421
Views
20
CrossRef citations to date
0
Altmetric
Review

Nutrigenetics, nutrigenomics and inflammatory bowel diseases

Pages 717-726 | Published online: 10 Jan 2014

References

  • Ferguson LR. Nutrigenomics and inflammatory bowel diseases. Expert Rev. Clin. Immunol. 6(4), 573–583 (2010).
  • Ferguson LR. Potential value of nutrigenomics in Crohn’s disease. Nat. Rev. Gastroenterol. Hepatol. 9(5), 260–270 (2012).
  • Jenke AC, Zilbauer M. Epigenetics in inflammatory bowel disease. Curr. Opin. Gastroenterol. 28(6), 577–584 (2012).
  • Wu HJ, Wu E. The role of gut microbiota in immune homeostasis and autoimmunity. Gut. Microbes. 3(1), 4–14 (2012).
  • Gentschew L, Ferguson LR. Role of nutrition and microbiota in susceptibility to inflammatory bowel diseases. Mol. Nutr. Food Res. 56(4), 524–535 (2012).
  • Baker PI, Love DR, Ferguson LR. Role of gut microbiota in Crohn’s disease. Expert Rev. Gastroenterol. Hepatol. 3(5), 535–546 (2009).
  • Richardson K, Lai CQ, Parnell LD, Lee YC, Ordovas JM. A genome-wide survey for SNPs altering microRNA seed sites identifies functional candidates in GWAS. BMC Genomics 12, 504 (2011).
  • Kerkhof M, Postma DS, Brunekreef B et al. Toll-like receptor 2 and 4 genes influence susceptibility to adverse effects of traffic-related air pollution on childhood asthma. Thorax 65(8), 690–697 (2010).
  • Nakashima K, Hirota T, Suzuki Y et al. Association of the RIP2 gene with childhood atopic asthma. Allergol. Int. 55(1), 77–83 (2006).
  • Siu H, Zhu Y, Jin L, Xiong M. Implication of next-generation sequencing on association studies. BMC Genomics 12, 322 (2011).
  • Yaspan BL, Bush WS, Torstenson ES et al. Genetic analysis of biological pathway data through genomic randomization. Hum. Genet. 129(5), 563–571 (2011).
  • Lees CW, Barrett JC, Parkes M, Satsangi J. New IBD genetics: common pathways with other diseases. Gut 60(12), 1739–1753 (2011).
  • Jostins L, Ripke S, Weersma RK et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491(7422), 119–124 (2012).
  • Fei M, Bhatia S, Oriss TB et al. TNF-alpha from inflammatory dendritic cells (DCs) regulates lung IL-17 A/IL-5 levels and neutrophilia versus eosinophilia during persistent fungal infection. Proc. Natl Acad. Sci USA 108(13), 5360–5365 (2011).
  • Ng MT, Van’t Hof R, Crockett JC et al. Increase in NF-kappaB binding affinity of the variant C allele of the toll-like receptor 9-1237T/C polymorphism is associated with Helicobacter pylori-induced gastric disease. Infect. Immun. 78(3), 1345–1352 (2010).
  • Ivanov II, McKenzie BS, Zhou L et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126(6), 1121–1133 (2006).
  • Di Sabatino A, Jackson CL, Pickard KM et al. Transforming growth factor beta signalling and matrix metalloproteinases in the mucosa overlying Crohn’s disease strictures. Gut 58(6), 777–789 (2009).
  • Cooke J, Zhang H, Greger L et al. Mucosal genome-wide methylation changes in inflammatory bowel disease. Inflamm. Bowel Dis. 18(11), 2128–2137 (2012).
  • Lin Z, Hegarty JP, Yu W et al. Identification of disease-associated DNA methylation in B cells from Crohn’s disease and ulcerative colitis patients. Dig. Dis. Sci. 57(12), 3145–3153 (2012).
  • Ferguson LR, Han DY, Fraser AG, Huebner C, Lam WJ, Morgan AR. IL23R and IL12B SNPs and haplotypes strongly sssociate with Crohn’s disease risk in a New Zealand population. Gastroenterol. Res. Pract. 2010, 539461 (2010).
  • Nimmo ER, Prendergast JG, Aldhous MC et al. Genome-wide methylation profiling in Crohn’s disease identifies altered epigenetic regulation of key host defense mechanisms including the Th17 pathway. Inflamm. Bowel Dis. 18(5), 889–899 (2012).
  • Scarpa M, Stylianou E. Epigenetics: concepts and relevance to IBD pathogenesis. Inflamm. Bowel Dis. 18(10), 1982–1996 (2012).
  • Paraskevi A, Theodoropoulos G, Papaconstantinou I, Mantzaris G, Nikiteas N, Gazouli M. Circulating MicroRNA in inflammatory bowel disease. J. Crohns Colitis 6(9), 900–904 (2012).
  • Clark PM, Dawany N, Dampier W, Byers SW, Pestell RG, Tozeren A. Bioinformatics analysis reveals transcriptome and microRNA signatures and drug repositioning targets for IBD and other autoimmune diseases. Inflamm. Bowel Dis. 18(12), 2315–2333 (2012).
  • Noble CL, Abbas AR, Lees CW et al. Characterization of intestinal gene expression profiles in Crohn’s disease by genome-wide microarray analysis. Inflamm. Bowel Dis. 16(10), 1717–1728 (2010).
  • Liang J, Jiang D, Jung Y et al. Role of hyaluronan and hyaluronan-binding proteins in human asthma. J. Allergy Clin Immunol. 128(2), 403–411 (2011).
  • Granlund A, Flatberg A, Ostvik AE et al. Whole genome gene expression meta-analysis of inflammatory bowel disease colon mucosa demonstrates lack of major differences between Crohn’s disease and ulcerative colitis. PLoS ONE 8(2), e56818 (2013).
  • Frank DN, Robertson CE, Hamm CM et al. Disease phenotype and genotype are associated with shifts in intestinal-associated microbiota in inflammatory bowel diseases. Inflamm. Bowel Dis. 17(1), 179–184 (2011).
  • Hansen JJ, Huang Y, Peterson DA et al. The colitis-associated transcriptional profile of commensal Bacteroides thetaiotaomicron enhances adaptive immune responses to a bacterial antigen. PLoS ONE 7(8), e42645 (2012).
  • Li E, Hamm CM, Gulati AS et al. Inflammatory bowel diseases phenotype, C. difficile and NOD2 genotype are associated with shifts in human ileum associated microbial composition. PLoS ONE 7(6), e26284 (2012).
  • Morgan XC, Tickle TL, Sokol H et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol. 13(9), R79 (2012).
  • Hotte NS, Salim SY, Tso RH et al. Patients with inflammatory bowel disease exhibit dysregulated responses to microbial DNA. PLoS ONE 7(5), e37932 (2012).
  • Grafors JM, Casswall TH. Exclusive enteral nutrition in the treatment of children with Crohn’s disease in Sweden: a questionnaire survey. Acta Paediatr. 100(7), 1018–1022 (2011).
  • Akobeng AK, Thomas AG. Refeeding syndrome following exclusive enteral nutritional treatment in Crohn disease. J. Pediatr. Gastroenterol. Nutr. 51(3), 364–366 (2010).
  • Brown AC, Rampertab SD, Mullin GE. Existing dietary guidelines for Crohn’s disease and ulcerative colitis. Expert Rev. Gastroenterol. Hepatol. 5(3), 411–425 (2011).
  • Khoshoo V, Sun SS, Storm H. Tolerance of an enteral formula with insoluble and prebiotic fiber in children with compromised gastrointestinal function. J. Am. Diet. Assoc. 110(11), 1728–1733 (2010).
  • Tighe MP, Cummings JR, Afzal NA. Nutrition and inflammatory bowel disease: primary or adjuvant therapy. Curr. Opin. Clin. Nutr. Metab. Care 14(5), 491–496 (2011).
  • Nolan-Clark D, Tapsell LC, Hu R, Han DY, Ferguson LR. Effects of dairy products on crohn’s disease symptoms are influenced by fat content and disease location but not lactose content or disease activity status in a New Zealand population. J. Am. Diet. Assoc. 111(8), 1165–1172 (2011).
  • Gentschew L, Bishop KS, Han DY et al. Selenium, selenoprotein genes and Crohn’s disease in a case–control population from Auckland, New Zealand. Nutrients 4(9), 1247–1259 (2012).
  • Rayman MP. Selenium and human health. Lancet 379(9822), 1256–1268 (2012).
  • Ringstad J, Kildebo S, Thomassen Y. Serum selenium, copper, and zinc concentrations in Crohn’s disease and ulcerative colitis. Scand. J. Gastroenterol. 28(7), 605–608 (1993).
  • Griffin IJ, Kim SC, Hicks PD, Liang LK, Abrams SA. Zinc metabolism in adolescents with Crohn’s disease. Pediatr. Res. 56(2), 235–239 (2004).
  • Haritunians T, Jones MR, McGovern DP et al. Variants in ZNF365 isoform D are associated with Crohn’s disease. Gut 60(8), 1060–1067 (2011).
  • Wu S, Liao AP, Xia Y et al. Vitamin D receptor negatively regulates bacterial-stimulated NF-kappaB activity in intestine. Am. J. Pathol. 177(2), 686–697 (2010).
  • Wang TT, Dabbas B, Laperriere D et al. Direct and indirect induction by 1,25-dihydroxyvitamin D3 of the NOD2/CARD15-defensin beta2 innate immune pathway defective in Crohn disease. J. Biol. Chem. 285(4), 2227–2231 (2010).
  • Calder PC. Omega-3 polyunsaturated fatty acids and inflammatory processes: nutrition or pharmacology? Br. J. Clin. Pharmacol. 75(3), 645–662 (2013).
  • Ferguson LR, Smith BG, James BJ. Combining nutrition, food science and engineering in developing solutions to Inflammatory bowel diseases – omega-3 polyunsaturated fatty acids as an example. Food Funct. 1(1), 60–72 (2010).
  • El-Tawil AM. Zinc supplementation tightens leaky gut in Crohn’s disease. Inflamm. Bowel Dis. 18(2), E399 (2012).
  • Ainley C, Cason J, Slavin BM, Wolstencroft RA, Thompson RP. The influence of zinc status and malnutrition on immunological function in Crohn’s disease. Gastroenterology 100(6), 1616–1625 (1991).
  • Hering NA, Schulzke JD. Therapeutic options to modulate barrier defects in inflammatory bowel disease. Dig. Dis. 27(4), 450–454 (2009).
  • Suzuki T, Hara H. Role of flavonoids in intestinal tight junction regulation. J. Nutr. Biochem. 22(5), 401–408 (2011).
  • Ho E, Beaver LM, Williams DE, Dashwood RH. Dietary factors and epigenetic regulation for prostate cancer prevention. Adv. Nutr. 2(6), 497–510 (2011).
  • Ho E, Dashwood RH. Dietary manipulation of histone structure and function. World Rev. Nutr. Diet. 101, 95–102 (2010).
  • Rajendran P, Delage B, Dashwood WM et al. Histone deacetylase turnover and recovery in sulforaphane-treated colon cancer cells: competing actions of 14-3-3 and Pin1 in HDAC3/SMRT corepressor complex dissociation/reassembly. Mol. Cancer. 10, 68 (2011).
  • Rajendran P, Ho E, Williams DE, Dashwood RH. Dietary phytochemicals, HDAC inhibition, and DNA damage/repair defects in cancer cells. Clin. Epigenetics 3(1), 4 (2011).
  • Rajendran P, Williams DE, Ho E, Dashwood RH. Metabolism as a key to histone deacetylase inhibition. Crit. Rev. Biochem. Mol. Biol. 46(3), 181–199 (2011).
  • Grimoud J, Durand H, de Souza S et al. In vitro screening of probiotics and synbiotics according to anti-inflammatory and anti-proliferative effects. Int. J. Food Microbiol. 144(1), 42–50 (2010).
  • Calder PC. Fatty acids and inflammation: the cutting edge between food and pharma. Eur. J. Pharmacol. 668(Suppl. 1), S50–S58 (2011).
  • Calder PC. The role of marine omega-3 (n-3) fatty acids in inflammatory processes, atherosclerosis and plaque stability. Mol. Nutr. Food Res. 56(7), 1073–1080 (2012).
  • Appleyard CB, Cruz ML, Isidro AA, Arthur JC, Jobin C, De Simone C. Pretreatment with the probiotic VSL#3 delays transition from inflammation to dysplasia in a rat model of colitis-associated cancer. Am. J. Physiol. Gastrointest. Liver Physiol. 301(6), G1004–1013 (2011).
  • Cain AM, Karpa KD. Clinical utility of probiotics in inflammatory bowel disease. Altern. Ther. Health Med. 17(1), 72–79 (2011).
  • Oelschlaeger TA. Mechanisms of probiotic actions – a review. Int. J. Med. Microbiol. 300(1), 57–62 (2010).
  • Mack DR. Probiotics in inflammatory bowel diseases and associated conditions. Nutrients 3(2), 245–264 (2011).
  • Jackson EL, Hamlin PJ, Ford AC. VSL#3 and remission in active ulcerative colitis: larger studies required. Am. J. Gastroenterol. 106(3), 547; author reply 547–548 (2011).
  • Doherty GA, Bennett GC, Cheifetz AS, Moss AC. Meta-analysis: targeting the intestinal microbiota in prophylaxis for post-operative Crohn’s disease. Aliment. Pharmacol. Ther. 31(8), 802–809 (2010).
  • Hedin CR, Mullard M, Sharratt E et al. Probiotic and prebiotic use in patients with inflammatory bowel disease: a case–control study. Inflamm. Bowel Dis. 16(12), 2099–2108 (2010).
  • Anderson RC, Cookson AL, McNabb WC, Kelly WJ, Roy NC. Lactobacillus plantarum DSM 2648 is a potential probiotic that enhances intestinal barrier function. FEMS Microbiol. Lett. 309(2), 184–192 (2010).
  • Benjamin JL, Hedin CR, Koutsoumpas A et al. Randomised, double-blind, placebo-controlled trial of fructo-oligosaccharides in active Crohn’s disease. Gut 60(7), 923–929 (2011).
  • Quigley EM. Prebiotics and probiotics: their role in the management of gastrointestinal disorders in adults. Nutr. Clin. Pract. 27(2), 195–200 (2012).
  • Marteau P. Therapy: probiotic-enriched artichokes for abdominal discomfort. Nat. Rev. Gastroenterol. Hepatol. 9(5), 251–252 (2012).
  • Riezzo G, Orlando A, D’Attoma B et al. Randomised clinical trial: efficacy of Lactobacillus paracasei-enriched artichokes in the treatment of patients with functional constipation – a double-blind, controlled, crossover study. Aliment. Pharmacol. Ther. 35(4), 441–450 (2012).
  • Selma MV, Espin JC, Tomas-Barberan FA. Interaction between phenolics and gut microbiota: role in human health. J. Agric Food Chem. 57(15), 6485–6501 (2009).
  • Tzounis X, Rodriguez-Mateos A, Vulevic J, Gibson GR, Kwik-Uribe C, Spencer JP. Prebiotic evaluation of cocoa-derived flavanols in healthy humans by using a randomized, controlled, double-blind, crossover intervention study. Am. J. Clin. Nutr. 93(1), 62–72 (2011).
  • Qin X. The effect of dietary chemicals on gut bacteria and IBD demands further study. J. Crohns Colitis 5(2), 175 (2011).
  • Ly NP, Litonjua A, Gold DR, Celedon JC. Gut microbiota, probiotics, and vitamin D: interrelated exposures influencing allergy, asthma, and obesity? J. Allergy Clin. Immunol. 127(5), 1087–1094; quiz 1095–1096 (2011).
  • Weiss ST. Bacterial components plus vitamin D: the ultimate solution to the asthma (autoimmune disease) epidemic? J. Allergy Clin. Immunol. 127(5), 1128–1130 (2011).
  • Triggs CM, Munday K, Hu R et al. Dietary factors in chronic inflammation: food tolerances and intolerances of a New Zealand Caucasian Crohn’s disease population. Mutat. Res. 690(1–2), 123–138 (2010).
  • Ellet S, Ferguson IR, Zhu S et al. Chapter 13. Foodomics to study efficacy of human dietary interventions. In: Nutrigenomics and Nutrigenetics in Functional Foods and Personalized Nutrition. Taylor & Francis, CRC Press, USA (2013).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.