61
Views
7
CrossRef citations to date
0
Altmetric
Review

Lipoxygenase and prostaglandin G/H synthase cascades in cardiovascular disease

, , , , , & show all
Pages 649-658 | Published online: 10 Jan 2014

References

  • Funk CD. Prostaglandins and leukotrienes: advances in eicosanoid biology. Science294(5548), 1871–1875 (2001).
  • Brash A. Lipoxygenases: occurrence, functions, catalysis, and acquisition of substrate. J. Biol. Chem.274(34), 23679–23682 (1999).
  • FitzGerald GA. COX-2 and beyond: Approaches to prostaglandin inhibition in human disease. Nat. Rev. Drug Discov.2(11), 879–890 (2003).
  • Funk CD. The molecular biology of mammalian lipoxygenases and the quest for eicosanoid functions using lipoxygenase-deficient mice. Biochim. Biophys. Acta.1304(1), 65–84 (1996).
  • Yamamoto S. “Enzymatic” lipid peroxidation: reactions of mammalian lipoxygenases. Free Radic. Biol. Med.10(2), 149–159 (1991).
  • Samuelsson B. Leukotrienes: mediators of immediate hypersensitivity reactions and inflammation. Science220(4597), 568–575 (1983).
  • Kramer RM, Sharp JD. Structure, function and regulation of Ca2+-sensitive cytosolic phospholipase A2 (cPLA2). FEBS Lett.410(1), 49–53 (1997).
  • Lin LL, Wartmann M, Lin AY et al. cPLA2 is phosphorylated and activated by MAP kinase. Cell72(2), 269–278 (1993).
  • Nicotra A, Lupo G, Giurdanella G. MAPKs mediate the activation of cytosolic phospholipase A2 by amyloid β (25–35) peptide in bovine retina pericytes. Biochim. Biophys. Acta.1733(2–3), 172–186 (2005).
  • Yokomizo T, Izumi T, Chang K et al. A G-protein-coupled receptor for leukotriene B4 that mediates chemotaxis. Nature387, 620–624 (1997).
  • Yokomizo T, Kato K, Terawaki K et al. A second leukotriene B(4) receptor, BLT2. A new therapeutic target in inflammation and immunological disorders. J. Exp. Med.192, 421–432 (2000).
  • Heise CE, O'Dowd BF, Figueroa DJ et al. Characterization of the human cysteinyl leukotriene 2 receptor. J. Biol. Chem.275, 30531–30536 (2000).
  • Lynch KR, O'Neill GP, Liu Q et al. Characterization of the human cysteinyl leukotriene CysLT1 receptor. Nature399, 789–793 (1999).
  • Hui Y, Yang G, Galczenski H et al. The murine cysteinyl leukotriene 2 (CysLT2) receptor. cDNA and genomic cloning, alternative splicing, and in vitro characterization. J. Biol. Chem.276(50), 47489–47495 (2001).
  • Goodarzi K, Goodarzi M, Tager AM et al. Leukotriene B4 and BLT1 control cytotoxic effector T cell recruitment to inflamed tissues. Nat. Immunol.4, 965–973 (2003).
  • Ott VL, Cambier JC, Kappler J et al. Mast cell-dependent migration of effector CD8+ T cells through production of leukotriene B4. Nat. Immunol.4, 974–981 (2003).
  • Tager AM, Bromley SK, Medoff BD et al. Leukotriene B4 receptor BLT1 mediates early effector T cell recruitment. Nat. Immunol.4, 982–990 (2003).
  • Yang G, Haczku A, Chen H et al. Transgenic smooth muscle expression of the human CysLT1 receptor induces enhanced responsiveness of murine airways to leukotriene D4. Am. J. Physiol. Lung. Cell Mol. Physiol.286(5), L992–L1001 (2004).
  • Hui Y, Cheng Y, Smalera I et al. Directed vascular expression of human cysteinyl leukotriene 2 receptor modulates endothelial permeability and systemic blood pressure. Circulation110(21), 3360–3366 (2004).
  • Smith WL, Dewitt DL, Garavito RM. Cyclooxygenases: structural, cellular, and molecular biology. Annu. Rev. Biochem.69, 145–182 (2000).
  • Malkowski MG, Ginell SL, Smith WL, Garavito RM. The productive conformation of arachidonic acid bound to prostaglandin synthase. Science289, 1933–1937 (2000).
  • Kulmacz RJ, van der Donk WA, Tsai AL. Comparison of the properties of prostaglandin H synthase-1 and -2. Prog. Lipid Res.42(5), 377–404 (2003).
  • Grosser T, Fries F, FitzGerald GA. Biological basis for the cardiovascular consequences of COX-2 inhibition: therapeutic challenges and opportunities. J. Clin. Invest.116(1), 4–15 (2006).
  • Patrono C, Garcia Rodriguez LA, Landolfi R et al. Low-dose aspirin for the prevention of atherothrombosis. N. Engl. J. Med.353(22), 2373–2383 (2005).
  • FitzGerald GA, Patrono C. The coxibs, selective inhibitors of cyclooxygenase-2. N. Engl. J. Med.345(6), 433–442 (2001).
  • Topper JN, Cai J, Falb D et al. Identification of vascular endothelial genes differentially responsive to fluid mechanical stimuli: cyclooxygenase-2, manganese superoxide dismutase, and endothelial cell nitric oxide synthase are selectively up-regulated by steady laminar shear stress. Proc. Natl Acad. Sci. USA93, 10417–10422 (1996).
  • Grosser T, Yusuff S, Cheskis E et al. Developmental expression of functional cyclooxygenases in zebrafish. Proc. Natl Acad. Sci. USA99, 8418–8423 (2002).
  • Matsuoka T, Hirata M, Tanaka H et al. Prostaglandin D2 as a mediator of allergic asthma. Science287, 2013–2017 (2000).
  • Hirai H, Tanaka K, Yoshie O et al. Prostaglandin D2 selectively induces chemotaxis in T helper type 2 cells, eosinophils, and basophils via seven-transmembrane receptor CRTH2. J. Exp. Med.193, 255–261 (2001).
  • Ushikubi F, Segi E, Sugimoto Y et al. Impaired febrile response in mice lacking the prostaglandin E receptor subtype EP3. Nature395, 281–284 (1998).
  • Namba T, Oida H, Sugimoto Y et al. cDNA cloning of a mouse prostacyclin receptor. Multiple signaling pathways and expression in thymic medulla. J. Biol. Chem.269(13), 9986–9992 (1994).
  • Raychowdhury MK, Yukawa M, Collins LJ et al. Alternative splicing produces a divergent cytoplasmic tail in the human endothelial thromboxane A2 receptor. J. Biol. Chem.269, 19256–19261 (1994).
  • Abramovitz M, Boie Y, Nguyen T. Cloning and expression of a cDNA for the human prostanoid FP receptor. J. Biol. Chem.269(4), 2632–2636 (1994).
  • Ross R. Atherosclerosis – an inflammatory disease. N. Engl. J. Med.340(2), 115–126 (1999).
  • Glass CK, Witztum JL. Atherosclerosis: the road ahead. Cell104(4), 503–516 (2001).
  • Libby P. Inflammation in atherosclerosis. Nature420(6917), 868–874 (2002).
  • Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation105(9), 1135–1143 (2002).
  • Steinberg D. Atherogenesis in perspective: hypercholesterolemia and inflammation as partners in crime. Nat. Med.8(11), 1211–1217 (2002).
  • Zhao L, Funk CD. Lipoxygenase pathways in atherogenesis. Trends Cardiovasc. Med.14(5), 191–195 (2004).
  • Funk CD, Cyrus T. 12/15-lipoxygenase, oxidative modification of LDL and atherogenesis. Trends Cardiovasc. Med.11(3–4), 116–124 (2001).
  • Yla-Herttuala S, Rosenfeld ME, Parthasarathy S et al. Colocalization of 15-lipoxygenase mRNA and protein with epitopes of oxidized low density lipoprotein in macrophage-rich areas of atherosclerotic lesions. Proc. Natl Acad. Sci. USA87(18), 6959–6963 (1990).
  • Yla-Herttuala S, Rosenfeld ME, Parthasarathy S et al. Gene expression in macrophage-rich human atherosclerotic lesions. 15-lipoxygenase and acetyl low density lipoprotein receptor messenger RNA colocalize with oxidation specific lipid-protein adducts. J. Clin. Invest.87(4), 1146–1152 (1991).
  • Kuhn H, Heydeck D, Hugou I et al.In vivo action of 15-lipoxygenase in early stages of human atherogenesis. J. Clin. Invest.99(5), 888–893 (1997).
  • Rydberg EK, Krettek A, Ullstrom C. Hypoxia increases LDL oxidation and expression of 15-lipoxygenase-2 in human macrophages. Arterioscler. Thromb. Vasc. Biol.24(11), 2040–2045 (2004).
  • Spanbroek R, Grabner R, Lotzer K, et al. Expanding expression of the 5-lipoxygenase pathway within the arterial wall during human atherogenesis. Proc. Natl Acad. Sci. USA100(3), 1238–1243 (2003).
  • Cyrus T, Witztum JL, Rader DJ et al. Disruption of the 12/15-lipoxygenase gene diminishes atherosclerosis in apo E-deficient mice. J. Clin. Invest.103(11), 1597–1604 (1999).
  • Cyrus T, Pratico D, Zhao L et al. Absence of 12/15-lipoxygenase expression decreases lipid peroxidation and atherogenesis in apolipoprotein e-deficient mice. Circulation103(18), 2277–2282 (2001).
  • George J, Afek A, Shaish A et al. 12/15-lipoxygenase gene disruption attenuates atherogenesis in LDL receptor-deficient mice. Circulation104(14), 1646–1650 (2001).
  • Zhao L, Cuff CA, Moss E et al. Selective interleukin-12 synthesis defect in 12/15-lipoxygenase-deficient macrophages associated with reduced atherosclerosis in a mouse model of familial hypercholesterolemia. J. Biol. Chem.277(38), 35350–35356 (2002).
  • Zhao L, Pratico D, Rader DJ et al. 12/15-Lipoxygenase gene disruption and Vitamin E administration diminish atherosclerosis and oxidative stress in apolipoprotein E deficient mice through a final common pathway. Prostaglandins Other Lipid Mediat.78(1–4), 185–193 (2005).
  • Huo Y, Zhao L, Hyman MC et al. Critical role of macrophage 12/15-lipoxygenase for atherosclerosis in apolipoprotein E-deficient mice. Circulation110(14), 2024–2031 (2004).
  • Reilly KB, Srinivasan S, Hatley ME et al. 12/15-Lipoxygenase activity mediates inflammatory monocyte/endothelial interactions and atherosclerosis in vivo. J. Biol. Chem.279(10), 9440–9450 (2004).
  • Harats D, Shaish A, George J et al. Overexpression of 15-lipoxygenase in vascular endothelium accelerates early atherosclerosis in LDL receptor-deficient mice. Arterioscler. Thromb. Vasc. Biol.20(9), 2100–2105 (2000).
  • Cai Q, Lanting L, Natarajan R. Interaction of monocytes with vascular smooth muscle cells regulates monocyte survival and differentiation through distinct pathways. Arterioscler. Thromb. Vasc. Biol.24, 2263–2270 (2004).
  • Cai Q, Lanting L, Natarajan R. Growth factors induce monocyte binding to vascular smooth muscle cells: implications for monocyte retention in atherosclerosis. Am. J. Physiol. Cell Physiol.287, C707–C714 (2004).
  • Hatley ME, Srinivasan S, Reilly KB et al. Increased production of 12/15 lipoxygenase eicosanoids accelerates monocyte/endothelial interactions in diabetic db/db mice. J. Biol. Chem.278(28), 25369–25375 (2003).
  • Bolick DT, Orr AW, Whetzel A et al. 12/15-lipoxygenase regulates intercellular adhesion molecule-1 expression and monocyte adhesion to endothelium through activation of RhoA and nuclear factor-κB. Arterioscler. Thromb. Vasc. Biol.25(11), 2301–2307 (2005).
  • Natarajan R, Gerrity RG, Gu JL et al. Role of 12-lipoxygenase and oxidant stress in hyperglycaemia-induced acceleration of atherosclerosis in a diabetic pig model. Diabetologia45(1), 125–133 (2002).
  • Natarajan R, Pei H, Gu JL et al. Evidence for 12-lipoxygenase induction in the vessel wall following balloon injury. Cardiovasc. Res.41(2), 489–499 (1999).
  • Gu JL, Pei H, Thomas L et al. Ribozyme-mediated inhibition of rat leukocyte-type 12-lipoxygenase prevents intimal hyperplasia in balloon-injured rat carotid arteries. Circulation103(10), 1446–1452 (2001).
  • Sendobry SM, Cornicelli JA, Welch K et al. Attenuation of diet-induced atherosclerosis in rabbits with a highly selective 15-lipoxygenase inhibitor lacking significant antioxidant properties. Br. J. Pharmacol.120(7), 1199–1206 (1997).
  • Bocan TM, Rosebury WS, Mueller SB et al. A specific 15-lipoxygenase inhibitor limits the progression and monocyte-macrophage enrichment of hypercholesterolemia-induced atherosclerosis in the rabbit. Atherosclerosis136(2), 203–216 (1998).
  • Shen J, Herderick E, Cornhill JF et al. Macrophage-mediated 15-lipoxygenase expression protects against atherosclerosis development. J. Clin. Invest.98(10), 2201–2208 (1996).
  • Mehrabian M, Wong J, Wang X et al. Genetic locus in mice that blocks development of atherosclerosis despite extreme hyperlipidemia. Circ. Res.89(2), 125–130 (2001).
  • Welch CL, Bretschger S, Latib N et al. Localization of atherosclerosis susceptibility loci to chromosomes 4 and 6 using the Ldlr knockout mouse model. Proc. Natl Acad. Sci. USA98(14), 7946–7951 (2001).
  • Mehrabian M, Allayee H, Wong J et al. Identification of 5-lipoxygenase as a major gene contributing to atherosclerosis susceptibility in mice. Circ. Res.91(2), 120–126 (2002).
  • Zhao L, Moos MP, Grabner R et al. The 5-lipoxygenase pathway promotes pathogenesis of hyperlipidemia-dependent aortic aneurysm. Nat. Med.10(9), 966–973 (2004).
  • Subbarao K, Jala VR, Mathis S et al. Role of leukotriene B4 receptors in the development of atherosclerosis: potential mechanisms. Arterioscler. Thromb. Vasc. Biol.24(2), 369–375 (2004).
  • Aiello RJ, Bourassa PA, Lindsey S et al. Leukotriene B4 receptor antagonism reduces monocytic foam cells in mice. Arterioscler. Thromb. Vasc. Biol.22(3), 443–449 (2002).
  • Heller EA, Liu E, Tager AM et al. Inhibition of atherogenesis in BLT1-deficient mice reveals a role for LTB4 and BLT1 in smooth muscle cell recruitment. Circulation112(4), 578–586 (2005).
  • Yajima N, Masuda M, Miyazaki M et al. Oxidative stress is involved in the development of experimental abdominal aortic aneurysm: a study of the transcription profile with complementary DNA microarray. J. Vasc. Surg.36(2), 379–385 (2002).
  • De Caterina R, Mazzone A, Giannessi D et al. Leukotriene B4 production in human atherosclerotic plaques. Biomed Biochim Acta.47(10–11), S182–S185 (1988).
  • Patrignani P, Daffonchio L, Hernandez A et al. Release of contracting autacoids by aortae of normal and atherosclerotic rabbits. J. Cardiovasc. Pharmacol.20(S12), S208–S210 (1992).
  • Dwyer JH, Allayee H, Dwyer KM et al. Arachidonate 5-lipoxygenase promoter genotype, dietary arachidonic acid, and atherosclerosis. N. Engl. J. Med.350(1), 29–37 (2004).
  • Mehrabian M, Allayee H, Stockton J et al. Integrating genotypic and expression data in a segregating mouse population to identify 5-lipoxygenase as a susceptibility gene for obesity and bone traits. Nat. Genet.37(11), 1224–1233 (2005).
  • Helgadottir A, Manolescu A, Thorleifsson G et al. The gene encoding 5-lipoxygenase activating protein confers risk of myocardial infarction and stroke. Nat. Genet.36(3), 233–239 (2004).
  • Helgadottir A, Gretarsdottir S, St Clair D et al. Association between the gene encoding 5-lipoxygenase-activating protein and stroke replicated in a Scottish population. Am. J. Hum. Genet.76(3), 505–509 (2005).
  • Lohmussaar E, Gschwendtner A, Mueller JC et al. ALOX5AP gene and the PDE4D gene in a central European population of stroke patients. Stroke36(4), 731–736 (2005).
  • Kedda MA, Worsley P, Shi J et al. Polymorphisms in the 5-lipoxygenase activating protein (ALOX5AP) gene are not associated with asthma in an Australian population. Clin. Exp. Allergy.35(3), 332–338 (2005).
  • Kajimoto K, Shioji K, Ishida C et al. Validation of the association between the gene encoding 5-lipoxygenase-activating protein and myocardial infarction in a Japanese population. Circ. J.69(9), 1029–1034 (2005).
  • Meschia JF, Brott TG, Brown RD Jr et al. Phosphodiesterase 4D and 5-lipoxygenase activating protein in ischemic stroke. Ann. Neurol.58(3), 351–361 (2005).
  • Cipollone F, Mezzetti A, Fazia ML et al. Association between 5-lipoxygenase expression and plaque instability in humans. Arterioscler Thromb Vasc Biol.25(8), 1665–1670 (2005).
  • Hakonarson H, Thorvaldsson S, Helgadottir A et al. Effects of a 5-lipoxygenase-activating protein inhibitor on biomarkers associated with risk of myocardial infarction: a randomized trial. JAMA293(18), 2245–2256 (2005).
  • Pratico D, Cyrus T, Zhang ZB et al. Acceleration of atherogenesis by COX-1-dependent prostanoid formation in low density lipoprotein receptor knockout mice. Proc. Natl Acad. Sci. USA98(6), 3358–3363 (2001).
  • Belton OA, Duffy A, Toomey S et al. Cyclooxygenase isoforms and platelet vessel wall interactions in the apolipoprotein E knockout mouse model of atherosclerosis. Circulation108(24), 3017–3023 (2003).
  • Egan KM, Wang M, Fries S et al. Cyclooxygenases, thromboxane, and atherosclerosis: plaque destabilization by cyclooxygenase-2 inhibition combined with thromboxane receptor antagonism. Circulation111(3), 334–342 (2005).
  • Kobayashi T, Tahara Y, Matsumoto M et al. Roles of thromboxane A(2) and prostacyclin in the development of atherosclerosis in apoE-deficient mice. J. Clin. Invest.114(6), 784–794 (2004).
  • Worth NF, Berry CL, Thomas AC et al. S18886, a selective TP receptor antagonist, inhibits development of atherosclerosis in rabbits. Atherosclerosis183(1), 65–73 (2005).
  • Cheng Y, Austin SC, Rocca B et al. Role of prostacyclin in the cardiovascular response to thromboxane A2. Science296(5567), 539–541 (2002).
  • Morham SG, Langenbach R, Loftin CD et al. Prostaglandin synthase 2 gene disruption causes severe renal pathology in the mouse. Cell83(3), 473–482 (1995).
  • Loftin CD, Trivedi DB, Tiano HF et al. Failure of ductus arteriosus closure and remodeling in neonatal mice deficient in cyclooxygenase-1 and cyclooxygenase-2. Proc. Natl Acad. Sci. USA98(3), 1059–1064 (2001).
  • Grosser T, Fries S, FitzGerald GA. Cycloxygenase inhibition and blood pressure regulation. In: Advanced Therapy in Hypertension and Vascular Disease. Mohler ER, Townsend RR (Eds), B.C. Decker Hamilton, Ontario, Canada, 492–501 (2006).
  • Burleigh ME, Babaev VR, Oates JA et al. Cyclooxygenase-2 promotes early atherosclerotic lesion formation in LDL receptor-deficient mice. Circulation105(15), 1816–1823 (2002).
  • Burleigh ME, Babaev VR, Yancey PG et al. Cyclooxygenase-2 promotes early atherosclerotic lesion formation in ApoE-deficient and C57BL/6 mice. J. Mol. Cell. Cardiol.39(3), 443–452 (2005).
  • Rott D, Zhu J, Burnett MS et al. Effects of MF-tricyclic, a selective cyclooxygenase-2 inhibitor, on atherosclerosis progression and susceptibility to cytomegalovirus replication in apolipoprotein-E knockout mice. J. Am. Coll. Cardiol.41(10), 1812–1819 (2003).
  • Olesen M, Kwong E, Meztli A et al. No effect of cyclooxygenase inhibition on plaque size in atherosclerosis-prone mice. Scand. Cardiovasc. J.36(6), 362–367 (2002).
  • Egan KM, Lawson JA, Fries S et al. COX-2-derived prostacyclin confers atheroprotection on female mice. Science306(5703), 1954–1957 (2004).
  • Bresalier RS, Sandler RS, Quan H et al. Cardiovascular events associated with rofecoxib in a colorectal adenoma chemoprevention trial. N. Engl. J. Med.352, 1092–1102 (2005).
  • Solomon SD, McMurray JJ, Pfeffer MA et al. Cardiovascular risk associated with celecoxib in a clinical trial for colorectal adenoma prevention. N. Engl. J. Med.352, 1071–1080 (2005).
  • Kipshidze N, Leon MB, Tsapenko M et al. Update on sirolimus drug-eluting stents. Curr Pharm Des.10(4), 337–348 (2004).
  • Morice MC, Serruys PW, Sousa JE et al. A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization. N. Engl. J. Med.346(23), 1773–1780 (2002).
  • Ong AT, Serruys PW. Technology insight: an overview of research in drug-eluting stents. Nat. Clin. Pract. Cardiovasc. Med.2(12), 647–658 (2005).
  • Costa MA, Simon DI. Molecular basis of restenosis and drug-eluting stents. Circulation111(17), 2257–2273 (2005).
  • Moses JW, Leon MB, Popma JJ et al. SIRIUS Investigators. Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. N. Engl. J. Med.349(14), 1315–1323 (2003).
  • Attur MG, Patel R, Thakker G et al. Differential anti-inflammatory effects of immunosuppressive drugs: cyclosporine, rapamycin, and FK-506 on inducible nitrix oxide synthase, nitric oxide, cyclooxygenase-2 and PGE2 production. Inflamm. Res.49(1), 20–26 (2000).
  • Hocherl K, Hensel C, Ulbricht B et al. Everolimus treatment downregulates renocortical cyclooxygenase-2 expression in the rat kidney. Br. J. Pharmacol.145(8), 1112–1122 (2005).
  • Bhatt DL, Topol EJ. Need to test the arterial inflammation hypothesis. Circulation106(1), 136–140 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.