568
Views
23
CrossRef citations to date
0
Altmetric
Review

Current understanding of the pathogenesis of granulomatosis with polyangiitis (Wegener’s)

&
Pages 641-648 | Published online: 10 Jan 2014

References

  • Holle JU, Gross WL, Holl-Ulrich K et al. Prospective long-term follow-up of patients with localised Wegener’s granulomatosis: does it occur as persistent disease stage? Ann. Rheum. Dis. 69(11), 1934–1939 (2010).
  • Wieczorek S, Holle JU, Epplen JT. Recent progress in the genetics of Wegener’s granulomatosis and Churg-Strauss syndrome. Curr. Opin. Rheumatol. 22(1), 8–14 (2010).
  • Knight A, Sandin S, Askling J. Risks and relative risks of Wegener’s granulomatosis among close relatives of patients with the disease. Arthritis Rheum. 58(1), 302–307 (2008).
  • Arning L, Holle JU, Harper L et al. Are there specific genetic risk factors for the different forms of ANCA-associated vasculitis? Ann. Rheum. Dis. 70(4), 707–708 (2011).
  • Lyons PA, Rayner TF, Trivedi S et al. Genetically distinct subsets within ANCA-associated vasculitis. N. Engl. J. Med. 367(3), 214–223 (2012).
  • McKinney EF, Lyons PA, Carr EJ et al. A CD8+ T cell transcription signature predicts prognosis in autoimmune disease. Nat. Med. 16(5), 586–591 (2010).
  • Ntatsaki E, Watts RA, Scott DG. Epidemiology of ANCA-associated vasculitis. Rheum. Dis. Clin. North Am. 36(3), 447–461 (2010).
  • Hogan SL, Cooper GS, Savitz DA et al. Association of silica exposure with anti-neutrophil cytoplasmic autoantibody small-vessel vasculitis: a population-based, case–control study. Clin. J. Am. Soc. Nephrol. 2(2), 290–299 (2007).
  • Csernok E, Lamprecht P, Gross WL. Clinical and immunological features of drug-induced and infection-induced proteinase 3-antineutrophil cytoplasmic antibodies and myeloperoxidase-antineutrophil cytoplasmic antibodies and vasculitis. Curr. Opin. Rheumatol. 22(1), 43–48 (2010).
  • Stegeman CA, Tervaert JW, Sluiter WJ, Manson WL, de Jong PE, Kallenberg CG. Association of chronic nasal carriage of Staphylococcus aureus and higher relapse rates in Wegener granulomatosis. Ann. Intern. Med. 120(1), 12–17 (1994).
  • Laudien M, Gadola SD, Podschun R et al. Nasal carriage of Staphylococcus aureus and endonasal activity in Wegener s granulomatosis as compared to rheumatoid arthritis and chronic rhinosinusitis with nasal polyps. Clin. Exp. Rheumatol. 28(1 Suppl. 57), 51–55 (2010).
  • Yang JJ, Pendergraft WF, Alcorta DA et al. Circumvention of normal constraints on granule protein gene expression in peripheral blood neutrophils and monocytes of patients with antineutrophil cytoplasmic autoantibody-associated glomerulonephritis. J. Am. Soc. Nephrol. 15(8), 2103–2114 (2004).
  • Ohlsson S, Hellmark T, Pieters K, Sturfelt G, Wieslander J, Segelmark M. Increased monocyte transcription of the proteinase 3 gene in small vessel vasculitis. Clin. Exp. Immunol. 141(1), 174–182 (2005).
  • Ciavatta DJ, Yang J, Preston GA et al. Epigenetic basis for aberrant upregulation of autoantigen genes in humans with ANCA vasculitis. J. Clin. Invest. 120(9), 3209–3219 (2010).
  • Holl-Ulrich K. Histopathology of systemic vasculitis. Pathologe 31(1), 67–76 (2010).
  • Lamprecht P, Csernok E, Gross WL. Effector memory T cells as driving force of granuloma formation and autoimmunity in Wegener’s granulomatosis. J. Intern. Med. 260(3), 187–191 (2006).
  • Gadola SD, Gross WL. Vasculitis in 2011: the renaissance of granulomatous inflammation in AAV. Nat. Rev. Rheumatol. 8(2), 74–76 (2012).
  • Kesel N, Köhler D, Herich L et al. Cartilage destruction in granulomatosis with polyangiitis (Wegener’s granulomatosis) is mediated by human fibroblasts after transplantation into immunodeficient mice. Am. J. Pathol. 180(5), 2144–2155 (2012).
  • Mueller A, Holl-Ulrich K, Lamprecht P, Gross WL. Germinal centre-like structures in Wegener’s granuloma: the morphological basis for autoimmunity? Rheumatology (Oxford). 47(8), 1111–1113 (2008).
  • Jennette JC. Nomenclature and classification of vasculitis: lessons learned from granulomatosis with polyangiitis (Wegener’s granulomatosis). Clin. Exp. Immunol. 164(Suppl. 1), 7–10 (2011).
  • Berger SP, Seelen MA, Hiemstra PS et al. Proteinase 3, the major autoantigen of Wegener’s granulomatosis, enhances IL-8 production by endothelial cells in vitro. J. Am. Soc. Nephrol. 7(5), 694–701 (1996).
  • Sibelius U, Hattar K, Schenkel A et al. Wegener’s granulomatosis: anti-proteinase 3 antibodies are potent inductors of human endothelial cell signaling and leakage response. J. Exp. Med. 187(4), 497–503 (1998).
  • Kurosawa S, Esmon CT, Stearns-Kurosawa DJ. The soluble endothelial protein C receptor binds to activated neutrophils: involvement of proteinase-3 and CD11b/CD18. J. Immunol. 165(8), 4697–4703 (2000).
  • Falk, R. J.; Jennette, J. C. New insight into the pathogenesis of vasculitis associated with antineutrophil cytoplasmic autoantibodies. Current Opin. Rheumatol. 20, 55–60, (2008).
  • Kallenberg CG. Pathogenesis of ANCA-associated vasculitides. Ann. Rheum. Dis. 70(Suppl. 1), i59–i63 (2011).
  • Heeringa P, Little MA. In vivo approaches to investigate ANCA-associated vasculitis: lessons and limitations. Arthritis Res. Ther. 13(1), 204 (2011).
  • Primo VC, Marusic S, Franklin CC et al. Anti-PR3 immune responses induce segmental and necrotizing glomerulonephritis. Clin. Exp. Immunol. 159(3), 327–337 (2010).
  • Little MA, Al-Ani B, Ren S et al. Anti-proteinase 3 anti-neutrophil cytoplasm autoantibodies recapitulate systemic vasculitis in mice with a humanized immune system. PLoS ONE 7(1), e28626 (2012).
  • Relle M, Cash H, Schommers N, Reifenberg K, Galle PR, Schwarting A. PR3 antibodies do not induce renal pathology in a novel PR3-humanized mouse model for Wegener’s granulomatosis. Rheumatol. Int. 33(3), 613–622 (2013).
  • Kain R, Exner M, Brandes R et al. Molecular mimicry in pauci-immune focal necrotizing glomerulonephritis. Nat. Med. 14(10), 1088–1096 (2008).
  • Roth AJ, Brown MC, Smith RN et al. Anti-LAMP-2 antibodies are not prevalent in patients with antineutrophil cytoplasmic autoantibody glomerulonephritis. J. Am. Soc. Nephrol. 23(3), 545–555 (2012).
  • Yipp BG, Petri B, Salina D et al. Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo. Nat. Med. 18(9), 1386–1393 (2012).
  • Kessenbrock K, Krumbholz M, Schönermarck U et al. Netting neutrophils in autoimmune small-vessel vasculitis. Nat. Med. 15(6), 623–625 (2009).
  • Sangaletti S, Tripodo C, Chiodoni C et al. Neutrophil extracellular traps mediate transfer of cytoplasmic neutrophil antigens to myeloid dendritic cells toward ANCA induction and associated autoimmunity. Blood 120(15), 3007–3018 (2012).
  • Nakazawa D, Tomaru U, Suzuki A et al. Abnormal conformation and impaired degradation of propylthiouracil-induced neutrophil extracellular traps: implications of disordered neutrophil extracellular traps in a rat model of myeloperoxidase antineutrophil cytoplasmic antibody-associated vasculitis. Arthritis Rheum. 64(11), 3779–3787 (2012).
  • Csernok E, Holle JU, Gross WL. Proteinase 3, protease-activated receptor-2 and interleukin-32: linking innate and autoimmunity in Wegener’s granulomatosis. Clin. Exp. Rheumatol. 26(3 Suppl. 49), S112–S117 (2008).
  • Witko-Sarsat V, Reuter N, Mouthon L. Interaction of proteinase 3 with its associated partners: implications in the pathogenesis of Wegener’s granulomatosis. Curr. Opin. Rheumatol. 22(1), 1–7 (2010).
  • Kantari C, Pederzoli-Ribeil M, Amir-Moazami O et al. Proteinase 3, the Wegener autoantigen, is externalized during neutrophil apoptosis: evidence for a functional association with phospholipid scramblase 1 and interference with macrophage phagocytosis. Blood 110(12), 4086–4095 (2007).
  • Goldschmeding R, Dolman KM, Hack CE. Distinct genetic subsets in ANCA-associated vasculitis. N. Engl. J. Med. 367(15), 1470; author reply 1471 (2012).
  • Hurtado PR, Jeffs L, Nitschke J et al. CpG oligodeoxynucleotide stimulates production of anti-neutrophil cytoplasmic antibodies in ANCA associated vasculitis. BMC Immunol. 9, 34 (2008).
  • Tadema H, Abdulahad WH, Lepse N, Stegeman CA, Kallenberg CG, Heeringa P. Bacterial DNA motifs trigger ANCA production in ANCA-associated vasculitis in remission. Rheumatology (Oxford). 50(4), 689–696 (2011).
  • Eriksson P, Sandell C, Backteman K, Ernerudh J. B cell abnormalities in Wegener’s granulomatosis and microscopic polyangiitis: role of CD25+-expressing B cells. J. Rheumatol. 37(10), 2086–2095 (2010).
  • Voswinkel J, Mueller A, Kraemer JA et al. B lymphocyte maturation in Wegener’s granulomatosis: a comparative analysis of VH genes from endonasal lesions. Ann. Rheum. Dis. 65(7), 859–864 (2006).
  • Thurner L, Müller A, Cérutti M et al. Wegener’s granuloma harbors B lymphocytes with specificities against a proinflammatory transmembrane protein and a tetraspanin. J. Autoimmun. 36(1), 87–90 (2011).
  • Steinmetz OM, Velden J, Kneissler U et al. Analysis and classification of B-cell infiltrates in lupus and ANCA-associated nephritis. Kidney Int. 74(4), 448–457 (2008).
  • Abdulahad WH, Lamprecht P, Kallenberg CG. T-helper cells as new players in ANCA-associated vasculitides. Arthritis Res. Ther. 13(4), 236 (2011).
  • Wilde B, Dolff S, Cai X et al. CD4+CD25+ T-cell populations expressing CD134 and GITR are associated with disease activity in patients with Wegener’s granulomatosis. Nephrol. Dial. Transplant. 24(1), 161–171 (2009).
  • Abdulahad WH, Kallenberg CG, Limburg PC, Stegeman CA. Urinary CD4+ effector memory T cells reflect renal disease activity in antineutrophil cytoplasmic antibody-associated vasculitis. Arthritis Rheum. 60(9), 2830–2838 (2009).
  • Ordonez L, Bernard I, L’faqihi-Olive FE, Tervaert JW, Damoiseaux J, Saoudi A. CD45RC isoform expression identifies functionally distinct T cell subsets differentially distributed between healthy individuals and AAV patients. PLoS ONE 4(4), e5287 (2009).
  • Abdulahad WH, Stegeman CA, Limburg PC, Kallenberg CG. Skewed distribution of Th17 lymphocytes in patients with Wegener’s granulomatosis in remission. Arthritis Rheum. 58(7), 2196–2205 (2008).
  • Fagin U, Csernok E, Müller A et al. Distinct proteinase 3-induced cytokine patterns in Wegener’s granulomatosis, Churg-Strauss syndrome, and healthy controls. Clin. Exp. Rheumatol. 29(1 Suppl. 64), S57–S62 (2011).
  • Velden J, Paust HJ, Hoxha E et al. Renal IL-17 expression in human ANCA-associated glomerulonephritis. Am. J. Physiol. Renal Physiol. 302(12), F1663–F1673 (2012).
  • Gan PY, Steinmetz OM, Tan DS et al. Th17 cells promote autoimmune anti-myeloperoxidase glomerulonephritis. J. Am. Soc. Nephrol. 21(6), 925–931 (2010).
  • Paust HJ, Turner JE, Riedel JH et al. Chemokines play a critical role in the cross-regulation of Th1 and Th17 immune responses in murine crescentic glomerulonephritis. Kidney Int. 82(1), 72–83 (2012).
  • Marinaki S, Neumann I, Kälsch AI et al. Abnormalities of CD4 T cell subpopulations in ANCA-associated vasculitis. Clin. Exp. Immunol. 140(1), 181–191 (2005).
  • Abdulahad WH, Stegeman CA, van der Geld YM, Doornbos-van der Meer B, Limburg PC, Kallenberg CG. Functional defect of circulating regulatory CD4+ T cells in patients with Wegener’s granulomatosis in remission. Arthritis Rheum. 56(6), 2080–2091 (2007).
  • Klapa S, Mueller A, Csernok E et al. Lower numbers of FoxP3 and CCR4 co-expressing cells in an elevated subpopulation of CD4+CD25 high regulatory T cells from Wegener’s granulomatosis. Clin. Exp. Rheumatol. 28(1 Suppl. 57), 72–80 (2010).
  • Morgan MD, Day CJ, Piper KP et al. Patients with Wegener’s granulomatosis demonstrate a relative deficiency and functional impairment of T-regulatory cells. Immunology 130(1), 64–73 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.