfeld J, Morrisey EE. Transcriptional and DNA binding activity of the FoxP1/2/4 family is modulated by heterotypic and homotypic protein interactions. Mol. Cell Biol.24, 809–822 (2004).
  • Wan g B, Lin D, Li C, Tucker PW. Multiple domains define the expression and regulatory properties of FoxP1 forkhead transcriptional repressors. J. Biol. Chem.278, 24259–24268 (2003).
  • Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor FoxP3. Science299, 1057–1061 (2003).
  • Walker MR, Kasprowicz DJ, Gersuk VH et al. Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+. J. Clin. Invest.112, 1437–1443 (2003).
  • Suri-Payer E, Amar AZ, Thornton AM, Shevach EM. CD4+CD25+ T cells inhibit both the induction and effector function of autoreactive T cells and represent a unique lineage of immunoregulatory cells. J. Immunol.160, 1212–1218 (1998).
  • Fontenot JD, Rasmussen JP, Williams LM, Dooley JL, Farr AG, Rudensky AY. Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity22, 329–341 (2005).
  • Wan YY, Flavell RA. Identifying FoxP3-expressing suppressor T cells with a bicistronic reporter. Proc. Natl Acad. Sci. USA102, 5126–5131 (2005).
  • Kohm AP, Carpentier PA, Anger HA, Miller SD. Cutting edge: CD4+CD25+ regulatory T cells suppress antigen-specific autoreactive immune responses and central nervous system inflammation during active experimental autoimmune encephalomyelitis. J. Immunol.169, 4712–4716 (2002).
  • Wraith DC, Nicolson KS, Whitely NT. Regulatory CD4+ T cells and the control of autoimmune disease. Curr. Opin. Immunol.16, 695–701 (2004).
  • Tang Q, Henriksen KJ, Bi M et al. In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes. J. Exp. Med.199, 1455–1465 (2004).
  • Chai JG, Xue SA, Coe D et al. Regulatory T cells, derived from naive CD4+CD25- T cells by in vitro FoxP3 gene transfer, can induce transplantation tolerance. Transplantation79, 1310–1316 (2005).
  • Jaeckel E, von Boehmer H, Manns MP. Antigen-specific FoxP3-transduced T-cells can control established type 1 diabetes. Diabetes54, 306–310 (2005).
  • Lundsgaard D, Holm TL, Hornum L, Markholst H. In vivo control of diabetogenic T-cells by regulatory CD4+CD25+ T-cells expressing FoxP3. Diabetes54, 1040–1047 (2005).
  • Kasprowicz DJ, Droin N, Soper DM, Ramsdell F, Green DR, Ziegler SF. Dynamic regulation of FoxP3 expression controls the balance between CD4(+) T cell activation and cell death. Eur. J. Immunol.35, 3424–3432 (2005).
  • Wildin RS, Smyk-Pearson S, Filipovich AH. Clinical and molecular features of the immunodysregulation, polyendocrinopathy, enteropathy, X linked (IPEX) syndrome. J. Med. Genet.39, 537–545 (2002).
  • Sakaguchi S, Fukuma K, Kuribayashi K, Masuda T. Organ-specific autoimmune diseases induced in mice by elimination of T cell subset. I. Evidence for the active participation of T cells in natural self-tolerance; deficit of a T cell subset as a possible cause of autoimmune disease. J. Exp. Med.161, 72–87 (1985).
  • Apostolou I, Von Boehmer H. In vivo instruction of suppressor commitment in naive T cells. J. Exp. Med.199, 1401–1408 (2004).
  • Knoechel B, Lohr J, Kahn E, Bluestone JA, Abbas AK. Sequential development of interleukin 2-dependent effector and regulatory T cells in response to endogenous systemic antigen. J. Exp. Med.202, 1375–1386 (2005).
  • Suto A, Nakajima H, Ikeda K et al. CD4(+)CD25(+) T-cell development is regulated by at least 2 distinct mechanisms. Blood99, 555–560 (2002).
  • Thorstenson KM, Khoruts A. Generation of anergic and potentially immunoregulatory CD25+CD4 T cells in vivo after induction of peripheral tolerance with intravenous or oral antigen. J. Immunol.167, 188–195 (2001).
  • Piccirillo CA, Letterio JJ, Thornton AM et al. CD4(+)CD25(+) regulatory T cells can mediate suppressor function in the absence of transforming growth factor beta1 production and responsiveness. J. Exp. Med.196, 237–246 (2002).
  • Grundstrom S, Cederbom L, Sundstedt A, Scheipers P, Ivars F. Superantigen-induced regulatory T cells display different suppressive functions in the presence or absence of natural CD4(+)CD25(+) regulatory T cells in vivo. J. Immunol.170, 5008–5017 (2003).
  • Duthoit CT, Nguyen P, Geiger TL. Antigen nonspecific suppression of T cell responses by activated stimulation-refractory CD4(+) T cells. J. Immunol.172, 2238–2246 (2004).
  • Zheng SG, Gray JD, Ohtsuka K, Yamagiwa S, Horwitz DA. Generation ex vivo of TGF-β-producing regulatory T cells from CD4+CD25- precursors. J. Immunol.169, 4183–4189 (2002).
  • Chen W, Jin W, Hardegen N et al. Conversion of peripheral CD4+. J. Exp. Med.198, 1875–1886 (2003).
  • Kemper C, Chan AC, Green JM, Brett KA, Murphy KM, Atkinson JP. Activation of human CD4+ cells with CD3 and CD46 induces a T-regulatory cell 1 phenotype. Nature421, 388–392 (2003).
  • Steinbrink K, Graulich E, Kubsch S, Knop J, Enk AH. CD4(+) and CD8(+) anergic T cells induced by interleukin-10-treated human dendritic cells display antigen-specific suppressor activity. Blood99, 2468–2476 (2002).
  • Verhasselt V, Vosters O, Beuneu C, Nicaise C, Stordeur P, Goldman M. Induction of FOXP3-expressing regulatory CD4+ T cells by human mature autologous dendritic cells. Eur. J. Immunol.34, 762–772 (2004).
  • Walker MR, Carson BD, Nepom GT, Ziegler SF, Buckner JH. De novo generation of antigen-specific CD4+CD25+ regulatory T cells from human CD4+. Proc. Natl Acad. Sci. USA102, 4103–4108 (2005).
  • Masuyama J, Kaga S, Kano S, Minota S. A novel costimulation pathway via the 4C8 antigen for the induction of CD4+ regulatory T cells. J. Immunol.169, 3710–3716 (2002).
  • Aandahl EM, Michaelsson J, Moretto WJ, Hecht FM, Nixon DF. Human CD4+ CD25+ regulatory T cells control T-cell responses to human immunodeficiency virus and cytomegalovirus antigens. J. Virol.78, 2454–2459 (2004).
  • Skapenko A, Kalden JR, Lipsky PE, Schulze-Koops H. The IL-4 receptor α-chain-binding cytokines, IL-4 and IL-13, induce forkhead box P3-expressing CD25+CD4+ regulatory T cells from CD25-CD4+ precursors. J. Immunol.175, 6107–6116 (2005).
  • D’Cruz LM, Klein L. Development and function of agonist-induced CD25+FoxP3+ regulatory T cells in the absence of interleukin 2 signaling. Nature Immunol.6, 1152–1159 (2005).
  • Fontenot JD, Rasmussen JP, Gavin MA, Rudensky AY. A function for interleukin 2 in FoxP3-expressing regulatory T cells. Nature Immunol.6, 1142–1151 (2005).
  • Sutmuller RP, den Brok MH, Kramer M et al. Toll-like receptor 2 controls expansion and function of regulatory T cells. J. Clin. Invest.116, 485–494 (2006).
  • Stock P, Akbari O, Berry G, Freeman GJ, DeKruyff RH, Umetsu DT. Induction of T helper type 1-like regulatory cells that express FoxP3 and protect against airway hyper-reactivity. Nature Immunol.5, 1149–1156 (2004).
  • Veldman C, Pahl A, Beissert S et al. Inhibition of the transcription factor FoxP3 converts desmoglein 3-specific type 1 regulatory T cells into Th2-like cells. J. Immunol.176, 3215–3222 (2006).
  • Herold KC, Gitelman SE, Masharani U et al. A single course of anti-CD3 monoclonal antibody hOKT3gamma1 (Ala-Ala) results in improvement in C-peptide responses and clinical parameters for at least 2 years after onset of type 1 diabetes. Diabetes54, 1763–1769 (2005).
  • Jarvis LB, Matyszak MK, Duggleby RC, Goodall JC, Hall FC, Gaston JS. Autoreactive human peripheral blood CD8+ T cells with a regulatory phenotype and function. Eur. J. Immunol.35, 2896–2908 (2005).
  • Roncador G, Brown PJ, Maestre L et al. Analysis of FOXP3 protein expression in human CD4(+)CD25(+) regulatory T cells at the single-cell level. Eur. J. Immunol.35, 1681–1691 (2005).
  • Dejaco C, Duftner C, Schirmer M. Analysis of FOXP3 protein expression in human CD4(+)CD25(+) regulatory T cells at the single-cell level. Eur. J. Immunol.36, 245–246 (2006).
  • Mantel PY, Ouaked N, Ruckert B et al. Molecular mechanisms underlying FOXP3 induction in human T cells. J. Immunol.176, 3593–3602 (2006).
  • Miyara M, Amoura Z, Parizot C et al. The immune paradox of sarcoidosis and regulatory T cells. J. Exp. Med.203, 359–370 (2006).
  • Maul J, Loddenkemper C, Mundt P et al. Peripheral and intestinal regulatory CD4+ CD25(high) T cells in inflammatory bowel disease. Gastroenterology128, 1868–1878 (2005).
  • Rieger K, Loddenkemper C, Maul J et al. Mucosal FOXP3+ regulatory T cells are numerically deficient in acute and chronic GvHD. Blood107, 1717–1723 (2006).
  • Lan RY, Cheng C, Lian ZX et al. Liver-targeted and peripheral blood alterations of regulatory T cells in primary biliary cirrhosis. Hepatology43, 729–737 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.