412
Views
22
CrossRef citations to date
0
Altmetric
Review

The alarmin functions of high-mobility group box-1 and IL-33 in the pathogenesis of systemic lupus erythematosus

, &
Pages 739-749 | Published online: 10 Jan 2014

References

  • Pisetsky DS. The role of innate immunity in the induction of autoimmunity. Autoimmun. Rev. 8(1), 69–72 (2008).
  • Kumar H, Kawai T, Akira S. Pathogen recognition by the innate immune system. Int. Rev. Immunol. 30(1), 16–34 (2011).
  • Oppenheim JJ, Yang D. Alarmins: chemotactic activators of immune responses. Curr. Opin. Immunol. 17(4), 359–365 (2005).
  • Bianchi ME. Damps, pamps and alarmins: all we need to know about danger. J. Leukoc. Biol. 81(1), 1–5 (2007).
  • Oppenheim JJ, Tewary P, de la Rosa G, Yang D. Alarmins initiate host defense. Adv. Exp. Med. Biol. 601, 185–194 (2007).
  • De S, Ahn W, Lee DY, Jones DB. Novel virtual lap-band simulator could promote patient safety. Stud. Health Technol. Inform. 132, 98–100 (2008).
  • Sims GP, Rowe DC, Rietdijk ST, Herbst R, Coyle AJ. HMGB1 and RAGE in inflammation and cancer. Annu. Rev. Immunol. 28, 367–388 (2010).
  • Abdulahad DA, Westra J, Limburg PC, Kallenberg CG, Bijl M. HMGB1 in systemic lupus erythematosus: Its role in cutaneous lesions development. Autoimmun. Rev. (2010).
  • Zickert A, Palmblad K, Sundelin B et al. Renal expression and serum levels of high mobility group box 1 protein in lupus nephritis. Arthritis. Res. Ther. 14(1), R36 (2012).
  • Urbonaviciute V, Voll RE. High-mobility group box 1 represents a potential marker of disease activity and novel therapeutic target in systemic lupus erythematosus. J. Intern. Med. 270(4), 309–318 (2011).
  • Abdulahad DA, Westra J, Bijzet J, Limburg PC, Kallenberg CG, Bijl M. High mobility group box 1 (HMGB1) and anti-HMGB1 antibodies and their relation to disease characteristics in systemic lupus erythematosus. Arthritis Res. Ther. 13(3), R71 (2011).
  • Tang SC, Wang YC, Li YI et al. Functional role of soluble receptor for advanced glycation end products in stroke. Arterioscler. Thromb. Vasc. Biol. (2013).
  • de Souza AW, Westra J, Limburg PC, Bijl M, Kallenberg CG. HMGB1 in vascular diseases: its role in vascular inflammation and atherosclerosis. Autoimmun. Rev. 11(12), 909–917 (2012).
  • Goldstein RS. High mobility group box-1 protein as a tumor necrosis factor-independent therapeutic target in rheumatoid arthritis. Arthritis Res. Ther. 10(3), 111 (2008).
  • Ma CY, Ma JL, Jiao YL et al. The plasma level of soluble receptor for advanced glycation end products is decreased in patients with systemic lupus erythematosus. Scand. J. Immunol. 75(6), 614–622 (2012).
  • Haraldsen G, Balogh J, Pollheimer J, Sponheim J, Kuchler AM. Interleukin-33 – cytokine of dual function or novel alarmin? Trends Immunol. 30(5), 227–233 (2009).
  • Moussion C, Ortega N, Girard JP. The IL-1-like cytokine IL-33 is constitutively expressed in the nucleus of endothelial cells and epithelial cells in vivo: A novel ‘alarmin’? PLoS ONE 3(10), e3331 (2008).
  • Arshad MI, Piquet-Pellorce C, L’Helgoualc’h A et al. Trail but not FasL and TNFalpha, regulates IL-33 expression in murine hepatocytes during acute hepatitis. Hepatology 56(6), 2353–2362 (2012).
  • Liew FY, Pitman NI, McInnes IB. Disease-associated functions of IL-33: the new kid in the IL-1 family. Nat. Rev. Immunol. 10(2), 103–110 (2010).
  • Miller AM, Xu D, Asquith DL et al. IL-33 reduces the development of atherosclerosis. J. Exp. Med. 205(2), 339–346 (2008).
  • Alves-Filho JC, Sonego F, Souto FO et al. Interleukin-33 attenuates sepsis by enhancing neutrophil influx to the site of infection. Nat. Med. 16(6), 708–712 (2010).
  • Miller AM, Liew FY. The IL-33/st2 pathway – a new therapeutic target in cardiovascular disease. Pharmacol. Ther. 131(2), 179–186 (2011).
  • Beltran CJ, Nunez LE, Diaz-Jimenez D et al. Characterization of the novel st2/IL-33 system in patients with inflammatory bowel disease. Inflamm. Bowel. Dis. 16(7), 1097–1107 (2010).
  • Komai-Koma M, Brombacher F, Pushparaj PN et al. Interleukin-33 amplifies IgE synthesis and triggers mast cell degranulation via interleukin-4 in naive mice. Allergy 67(9), 1118–1126 (2012).
  • Arshad MI, Piquet-Pellorce C, Samson M. IL-33 and HMGB1 alarmins: sensors of cellular death and their involvement in liver pathology. Liver. Int. 32(8), 1200–1210 (2012).
  • Mok MY, Huang FP, Ip WK et al. Serum levels of IL-33 and soluble ST2 and their association with disease activity in systemic lupus erythematosus. Rheumatol. (Oxford) 49(3), 520–527 (2010).
  • Harris HE, Andersson U, Pisetsky DS. HMGB1: a multifunctional alarmin driving autoimmune and inflammatory disease. Nat. Rev. Rheumatol. 8(4), 195–202 (2012).
  • Pisetsky DS. HMGB1: a smoking gun in lupus nephritis? Arthritis Res. Ther. 14(2), 112 (2012).
  • Pisetsky DS. HMGB1: a dangerous player in lupus pathogenesis. J. Rheumatol. 37(4), 689–691 (2010).
  • Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418(6894), 191–195 (2002).
  • Raucci A, Palumbo R, Bianchi ME. HMGB1: a signal of necrosis. Autoimmunity 40(4), 285–289 (2007).
  • Bianchi ME. HMGB1 loves company. J. Leukoc. Biol. 86(3), 573–576 (2009).
  • Lin L, Park S, Lakatta EG. Rage signaling in inflammation and arterial aging. Front. Biosci. 14, 1403–1413 (2009).
  • Pouleur AC, le Polain de Waroux JB, Goffinet C et al. Accuracy of the flow convergence method for quantification of aortic regurgitation in patients with central versus eccentric jets. Am. J. Cardiol. 102(4), 475–480 (2008).
  • Yonekura H, Yamamoto Y, Sakurai S et al. Novel splice variants of the receptor for advanced glycation end-products expressed in human vascular endothelial cells and pericytes, and their putative roles in diabetes-induced vascular injury. Biochem. J. 370(Pt 3), 1097–1109 (2003).
  • Katakami N, Matsuhisa M, Kaneto H et al. Endogenous secretory RAGEbut not soluble RAGEis associated with carotid atherosclerosis in Type 1 diabetes patients. Diab. Vasc. Dis. Res. 5(3), 190–197 (2008).
  • Yonekura H, Yamamoto Y, Sakurai S, Watanabe T, Yamamoto H. Roles of the receptor for advanced glycation endproducts in diabetes-induced vascular injury. J. Pharmacol. Sci. 97(3), 305–311 (2005).
  • Shoji T, Koyama H, Morioka T et al. Receptor for advanced glycation end products is involved in impaired angiogenic response in diabetes. Diabetes 55(8), 2245–2255 (2006).
  • Hanford LE, Enghild JJ, Valnickova Z et al. Purification and characterization of mouse soluble receptor for advanced glycation end products (sRAGE). J. Biol. Chem. 279(48), 50019–50024 (2004).
  • Hudson BI, Harja E, Moser B, Schmidt AM. Soluble levels of receptor for advanced glycation endproducts (sRAGE) and coronary artery disease: The next C-reactive protein? Arterioscler. Thromb. Vasc. Biol. 25(5), 879–882 (2005).
  • Schmidt AM, Yan SD, Yan SF, Stern DM. The multiligand receptor RAGE as a progression factor amplifying immune and inflammatory responses. J. Clin. Invest. 108(7), 949–955 (2001).
  • Abeyama K, Stern DM, Ito Y et al. The N-terminal domain of thrombomodulin sequesters high-mobility group-b1 protein, a novel antiinflammatory mechanism. J. Clin. Invest. 115(5), 1267–1274 (2005).
  • Hreggvidsdottir HS, Ostberg T, Wahamaa H et al. The alarmin HMGB1 acts in synergy with endogenous and exogenous danger signals to promote inflammation. J. Leukoc. Biol. 86(3), 655–662 (2009).
  • Garcia-Arnandis I, Guillen MI, Gomar F, Pelletier JP, Martel-Pelletier J, Alcaraz MJ. High mobility group box 1 potentiates the pro-inflammatory effects of interleukin-1beta in osteoarthritic synoviocytes. Arthritis Res. Ther. 12(4), R165 (2010).
  • Tian J, Avalos AM, Mao SY et al. Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat. Immunol. 8(5), 487–496 (2007).
  • Santilli F, Vazzana N, Bucciarelli LG, Davi G. Soluble forms of RAGE in human diseases: clinical and therapeutical implications. Curr. Med. Chem. 16(8), 940–952 (2009).
  • Flyvbjerg A, Denner L, Schrijvers BF et al. Long-term renal effects of a neutralizing RAGEantibody in obese Type 2 diabetic mice. Diabetes 53(1), 166–172 (2004).
  • Jensen LJ, Denner L, Schrijvers BF, Tilton RG, Rasch R, Flyvbjerg A. Renal effects of a neutralising RAGE-antibody in long-term streptozotocin-diabetic mice. J. Endocrinol. 188(3), 493–501 (2006).
  • D’Agati V, Schmidt AM. Rage and the pathogenesis of chronic kidney disease. Nat. Rev. Nephrol. 6(6), 352–360 (2010).
  • Oyama Y, Hashiguchi T, Taniguchi N et al. High-mobility group box-1 protein promotes granulomatous nephritis in adenine-induced nephropathy. Lab. Invest. 90(6), 853–866 (2010).
  • Bruchfeld A, Qureshi AR, Lindholm B et al. High mobility group box protein-1 correlates with renal function in chronic kidney disease (CKD). Mol. Med. 14(3–4), 109–115 (2008).
  • Lu CY, Hartono J, Senitko M, Chen J. The inflammatory response to ischemic acute kidney injury: a result of the ‘right stuff’ in the ‘wrong place’? Curr. Opin. Nephrol. Hypertens. 16(2), 83–89 (2007).
  • Sato F, Maruyama S, Hayashi H et al. High mobility group box chromosomal protein 1 in patients with renal diseases. Nephron Clin. Pract. 108(3), c194–c201 (2008).
  • Wibisono D, Csernok E, Lamprecht P, Holle JU, Gross WL, Moosig F. Serum HMGB1 levels are increased in active wegener’s granulomatosis and differentiate between active forms of ANCA-associated vasculitis. Ann. Rheum. Dis. 69(10), 1888–1889 (2010).
  • Koyama H, Yamamoto H, Nishizawa Y. RAGE and soluble RAGE: Potential therapeutic targets for cardiovascular diseases. Mol. Med. 13(11–12), 625–635 (2007).
  • D’Adamo E, Giannini C, Chiavaroli V et al. What is the significance of soluble and endogenous secretory receptor for advanced glycation end products in liver steatosis in obese prepubertal children? Antioxid. Redox Signal 14(6), 1167–1172 (2011).
  • Humpert PM, Djuric Z, Kopf S et al. Soluble RAGE but not endogenous secretory RAGE is associated with albuminuria in patients with Type 2 diabetes. Cardiovasc. Diabetol. 6, 9 (2007).
  • Gohda T, Tanimoto M, Moon JY et al. Increased serum endogenous secretory receptor for advanced glycation end-product (esRAGE) levels in Type 2 diabetic patients with decreased renal function. Diabetes Res. Clin. Pract. 81(2), 196–201 (2008).
  • Kalousova M, Hodkova M, Kazderova M et al. Soluble receptor for advanced glycation end products in patients with decreased renal function. Am. J. Kidney Dis. 47(3), 406–411 (2006).
  • Abdulahad DA, Bijl M. How a nuclear molecule alarms the immune system. The Rheumatologist, August (2011).
  • Vazzana N, Santilli F, Cuccurullo C, Davi G. Soluble forms of RAGE in internal medicine. Intern. Emerg. Med. 4(5), 389–401 (2009).
  • Li J, Xie H, Wen T, Liu H, Zhu W, Chen X. Expression of high mobility group box chromosomal protein 1 and its modulating effects on downstream cytokines in systemic lupus erythematosus. J. Rheumatol. 37(4), 766–775 (2010).
  • Ma CY, Jiao YL, Zhang J et al. Elevated plasma level of hmgb1 is associated with disease activity and combined alterations with ifn-alpha and tnf-alpha in systemic lupus erythematosus. Rheumatol. Int. 32(2), 395–402 (2012).
  • Popovic K, Ek M, Espinosa A et al. Increased expression of the novel proinflammatory cytokine high mobility group box chromosomal protein 1 in skin lesions of patients with lupus erythematosus. Arthritis Rheum. 52(11), 3639–3645 (2005).
  • Barkauskaite V, Ek M, Popovic K, Harris HE, Wahren-Herlenius M, Nyberg F. Translocation of the novel cytokine HMGB1 to the cytoplasm and extracellular space coincides with the peak of clinical activity in experimentally UV-induced lesions of cutaneous lupus erythematosus. Lupus 16(10), 794–802 (2007).
  • Abdulahad DA, Westra J, Bijzet J et al. Urine levels of HMGB1 in systemic lupus erythematosus patients with and without renal manifestations. Arthritis. Res. Ther. 14(4), R184 (2012).
  • Hayashi A, Nagafuchi H, Ito I, Hirota K, Yoshida M, Ozaki S. Lupus antibodies to the HMGB1 chromosomal protein: epitope mapping and association with disease activity. Mod. Rheumatol. 19(3), 283–292 (2009).
  • Hou FF, Ren H, Owen WF Jr et al. Enhanced expression of receptor for advanced glycation end products in chronic kidney disease. J. Am. Soc. Nephrol. 15(7), 1889–1896 (2004).
  • Tanaka N, Yonekura H, Yamagishi S, Fujimori H, Yamamoto Y, Yamamoto H. The receptor for advanced glycation end products is induced by the glycation products themselves and tumor necrosis factor-alpha through nuclear factor-kappa b, and by 17beta-estradiol through sp-1 in human vascular endothelial cells. J. Biol. Chem. 275(33), 25781–25790 (2000).
  • Tam XH, Shiu SW, Leng L, Bucala R, Betteridge DJ, Tan KC. Enhanced expression of receptor for advanced glycation end-products is associated with low circulating soluble isoforms of the receptor in Type 2 diabetes. Clin. Sci. (Lond) 120(2), 81–89 (2011).
  • Yu SL, Wong CK, Szeto CC, Li EK, Tam LS. Members of the receptor for advanced glycation endproducts axis as potential therapeutic targets in patients with lupus nephritis. Asia Pacific League of Associations for Rheumatology 2012, Jordan (2012).
  • Sunahori K, Yamamura M, Yamana J, Takasugi K, Kawashima M, Makino H. Increased expression of receptor for advanced glycation end products by synovial tissue macrophages in rheumatoid arthritis. Arthritis Rheum. 54(1), 97–104 (2006).
  • Nienhuis HL, de Leeuw K, Bijzet J et al. Skin autofluorescence is increased in systemic lupus erythematosus but is not reflected by elevated plasma levels of advanced glycation endproducts. Rheumatology (Oxford) 47(10), 1554–1558 (2008).
  • Ma CY, Ma JL, Jiao YL et al. The plasma level of soluble receptor for advanced glycation end products is decreased in patients with systemic lupus erythematosus. Scand. J. Immunol. (2012).
  • Raucci A, Cugusi S, Antonelli A et al. A soluble form of the receptor for advanced glycation endproducts (RAGE) is produced by proteolytic cleavage of the membrane-bound form by the sheddase a disintegrin and metalloprotease 10 (adam10). FASEB J. 22(10), 3716–3727 (2008).
  • Zhang L, Bukulin M, Kojro E et al. Receptor for advanced glycation end products is subjected to protein ectodomain shedding by metalloproteinases. J. Biol. Chem. 283(51), 35507–35516 (2008).
  • Parkin E, Harris B. A disintegrin and metalloproteinase (adam)-mediated ectodomain shedding of adam10. J. Neurochem. 108(6), 1464–1479 (2009).
  • Luthi AU, Cullen SP, McNeela EA et al. Suppression of interleukin-33 bioactivity through proteolysis by apoptotic caspases. Immunity 31(1), 84–98 (2009).
  • Hirsiger S, Simmen HP, Werner CM, Wanner GA, Rittirsch D. Danger signals activating the immune response after trauma. Mediators Inflamm. 2012, 315941 (2012).
  • Liew FY. IL-33: a janus cytokine. Ann. Rheum. Dis. 71(Suppl. 2), i101–i104 (2012).
  • Palmer G, Gabay C. Interleukin-33 biology with potential insights into human diseases. Nat. Rev. Rheumatol. 7(6), 321–329 (2011).
  • Chackerian AA, Oldham ER, Murphy EE, Schmitz J, Pflanz S, Kastelein RA. IL-1 receptor accessory protein and ST2 comprise the IL-33 receptor complex. J. Immunol. 179(4), 2551–2555 (2007).
  • Schmitz J, Owyang A, Oldham E et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 23(5), 479–490 (2005).
  • Miller AM. Role of IL-33 in inflammation and disease. J. Inflamm. (Lond.) 8(1), 22 (2011).
  • Smith DE. IL-33: a tissue derived cytokine pathway involved in allergic inflammation and asthma. Clin. Exp. Allergy 40(2), 200–208 (2010).
  • Oboki K, Ohno T, Kajiwara N, Saito H, Nakae S. IL-33 and IL-33 receptors in host defense and diseases. Allergol. Int. 59(2), 143–160 (2010).
  • Akira S, Takeda K, Kaisho T. Toll-like receptors: Critical proteins linking innate and acquired immunity. Nat. Immunol. 2(8), 675–680 (2001).
  • Wynn TA. Cellular and molecular mechanisms of fibrosis. J. Pathol. 214(2), 199–210 (2008).
  • Sivakumar P, Das AM. Fibrosis, chronic inflammation and new pathways for drug discovery. Inflamm. Res. 57(9), 410–418 (2008).
  • Rankin AL, Mumm JB, Murphy E et al. IL-33 induces IL-13-dependent cutaneous fibrosis. J. Immunol. 184(3), 1526–1535 (2010).
  • Friedman SL. Mechanisms of hepatic fibrogenesis. Gastroenterology 134(6), 1655–1669 (2008).
  • Trojanowska M, Varga J. Molecular pathways as novel therapeutic targets in systemic sclerosis. Curr. Opin. Rheumatol. 19(6), 568–573 (2007).
  • Selman M, Pardo A. Role of epithelial cells in idiopathic pulmonary fibrosis: from innocent targets to serial killers. Proc. Am. Thorac. Soc. 3(4), 364–372 (2006).
  • Roussel L, Farias R, Rousseau S. IL-33 is expressed in epithelia from patients with cystic fibrosis and potentiates neutrophil recruitment. J. Allergy Clin. Immunol. (2012).
  • Zhu J, Carver W. Effects of interleukin-33 on cardiac fibroblast gene expression and activity. Cytokine 58(3), 368–379 (2012).
  • Lopetuso LR, Scaldaferri F, Pizarro TT. Emerging role of the interleukin (IL)-33/ST2 axis in gut mucosal wound healing and fibrosis. Fibrogenesis. Tissue. Repair. 5(1), 18 (2012).
  • Marvie P, Lisbonne M, L’Helgoualc’h A et al. Interleukin-33 overexpression is associated with liver fibrosis in mice and humans. J. Cell. Mol. Med. 14(6B), 1726–1739 (2010).
  • Masamune A, Watanabe T, Kikuta K, Satoh K, Kanno A, Shimosegawa T. Nuclear expression of interleukin-33 in pancreatic stellate cells. Am. J. Physiol. Gastrointest. Liver Physiol. 299(4), G821–832 (2010).
  • Wang X, Katwa P, Podila R et al. Multi-walled carbon nanotube instillation impairs pulmonary function in c57bl/6 mice. Part Fibre Toxicol. 8, 24 (2011).
  • Kurokawa M, Matsukura S, Kawaguchi M et al. Expression and effects of IL-33 and st2 in allergic bronchial asthma: IL-33 induces eotaxin production in lung fibroblasts. Int. Arch. Allergy Immunol. 155(Suppl. 1), 12–20 (2011).
  • Wood IS, Wang B, Trayhurn P. IL-33, a recently identified interleukin-1 gene family member, is expressed in human adipocytes. Biochem. Biophys. Res. Commun. 384(1), 105–109 (2009).
  • Nishida A, Andoh A, Imaeda H, Inatomi O, Shiomi H, Fujiyama Y. Expression of interleukin 1-like cytokine interleukin 33 and its receptor complex (ST2l and IL1RACP) in human pancreatic myofibroblasts. Gut 59(4), 531–541 (2010).
  • Byrne SN, Beaugie C, O’Sullivan C, Leighton S, Halliday GM. The immune-modulating cytokine and endogenous alarmin interleukin-33 is upregulated in skin exposed to inflammatory UVB radiation. Am. J. Pathol. 179(1), 211–222 (2011).
  • van Tuyn J, Pijnappels DA, de Vries AA et al. Fibroblasts from human postmyocardial infarction scars acquire properties of cardiomyocytes after transduction with a recombinant myocardin gene. FASEB J. 21(12), 3369–3379 (2007).
  • Sanada S, Hakuno D, Higgins LJ, Schreiter ER, McKenzie AN, Lee RT. IL-33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system. J. Clin. Invest. 117(6), 1538–1549 (2007).
  • Carriere V, Roussel L, Ortega N et al. IL-33, the IL-1-like cytokine ligand for ST2 receptor, is a chromatin-associated nuclear factor in vivo. Proc. Natl Acad. Sci. USA 104(1), 282–287 (2007).
  • Kuchler AM, Pollheimer J, Balogh J et al. Nuclear interleukin-33 is generally expressed in resting endothelium but rapidly lost upon angiogenic or proinflammatory activation. Am. J. Pathol. 173(4), 1229–1242 (2008).
  • Wynn TA, Ramalingam TR. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat. Med. 18(7), 1028–1040 (2012).
  • Yu SL, Kuan WP, Wong CK, Li EK, Tam LS. Immunopathological roles of cytokines, chemokines, signaling molecules, and pattern-recognition receptors in systemic lupus erythematosus. Clin. Dev. Immunol. 2012, 715190 (2012).
  • Yang Z, Liang Y, Xi W, Li C, Zhong R. Association of increased serum IL-33 levels with clinical and laboratory characteristics of systemic lupus erythematosus in Chinese population. Clin. Exp. Med. 11(2), 75–80 (2011).
  • Mak A, Tang C, Ho R. Serum tumour necrosis factor-alpha is associated with poor health-related quality of life and depressive symptoms in patients with systemic lupus erythematosus. Lupus (2013).
  • Akcay A, Nguyen Q, He Z et al. IL-33 exacerbates acute kidney injury. J. Am. Soc. Nephrol. 22(11), 2057–2067 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.