279
Views
47
CrossRef citations to date
0
Altmetric
Reviews

Clinical view on the importance of dendritic cells in asthma

&
Pages 899-919 | Published online: 10 Jan 2014

References

  • Bharadwaj AS, Bewtra AK, Agrawal DK. Dendritic cells in allergic airway inflammation. Can. J. Physiol. Pharmacol. 85(7), 686–699 (2007).
  • Zhang F, Huang G, Hu B, Song Y, Shi Y. A soluble thymic stromal lymphopoietin (TSLP) antagonist, TSLPR-immunoglobulin, reduces the severity of allergic disease by regulating pulmonary dendritic cells. Clin. Exp. Immunol. 164(2), 256–264 (2011).
  • Besnard A-G, Togbe D, Guillou N, Erard F, Quesniaux V, Ryffel B. IL-33-activated dendritic cells are critical for allergic airway inflammation. Eur. J. Immunol. 41(6), 1675–1686 (2011).
  • Eiwegger T, Akdis C a. IL-33 links tissue cells, dendritic cells and Th2 cell development in a mouse model of asthma. Eur. J. Immunol. 41(6), 1535–1538 (2011).
  • McGee HS, Edwan JH, Agrawal DK. Flt3-L increases CD4+CD25+Foxp3+ICOS+ cells in the lungs of cockroach-sensitized and challenged mice. Am. J. Respir. Cell Mol. Biol. 42(3), 331–340 (2010).
  • Kabesch M, Michel S, Tost J. Epigenetic mechanisms and the relationship to childhood asthma. Eur. Respir. J. 36(4), 950–961 (2010).
  • Fedulov A V, Kobzik L. Allergy risk is mediated by dendritic cells with congenital epigenetic changes. Am. J. Respir. Cell Mol. Biol. 44(3), 285–292 (2011).
  • Demedts IK, Brusselle GG, Vermaelen KY et al. Identification and characterization of human pulmonary dendritic cells. Am. J. Respir. Cell. Mol. Biol. 32(3), 177–184 (2005).
  • Dzionek a, Fuchs a, Schmidt P et al. BDCA-2, BDCA-3, and BDCA-4: three markers for distinct subsets of dendritic cells in human peripheral blood. J. Immunol. 165(11), 6037–6046 (2000).
  • Lambrecht BN, Hammad H. Lung dendritic cells in respiratory viral infection and asthma: from protection to immunopathology. Annu. Rev. Immunol. 30, 243–270 (2012).
  • Gill MA. The role of dendritic cells in asthma. J. Allergy Clin. Immunol. 129(4), 889–901 (2012).
  • Dzionek A, Fuchs A, Schmidt P et al. BDCA-2, BDCA-3, and BDCA-4: three markers for distinct subsets of dendritic cells in human peripheral blood. J. Immunol. 165(11), 6037–6046 (2000).
  • Matsui T, Connolly JE, Michnevitz M et al. CD2 distinguishes two subsets of human plasmacytoid dendritic cells with distinct phenotype and functions. J. Immunol. 182, 6815–6823 (2009).
  • Maazi H, Lam J, Lombardi V et al. Role of plasmacytoid dendritic cell subsets in allergic asthma. Allergy 68(6), 695–701 (2013).
  • Nakano H, Free ME, Whitehead GS et al. Pulmonary CD103(+) dendritic cells prime Th2 responses to inhaled allergens. Mucosal. Immunol. 5(1), 53–65 (2012).
  • Plantinga M, Guilliams M, Vanheerswynghels M et al. Conventional and monocyte-derived CD11b+ dendritic cells initiate and maintain T helper 2 cell-mediated immunity to house dust mite allergen. Immunity 38(2), 1–14 (2013).
  • Mesnil C, Sabatel CM, Marichal T et al. Resident CD11b(+)Ly6C(-) Lung Dendritic Cells Are Responsible for Allergic Airway Sensitization to House Dust Mite in Mice. PLoS ONE 7(12), e53242 (2012).
  • Soyer OU, Akdis M, Ring J et al. Mechanisms of peripheral tolerance to allergens. Allergy 68(2), 161–170 (2013).
  • Zhang M, Liu M, Luther J, Kao JY. Helicobacter pylori directs tolerogenic programming of dendritic cells. Gut microbes 1(5), 325–329 (2010).
  • Sorrentino R, Gray P, Chen S, Shimada K, Crother TR, Arditi M. Plasmacytoid dendritic cells prevent cigarette smoke and Chlamydophila pneumoniae-induced Th2 inflammatory responses. Am. J. Respir. Cell Mol. Biol. 43(4), 422–31 (2010).
  • Shao Z, Bharadwaj A, McGee H. Fms-like tyrosine kinase 3 ligand increases a lung DC subset with regulatory properties in allergic airway inflammation. J. Allergy Clin. Immunol. 123(4), 917–924 (2009).
  • Loschko J, Heink S, Hackl D et al. Antigen targeting to plasmacytoid dendritic cells via Siglec-H inhibits Th cell-dependent autoimmunity. J. Immunol. 187(12), 6346–6356 (2011).
  • Edwards S, Jones C, Leishman AJ et al. TLR7 Stimulation of APCs results in inhibition of IL-5 through Type I IFN and notch signaling pathways in human peripheral blood mononuclear cells. J. Immunol. 190(6), 2585–2592 (2013).
  • Kubota N, Ebihara T, Matsumoto M et al. IL-6 and IFN-alpha from dsRNA-stimulated dendritic cells control expansion of regulatory T cells. Biochem. Biophys. Res. Commun. 391(3), 1421–1426 (2010).
  • Lombardi V, Speak AO, Kerzerho J et al. CD8α?β? and CD8α?β? plasmacytoid dendritic cells induce Foxp3? regulatory T cells and prevent the induction of airway hyper-reactivity. Mucosal. Immunol. 5(4), 432–443 (2012).
  • Schlitzer A, Loschko J, Mair K et al. Identification of CCR9- murine plasmacytoid DC precursors with plasticity to differentiate into conventional DCs. Blood 117(24), 6562–6570 (2011).
  • Bjorck P, Leong HX, Engleman EG. Plasmacytoid dendritic cell dichotomy: identification of IFN-alpha producing cells as a phenotypically and functionally distinct subset. J. Immunol. 186, 1477–1485 (2011).
  • An X, Bai C, Xia J, Dang T, Qian P. Immature dendritic cells expressing indoleamine 2, 3-dioxygenase suppress ovalbumin-induced allergic airway inflammation in mice. J. Allergol. Clin. Immunol. 21(3), 185–192 (2011).
  • Nayyar A, Dawicki W, Huang H et al. Induction of prolonged asthma tolerance by IL-10-differentiated dendritic cells: differential impact on airway hyperresponsiveness and the Th2 immunoinflammatory response. J. Immunol. 189(1), 72–79 (2012).
  • Coombes JL, Siddiqui KR, Arancibia-Cárcamo CV et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J. Exp. Med. 204(8), 1757–1764 (2007).
  • Manicassamy S, Pulendran B. Dendritic cell control of tolerogenic responses. Immunol. Rev. 241(1), 206–227 (2011).
  • Maldonado RA, von Andrian UH. How tolerogenic dendritic cells induce regulatory T cells. Adv. Immunol. 108, 111–165 (2010).
  • Oertli M, Müller A. Helicobacter pylori targets dendritic cells to induce immune tolerance, promote persistence and confer protection against allergic asthma. Gut Microbes. 3(6), 566–571 (2012).
  • Liu C-F, Rivere M, Huang H-J, Puzo G, Wang J-Y. Surfactant protein D inhibits mite-induced alveolar macrophage and dendritic cell activations through TLR signalling and DC-SIGN expression. Clin. Exp. Allergy. 40(1), 111–122 (2010).
  • Huang H-J, Lin Y-L, Liu C-F, Kao H-F, Wang J-Y. Mite allergen decreases DC-SIGN expression and modulates human dendritic cell differentiation and function in allergic asthma. Mucosal. Immunol. 4(5), 519–527 (2011).
  • Al-Ghouleh A, Johal R, Sharquie IK et al. The glycosylation pattern of common allergens: the recognition and uptake of Der p 1 by epithelial and dendritic cells is carbohydrate dependent. PLoS ONE 7(3), e33929 (2012).
  • West LC, Grotzke JE, Cresswell P. MHC Class II-Restricted Presentation of the Major House Dust Mite Allergen Der p 1 Is GILT-Dependent: Implications for Allergic Asthma. PLoS ONE 8(1), e51343 (2013).
  • Qu S-Y, Ou-Yang H-F, He Y-L, Wan Q, Shi J-R, Wu C-G. Der p 2 Recombinant Bacille Calmette-Guérin Targets Dendritic Cells to Inhibit Allergic Airway Inflammation in a Mouse Model of Asthma. Respiration 85(1), 49–58 (2013).
  • Chunsheng J, Brigitte H, Wolfgang H et al. Affinity of IgE and IgG against cross-reactive carbohydrate determinants on plant and insect glycoproteins. J. Allergy Clin. Immunol. 121(1), 185–190 (2008).
  • Altmann F. The Role of Protein Glycosylation in Allergy. Int. Arch. Allergy Immunol. 142(2), 99–115 (2007).
  • Van Ree R, Cabanes-Macheteau M, Akkerdaas J et al. Beta(1,2)-xylose and alpha (1,3)-fucose residues have a strong contribution in IgE binding to plant glycoallergens.. J. Biol. Chem. 275(15), 11451–11458 (2000).
  • Traidl-Hoffmann C, Kasche A, Jakob T et al. Lipid mediators from pollen act as chemoattractants and activators of polymorphonuclear granulocytes. J. Allergy Clin. Immunol. 109(5), 831–838 (2002).
  • Plötz SG, Traidl-Hoffmann C, Feussner I, Kasche A, Feser A et al. Chemotaxis and activation of human peripheral blood eosinophils induced by pollen-associated lipid mediators. J. Allergy Clin. Immunol. 113(6), 1152–1160 (2004).
  • Traidl-Hoffmann C, Mariani V, Hochrein H et al. Pollen-associated phytoprostanes inhibit dendritic cell interleukin-12 production and augment T helper type 2 cell polarization. J. Exp. Med. 201(4), 627–636 (2005).
  • Li Y, Li H, Ji F, Zhang X, Wang R. Thymic stromal lymphopoietin promotes lung inflammation through activation of dendritic cells. J. Asthma. 47(2), 117–123 (2010).
  • Pichavant M, Charbonnier A-S, Taront S et al. Asthmatic bronchial epithelium activated by the proteolytic allergen Der p 1 increases selective dendritic cell recruitment. J. Allergy Clin. Immunol. 115(4), 771–778 (2005).
  • Wang P, Thevenot P, Saravia J. Radical-containing particles activate dendritic cells and enhance Th17 inflammation in a mouse model of asthma. Am. J. Respir. Cell Mol. Biol. 45(5), 977–983 (2011).
  • Hollingsworth J, Free M. Ozone activates pulmonary dendritic cells and promotes allergic sensitization by a TLR4-dependent mechanism. J. Allergy Clin. Immunol. 125(5), 1167–1170 (2010).
  • Ashktorab H, Entezari O, Nouraie M et al. Helicobacter pylori protection against reflux esophagitis. Dig. Dis. Sci. 57(11), 2924–2928 (2012).
  • Whiteman DC, Parmar P, Fahey P et al. Association of Helicobacter pylori infection with reduced risk for esophageal cancer is independent of environmental and genetic modifiers. Gastroenterology 139(1), 73–83 (2010).
  • Amberbir a, Medhin G, Erku W et al. Effects of Helicobacter pylori, geohelminth infection and selected commensal bacteria on the risk of allergic disease and sensitization in 3-year-old Ethiopian children. Clin. Exp. Allergy 41(10), 1422–1430 (2011).
  • Oertli M, Noben M, Engler DB et al. Helicobacter pylori γ-glutamyl transpeptidase and vacuolating cytotoxin promote gastric persistence and immune tolerance. Proc. Natl Acad. Sci. USA 110(8), 3047–3052 (2013).
  • Oertli M, Sundquist M, Hitzler I et al. DC-derived IL-18 drives Treg differentiation, murine Helicobacter pylori-specific immune tolerance, and asthma protection. J. Clin. Invest. 122(3), 1082–1096 (2012).
  • Codolo G, Mazzi P, Amedei A et al. The neutrophil-activating protein of Helicobacter pylori down-modulates Th2 inflammation in ovalbumin-induced allergic asthma. Cell. Microbiol. 10(11), 2355–2363 (2008).
  • Lee K, Kim SH, Yoon HJ et al. Bacillus-derived poly-γ-glutamic acid attenuates allergic airway inflammation through a Toll-like receptor-4-dependent pathway in a murine model of asthma. Clin. Exp. Allergy 41(8), 1143–1156 (2011).
  • Konieczna P, Groeger D, Ziegler M et al. Bifidobacterium infantis 35624 administration induces Foxp3 T regulatory cells in human peripheral blood: potential role for myeloid and plasmacytoid dendritic cells. Gut 61(3), 354–366 (2012).
  • McGuirk P, McCann C, Mills KH. Pathogen-specific T regulatory 1 cells induced in the respiratory tract by a bacterial molecule that stimulates interleukin 10 production by dendritic cells: a novel strategy for evasion of protective T helper type 1 responses by Bordetella pertussis. J. Exp. Med. 195(2), 221–231 (2002).
  • Van der Kleij D, Latz E, Brouwers JF et al. A novel host-parasite lipid cross-talk. Schistosomal lyso-phosphatidylserine activates Toll-like receptor 2 and affects immune polarization. J. Biol. Chem. 277(50), 48122–48129 (2002).
  • Strachan DP. Hay fever, hygiene, and household size. BMJ 299(6710), 1259–1260 (1989).
  • Debarry J, Garn H, Hanuszkiewicz A et al. Acinetobacter lwoffii and Lactococcus lactis strains isolated from farm cowsheds possess strong allergy-protective properties. J. Allergy Clin. Immunol. 119(6), 1514–1521 (2007).
  • Stiehm M, Peters K, Wiesmüller KH et al. A novel synthetic lipopeptide is allergy-protective by the induction of LPS-tolerance. Clin. Exp. Allergy 43(7), 785–797 (2013).
  • Hagner S, Harb H, Zhao M et al. Farm-derived Gram-positive bacterium Staphylococcus sciuri W620 prevents asthma phenotype in HDM- and OVA-exposed mice. Allergy 68(3), 322–329 (2013).
  • James KM, Gebretsadik T, Escobar GJ et al. Risk of childhood asthma following infant bronchiolitis during the respiratory syncytial virus season. J. Allergy Clin. Immunol. S0091–6749(13), 11–13 (2013).
  • Gavala ML, Bashir H, Gern JE. Virus/Allergen Interactions in Asthma. Curr. Allergy Asthma Rep. 13(3), 298–307 (2013).
  • Ghosh HS, Cisse B, Bunin A et al. Continuous expression of the transcription factor e2-2 maintains the cell fate of mature plasmacytoid dendritic cells. Immunity 33(6), 905–916 (2010).
  • Chen X-Q, Liu X-F, Liu W-H, Guo W, Yu Q, Wang C-Y. Comparative analysis of dendritic cell numbers and subsets between smoking and control subjects in the peripheral blood. Int. J. Clin. Exp. Pathol. 6(2), 290–296 (2013).
  • Pritchard AL, Carroll ML, Burel JG et al. Innate IFNs and plasmacytoid dendritic cells constrain Th2 cytokine responses to rhinovirus: a regulatory mechanism with relevance to asthma. J. Immunol. 188(12), 5898–5905 (2012).
  • Tversky JR, Le TV, Bieneman AP et al. Human blood dendritic cells from allergic subjects have impaired capacity to produce interferon-alpha via Toll-like receptor 9. Clin. Exp. Allergy 38(5), 781–788 (2008).
  • Gill MA, Bajwa G, George TA et al. Counterregulation between the FcepsilonRI pathway and antiviral responses in human plasmacytoid dendritic cells. J. Immunol. 184(11), 5999–6006 (2010).
  • Srivastava V, Manchanda M, Gupta S et al. Toll-like receptor 2 and DC-SIGNR1 differentially regulate suppressors of cytokine signaling 1 in dendritic cells during Mycobacterium tuberculosis infection. J. Biol. Chem. 284(38), 25532–25541 (2009).
  • Depaolo RW, Tang F, Kim I et al. Toll-like receptor 6 drives differentiation of tolerogenic dendritic cells and contributes to LcrV-mediated plague pathogenesis. Cell Host Microbe. 4(4), 350–361 (2008).
  • Dillon S, Agrawal S, Banerjee K et al. Yeast zymosan, a stimulus for TLR2 and dectin-1, induces regulatory antigen-presenting cells and immunological tolerance. J. Clin. Invest. 116(4), 916–928 (2006).
  • Perrot I, Deauvieau F, Massacrier C et al. TLR3 and Rig-like receptor on myeloid dendritic cells and Rig-like receptor on human NK cells are both mandatory for production of IFN-gamma in response to double-stranded RNA. J. Immunol. 185(4), 2080–2088 (2010).
  • Wilson RH, Maruoka S, Whitehead GS et al. The Toll-like receptor 5 ligand flagellin promotes asthma by priming allergic responses to indoor allergens. Nat. Med. 18(11), 1705–1710 (2012).
  • De Almeida L a, Macedo GC, Marinho F a V et al. TLR6 plays an important role in host innate resistance to Brucella abortus infection in mice. Infect. Immun. 81(5), 1654–1662 (2013).
  • Gringhuis S, Vlist M van der. HIV-1 exploits innate signaling by TLR8 and DC-SIGN for productive infection of dendritic cells. Nat. Immunol. 11(5), 419–426 (2010).
  • Kool M, Geurtsvankessel C, Muskens F et al. Facilitated antigen uptake and timed exposure to TLR ligands dictate the antigen-presenting potential of plasmacytoid DCs. J. Leukoc. Biol. 90(6), 1177–1190 (2011).
  • Takagi H, Fukaya T, Eizumi K et al. Plasmacytoid dendritic cells are crucial for the initiation of inflammation and T cell immunity in vivo. Immunity 35(6), 958–971 (2011).
  • Koblansky a A, Jankovic D, Oh H et al. Recognition of Profilin by Toll-like Receptor 12 Is Critical for Host Resistance to Toxoplasma gondii. Immunity 38(1), 119–130 (2013).
  • Oldenburg M, Krüger A, Ferstl R et al. TLR13 recognizes bacterial 23S rRNA devoid of erythromycin resistance-forming modification. Science 337(6098), 1111–1115 (2012).
  • Li J, Jiang H, Wen W, Zheng J, Xu G. The dendritic cell mannose receptor mediates allergen internalization and maturation involving notch 1 signalling. Clin. Exp. Immunol. 162(2), 251–261 (2010).
  • Gingo MR, Wenzel SE, Steele C et al. Asthma diagnosis and airway bronchodilator response in HIV-infected patients. J. Allergy Clin. Immunol. 129(3), 708–714 (2012).
  • Geijtenbeek TB, Van Vliet SJ, Koppel EA et al. Mycobacteria target DC-SIGN to suppress dendritic cell function. J. Exp. Med. 197(1), 7–17 (2003).
  • Smits HH, Engering A, van der Kleij D et al. Selective probiotic bacteria induce IL-10-producing regulatory T cells in vitro by modulating dendritic cell function through dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin. J. Allergy Clin. Immunol. 115(6), 1260–1267 (2005).
  • Konstantinov SR, Smidt H, de Vos WM et al. S layer protein A of Lactobacillus acidophilus NCFM regulates immature dendritic cell and T cell functions. Proc. Natl Acad. Sci. USA 105(49), 19474–19479 (2008).
  • Barrett N, Maekawa A. Dectin-2 recognition of house dust mite triggers cysteinyl leukotriene generation by dendritic cells. J. Immunol. 182(2), 1119–1128 (2009).
  • Eisenbarth SC, Williams A, Colegio OR et al. NLRP10 is a NOD-like receptor essential to initiate adaptive immunity by dendritic cells. Nature 484(7395), 510–513 (2012).
  • Weber M, Hauschild R, Schwarz J et al. Interstitial Dendritic Cell Guidance by Haptotactic Chemokine Gradients. Science 339(6117), 328–332 (2013).
  • Connolly S, Skrinjar M, Rosendahl A. Orally bioavailable allosteric CCR8 antagonists inhibit dendritic cell, T cell and eosinophil migration. Biochem. Pharmacol. 83(6), 778–787 (2012).
  • Robays LJ, Maes T, Lebecque S et al. Chemokine receptor CCR2 but not CCR5 or CCR6 mediates the increase in pulmonary dendritic cells during allergic airway inflammation. J. Immunol. 178(8), 5305–5311 (2007).
  • Schlitzer A, Heiseke AF, Einwächter H et al. Tissue-specific differentiation of a circulating CCR9- pDC-like common dendritic cell precursor. Blood 119(25), 6063–6071 (2012).
  • Shao Z, Makinde TO, Agrawal DK. Calcium-activated potassium channel KCa3.1 in lung dendritic cell migration. Am. J. Respir. Cell Mol. Biol. 45(5), 962–968 (2011).
  • Golebski K, Röschmann KI, Toppila-Salmi S et al. The multi-faceted role of allergen exposure to the local airway mucosa. Allergy 68(2), 152–160 (2013).
  • Sung SS, Fu SM, Rose CE Jr et al. A major lung CD103 (alphaE)-beta7 integrin-positive epithelial dendritic cell population expressing Langerin and tight junction proteins. J. Immunol. 176(4), 2161–2172 (2006).
  • Rate A, Upham JW, Bosco A et al. Airway epithelial cells regulate the functional phenotype of locally differentiating dendritic cells: implications for the pathogenesis of infectious and allergic airway disease. J. Immunol. 182(1), 72–83 (2009).
  • Gunawan H, Takai T, Ikeda S et al. Protease activity of allergenic pollen of cedar, cypress, juniper, birch and ragweed. Allergol. Int. 57(1), 83–91 (2008).
  • Matsumura Y. Role of allergen source-derived proteases in sensitization via airway epithelial cells. J. Allergy 2012, 903659 (2012).
  • Sudha VT, Arora N, Gaur SN et al. Identification of a serine protease as a major allergen (Per a 10) of Periplaneta americana. Allergy 63(6), 768–776 (2008).
  • Wan H, Winton HL, Soeller C et al. Quantitative structural and biochemical analyses of tight junction dynamics following exposure of epithelial cells to house dust mite allergen Der p 1. Clin. Exp. Allergy 30(5), 685–698 (2000).
  • Wan H, Winton HL, Soeller C et al. Der p 1 facilitates transepithelial allergen delivery by disruption of tight junctions. J. Clin. Invest. 104(1), 123–133 (1999).
  • Lambrecht BN, Hammad H. The airway epithelium in asthma. Nat. Med. 18(5), 684–692 (2012).
  • Schuijs MJ, Willart MA, Hammad H et al. Cytokine targets in airway inflammation. Curr. Opin. Pharmacol. 13(3), 351–361 (2013).
  • Hammad H, Chieppa M, Perros F et al. House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells. Nat. Med. 15(4), 410–416 (2009).
  • Nathan AT, Peterson EA, Chakir J et al. Innate immune responses of airway epithelium to house dust mite are mediated through beta-glucan-dependent pathways. J. Allergy Clin. Immunol. 123(3), 612–618 (2009).
  • Chu DK, Llop-Guevara A, Walker TD et al. IL-33, but not thymic stromal lymphopoietin or IL-25, is central to mite and peanut allergic sensitization. J. Allergy Clin. Immunol. 131(1), 187–200 (2013).
  • Willart M, Hammad H. Lung dendritic cell-epithelial cell crosstalk in Th2 responses to allergens. Curr. Opin. Immunol. 23(6), 772–777 (2011).
  • Harada M, Hirota T, Jodo AI et al. Thymic stromal lymphopoietin gene promoter polymorphisms are associated with susceptibility to bronchial asthma. Am. J. Respir. Cell. Mol. Biol. 44(6), 787–793 (2011).
  • Goswami S, Angkasekwinai P, Shan M et al. Divergent functions for airway epithelial matrix metalloproteinase 7 and retinoic acid in experimental asthma. Nat. Immunol. 10(5), 496–503 (2009).
  • Kaiko GE, Phipps S, Angkasekwinai P et al. NK cell deficiency predisposes to viral-induced Th2-type allergic inflammation via epithelial-derived IL-25. J. Immunol. 185(8), 4681–4690 (2010).
  • Regamey N, Obregon C, Ferrari-Lacraz S et al. Airway epithelial IL-15 transforms monocytes into dendritic cells. Am. J. Respir. Cell Mol. Biol. 37(1), 75–84 (2007).
  • Lombardi V, Singh AK, Akbari O. The role of costimulatory molecules in allergic disease and asthma. Int. Arch. Allergy Immunol. 151(3), 179–189 (2010).
  • Kadkhoda K, Wang S, Fan Y et al. ICOS ligand expression is essential for allergic airway hyperresponsiveness. Int. Immunol. 23(4), 239–249 (2011).
  • Kaur D, Brightling C. OX40/OX40 ligand interactions in T-cell regulation and asthma. Chest 141(2), 494–499 (2012).
  • Siddiqui S, Mistry V, Doe C et al. Airway wall expression of OX40/OX40L and interleukin-4 in asthma. Chest 137(4), 797–804 (2010).
  • Wythe SE, Dodd JS, Openshaw PJ et al. OX40 ligand and programmed cell death 1 ligand 2 expression on inflammatory dendritic cells regulates CD4 T cell cytokine production in the lung during viral disease. J. Immunol. 188(4), 1647–1655 (2012).
  • Taylor A, Akdis M, Joss A et al. IL-10 inhibits CD28 and ICOS costimulations of T cells via src homology 2 domain-containing protein tyrosine phosphatase 1. J. Allergy Clin. Immunol. 120(1), 76–83 (2007).
  • Singh AK, Stock P, Akbari O. Role of PD-L1 and PD-L2 in allergic diseases and asthma. Allergy 66(2), 155–162 (2011).
  • Akbari O, Stock P, Singh AK et al. PD-L1 and PD-L2 modulate airway inflammation and iNKT-cell-dependent airway hyperreactivity in opposing directions. Mucosal. Immunol. 3(1), 81–91 (2010).
  • Ghiotto M, Gauthier L, Serriari N et al. PD-L1 and PD-L2 differ in their molecular mechanisms of interaction with PD-1. Int. Immunol. 22(8), 651–660 (2010).
  • Wölfle SJ, Strebovsky J, Bartz H et al. PD-L1 expression on tolerogenic APCs is controlled by STAT-3. Eur. J. Immunol. 41(2), 413–424 (2011).
  • Lewkowich I, Lajoie S, Stoffers S. PD-L2 modulates asthma severity by directly decreasing dendritic cell IL-12 production. Mucosal. Immunol. 6(4), 728–739 (2013).
  • Coquerelle C, Moser M. DC subsets in positive and negative regulation of immunity. Immunol. Rev. 234(1), 317–334 (2010).
  • McGee HS, Yagita H, Shao Z, Agrawal DK. Programmed Death-1 antibody blocks therapeutic effects of T-regulatory cells in cockroach antigen-induced allergic asthma. Am. J. Respir. Cell Mol. Biol. 43(4), 432–442 (2010).
  • Cai G, Freeman GJ. The CD160, BTLA, LIGHT/HVEM pathway: a bidirectional switch regulating T-cell activation. Immunol. Rev. 229(1), 244–258 (2009).
  • Chappell CP, Draves KE, Giltiay NV et al. Extrafollicular B cell activation by marginal zone dendritic cells drives T cell-dependent antibody responses. J. Exp. Med. 209(10), 1825–1840 (2012).
  • Fillatreau S. Cytokine-producing B cells as regulators of pathogenic and protective immune responses. Ann. Rheum. Dis. 72(Suppl. 2), 80–84 (2013).
  • Jacobsen E a, Zellner KR, Colbert D, Lee N a, Lee JJ. Eosinophils regulate dendritic cells and Th2 pulmonary immune responses following allergen provocation. J. Immunol. 187(11), 6059–6068 (2011).
  • Akuthota P, Wang H, Weller P. Eosinophils as Antigen-Presenting Cells in Allergic Upper Airway Disease. Curr. Opin. Allergy Clin. Immunol. 10(1), 14–19 (2010).
  • Schmudde I, Ströver H a, Vollbrandt T et al. C5a receptor signalling in dendritic cells controls the development of maladaptive Th2 and Th17 immunity in experimental allergic asthma. Mucosal. Immunol. 6(4), 807–825 (2013).
  • Trivedi N, Guentzel M. Mast cells: multitalented facilitators of protection against bacterial pathogens. Expert Rev. Clin. Immunol. 9(2), 129–138 (2013).
  • Nabe T, Matsuya K, Akamizu K et al. Roles of basophils and mast cells infiltrating the lung by multiple antigen challenges in asthmatic responses of mice. Br. J. Pharmacol. 169(2), 462–476 (2013).
  • Wang C-M, Chuang J-J. Effect of mite allergen immunotherapy on the altered phenotype of dendritic cells in allergic asthmatic children. Ann. Allergy Asthma Immunol. 110(2), 107–112 (2013).
  • Weinberger EE, Himly M, Myschik J et al. Generation of hypoallergenic neoglycoconjugates for dendritic cell targeted vaccination: A novel tool for specific immunotherapy. J. Control. Rel. 165(2), 101–109 (2013).
  • McGee HS, Stallworth AL, Agrawal T, Shao Z, Lorence L, Agrawal DK. Fms-like tyrosine kinase 3 ligand decreases T helper type 17 cells and suppressors of cytokine signaling proteins in the lung of house dust mite-sensitized and -challenged mice. Am. J. Respir. Cell Mol. Biol. 43(5), 520–529 (2010).
  • Shao Z, Makinde TO, McGee HS, Wang X, Agrawal DK. Fms-like tyrosine kinase 3 ligand regulates migratory pattern and antigen uptake of lung dendritic cell subsets in a murine model of allergic airway inflammation. J. Immunol. 183(11), 7531–7538 (2009).
  • Makinde TO, Steininger R, Agrawal DK. NPY and NPY receptors in airway structural and inflammatory cells in allergic asthma. Exp. Mol. Pathol. 94(1), 45–50 (2013).
  • Voedisch S, Rochlitzer S, Veres TZ, Spies E, Braun A. Neuropeptides control the dynamic behavior of airway mucosal dendritic cells. PLoS ONE 7(9), e45951 (2012).
  • Bellinghausen I, Reuter S, Martin H et al. Enhanced production of CCL18 by tolerogenic dendritic cells is associated with inhibition of allergic airway reactivity. J. Allergy Clin. Immunol. 130(6), 1384–1393 (2012).
  • Ilarraza R, Wu Y, Adamko DJ. Montelukast inhibits leukotriene stimulation of human dendritic cells in vitro. Int. Arch. Allergy Immunol. 159(4), 422–427 (2012).
  • Emo J, Meednu N, Chapman TJ et al. Lpa2 is a negative regulator of both dendritic cell activation and murine models of allergic lung inflammation. J. Immunol. 188(8), 3784–3790 (2012).
  • Enomoto N, Hyde E, Ma JZ-I et al. Allergen-specific CTL require perforin expression to suppress allergic airway inflammation. J. Immunol. 188(4), 1734–1741 (2012).
  • Edwards MR, Johnston SL. Interferon-lambda as a new approach for treatment of allergic asthma? EMBO Mol. Med. 3(6), 306–308 (2011).
  • Zhang X, Schmudde I, Laumonnier Y et al. A critical role for C5L2 in the pathogenesis of experimental allergic asthma. J. Immunol. 185(11), 6741–6752 (2010).
  • Agrawal T, Gupta GK, Agrawal DK. Calcitriol decreases expression of importin α3 and attenuates RelA translocation in human bronchial smooth muscle cells. J. Clin. Immunol. 32(5), 1093–1103 (2012).
  • Bartels LE, Hvas CL, Agnholt J, Dahlerup JF, Agger R. Human dendritic cell antigen presentation and chemotaxis are inhibited by intrinsic 25-hydroxy vitamin D activation. Int. Immunopharmacol. 10(8), 922–928 (2010).
  • Jeffery LE, Wood AM, Qureshi OS et al. Availability of 25-hydroxyvitamin D(3) to APCs controls the balance between regulatory and inflammatory T cell responses. J. Immunol. 189(11), 5155–5164 (2012).
  • Agrawal T, Gupta GK, Agrawal DK. Vitamin D deficiency decreases the expression of VDR and prohibitin in the lungs of mice with allergic airway inflammation. Exp. Mol. Pathol. 93(1), 74–81 (2012).
  • Bartels L, Jørgensen S, Bendix M. 25-Hydroxy vitamin D3 modulates dendritic cell phenotype and function in Crohn’s disease. Immunopharmacology 21(2), 177–186 (2013).
  • Manicassamy S, Reizis B, Ravindran R et al. Activation of beta-catenin in dendritic cells regulates immunity versus tolerance in the intestine. Science 329(5993), 849–853 (2010).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.