344
Views
32
CrossRef citations to date
0
Altmetric
Reviews

Current status of systemic sclerosis biomarkers: applications for diagnosis, management and drug development

&
Pages 1077-1090 | Published online: 10 Jan 2014

References

  • Mayes MD, Lacey Jr JV, Beebe-Dimmer J et al. Prevalence, incidence, survival, and disease characteristics of systemic sclerosis in a large US population. Arthritis Rheum. 48(8), 2246–2255 (2003).
  • Barnes J, Mayes MD. Epidemiology of systemic sclerosis: incidence, prevalence, survival, risk factors, malignancy, and environmental triggers. Curr. Opin. Rheumatol. 24(2), 165–170 (2012).
  • Al-Dhaher FF, Pope JE, Ouimet JM. Determinants of morbidity and mortality of systemic sclerosis in Canada. Semin. Arthritis Rheum. 39(4), 269–277 (2010).
  • Steen VD, Medsger TA. Changes in causes of death in systemic sclerosis, 1972–2002. Ann. Rheum. Dis. 66(7), 940–944 (2007).
  • Castro SV, Jimenez SA. Biomarkers in systemic sclerosis. Biomark. Med. 4(1), 133–147 (2010).
  • Abignano G, Buch M, Emery P, Del Galdo F. Biomarkers in the management of scleroderma: an update. Curr. Rheumatol. Rep. 13(1), 4–12 (2011).
  • Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 69(3), 89–95 (2001).
  • Preliminary criteria for the classification of systemic sclerosis (scleroderma). Subcommittee for scleroderma criteria of the American rheumatism association diagnostic and therapeutic criteria committee. Arthritis Rheum. 23(5), 581–590 (1980).
  • Lonzetti LS, Joyal F, Raynauld JP et al. Updating the American College of Rheumatology preliminary classification criteria for systemic sclerosis: addition of severe nailfold capillaroscopy abnormalities markedly increases the sensitivity for limited scleroderma. Arthritis Rheum. 44(3), 735–736 (2001).
  • LeRoy EC, Black C, Fleischmajer R et al. Scleroderma (systemic sclerosis): classification, subsets and pathogenesis. J. Rheumatol. 15(2), 202–205 (1988).
  • Ferri C, Valentini G, Cozzi F et al. Systemic sclerosis: demographic, clinical, and serologic features and survival in 1,012 Italian patients. Medicine (Baltimore) 81(2), 139–153 (2002).
  • Scussel-Lonzetti L, Joyal F, Raynauld JP et al. Predicting mortality in systemic sclerosis: analysis of a cohort of 309 French Canadian patients with emphasis on features at diagnosis as predictive factors for survival. Medicine (Baltimore), 81(2), 154–167 (2002).
  • Poormoghim H, Lucas M, Fertig N, Medsger TA, Jr. Systemic sclerosis sine scleroderma: demographic, clinical, and serologic features and survival in forty-eight patients. Arthritis Rheum. 43(2), 444–451 (2000).
  • Steen VD. Autoantibodies in systemic sclerosis. Semin. Arthritis Rheum. 35(1), 35–42 (2005).
  • Ho KT, Reveille JD. The clinical relevance of autoantibodies in scleroderma. Arthritis Res. Ther. 5(2), 80–93 (2003).
  • Mahler M, You D, Baron M, Taillefer SS, Hudson M, Fritzler MJ. Anti-centromere antibodies in a large cohort of systemic sclerosis patients: comparison between immunofluorescence, CENP-A and CENP-B ELISA. Clin. Chim. Acta. 412 (21–22), 1937–1943 (2011).
  • Reveille JD, Solomon DH. Evidence-based guidelines for the use of immunologic tests: anticentromere, Scl-70, and nucleolar antibodies. Arthritis Rheum. 49(3), 399–412 (2003).
  • Hesselstrand R, Scheja A, Shen GQ, Wiik A, Akesson A. The association of antinuclear antibodies with organ involvement and survival in systemic sclerosis. Rheumatology (Oxford) 42(4), 534–540 (2003).
  • Hamaguchi Y. Autoantibody profiles in systemic sclerosis: predictive value for clinical evaluation and prognosis. J. Dermatol. 37(1), 42–53 (2010).
  • Hu PQ, Fertig N, Medsger TA Jr, Wright TM. Correlation of serum anti-DNA topoisomerase I antibody levels with disease severity and activity in systemic sclerosis. Arthritis Rheum. 48(5), 1363–1373 (2003).
  • Nihtyanova SI, Denton CP. Autoantibodies as predictive tools in systemic sclerosis. Nat. Rev. Rheumatol. 6(2), 112–116 (2010).
  • Hanke K, Dahnrich C, Bruckner CS et al. Diagnostic value of anti-topoisomerase I antibodies in a large monocentric cohort. Arthritis Res. Ther. 11(1), R28 (2009).
  • Nikpour M, Hissaria P, Byron J et al. Prevalence, correlates and clinical usefulness of antibodies to RNA polymerase III in systemic sclerosis: a cross-sectional analysis of data from an Australian cohort. Arthritis Res. Ther. 13(6), R211 (2011).
  • Nguyen B, Assassi S, Arnett FC, Mayes MD. Association of RNA polymerase III antibodies with scleroderma renal crisis. J. Rheumatol. 37(5), 1068; author reply 1069 (2010).
  • Cavazzana I, Ceribelli A, Airo P, Zingarelli S, Tincani A, Franceschini F. Anti-RNA polymerase III antibodies: a marker of systemic sclerosis with rapid onset and skin thickening progression. Autoimmun. Rev. 8(7), 580–584 (2009).
  • Nihtyanova SI, Parker JC, Black CM, Bunn CC, Denton CP. A longitudinal study of anti-RNA polymerase III antibody levels in systemic sclerosis. Rheumatology (Oxford), 48(10), 1218–1221 (2009).
  • Graf SW, Hakendorf P, Lester S et al. South Australian Scleroderma Register: autoantibodies as predictive biomarkers of phenotype and outcome. Int. J. Rheum. Dis. 15(1), 102–109 (2012).
  • Aggarwal R, Lucas M, Fertig N, Oddis CV, Medsger TA Jr. Anti-U3 RNP autoantibodies in systemic sclerosis. Arthritis Rheum. 60(4), 1112–1118 (2009).
  • Steen V, Domsic RT, Lucas M, Fertig N, Medsger TA Jr. A clinical and serologic comparison of African American and Caucasian patients with systemic sclerosis. Arthritis Rheum. 64(9), 2986–2994 (2012).
  • Fertig N, Domsic RT, Rodriguez-Reyna T et al. Anti-U11/U12 RNP antibodies in systemic sclerosis: a new serologic marker associated with pulmonary fibrosis. Arthritis Rheum. 61(7), 958–965 (2009).
  • Villalta D, Imbastaro T, Di Giovanni S et al. Diagnostic accuracy and predictive value of extended autoantibody profile in systemic sclerosis. Autoimmun. Rev. 12(2), 114–120 (2012).
  • Ingegnoli F, Boracchi P, Gualtierotti R et al. Improving outcome prediction of systemic sclerosis from isolated Raynaud's phenomenon: role of autoantibodies and nail-fold capillaroscopy. Rheumatology (Oxford) 49(4), 797–805 (2010).
  • Koenig M, Joyal F, Fritzler MJ et al. Autoantibodies and microvascular damage are independent predictive factors for the progression of Raynaud's phenomenon to systemic sclerosis: a twenty-year prospective study of 586 patients, with validation of proposed criteria for early systemic sclerosis. Arthritis Rheum. 58(12), 3902–3912 (2008).
  • Assassi S, Sharif R, Lasky RE et al. Predictors of interstitial lung disease in early systemic sclerosis: a prospective longitudinal study of the GENISOS cohort. Arthritis Res. Ther. 12(5), R166 (2010).
  • Czirjak L, Foeldvari I, Muller-Ladner U. Skin involvement in systemic sclerosis. Rheumatology (Oxford) 47(Suppl. 5), v44–v45 (2008).
  • Czirjak L, Nagy Z, Aringer M, Riemekasten G, Matucci-Cerinic M, Furst DE. The EUSTAR model for teaching and implementing the modified Rodnan skin score in systemic sclerosis. Ann. Rheum. Dis. 66(7), 966–969 (2007).
  • Lenga Y, Koh A, Perera AS, McCulloch CA, Sodek J, Zohar R. Osteopontin expression is required for myofibroblast differentiation. Circ. Res. 102(3), 319–327 (2008).
  • Wu M, Schneider DJ, Mayes MD et al. Osteopontin in systemic sclerosis and its role in dermal fibrosis. J. Invest. Dermatol. 132(6), 1605–1614 (2012).
  • Lorenzen JM, Kramer R, Meier M et al. Osteopontin in the development of systemic sclerosis--relation to disease activity and organ manifestation. Rheumatology (Oxford) 49(10), 1989–1991 (2010).
  • Barizzone N, Marchini M, Cappiello F et al. Association of osteopontin regulatory polymorphisms with systemic sclerosis. Hum. Immunol. 72(10), 930–934 (2011).
  • Bhattacharyya S, Wei J, Varga J. Understanding fibrosis in systemic sclerosis: shifting paradigms, emerging opportunities. Nat. Rev. Rheumatol. 8(1), 42–54 (2011).
  • Wynn TA. Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J. Clin. Invest. 117(3), 524–529 (2007).
  • Ahrens D, Koch AE, Pope RM, Stein-Picarella M, Niedbala MJ. Expression of matrix metalloproteinase 9 (96-kd gelatinase B) in human rheumatoid arthritis. Arthritis Rheum. 39(9), 1576–1587 (1996).
  • Fukuda Y, Ishizaki M, Kudoh S, Kitaichi M, Yamanaka N. Localization of matrix metalloproteinases-1, −2, and −9 and tissue inhibitor of metalloproteinase-2 in interstitial lung diseases. Lab. Invest. 78(6), 687–698 (1998).
  • Kim WU, Min SY, Cho ML et al. Elevated matrix metalloproteinase-9 in patients with systemic sclerosis. Arthritis Res. Ther. 7(1), R71–R79 (2005).
  • Pardo A, Selman M. Matrix metalloproteinases in aberrant fibrotic tissue remodeling. Proc. Am. Thorac. Soc. 3(4), 383–388 (2006).
  • Serrati S, Cinelli M, Margheri F et al. Systemic sclerosis fibroblasts inhibit in vitro angiogenesis by MMP-12-dependent cleavage of the endothelial cell urokinase receptor. J. Pathol. 210(2), 240–248 (2006).
  • Manetti M, Guiducci S, Romano E et al. Increased serum levels and tissue expression of matrix metalloproteinase-12 in patients with systemic sclerosis: correlation with severity of skin and pulmonary fibrosis and vascular damage. Ann. Rheum. Dis. 71(6), 1064–1072 (2012).
  • Tontonoz P, Spiegelman BM. Fat and beyond: the diverse biology of PPARgamma. Annu. Rev. Biochem. 77, 289–312 (2008).
  • Wei J, Bhattacharyya S, Varga J. Peroxisome proliferator-activated receptor gamma: innate protection from excessive fibrogenesis and potential therapeutic target in systemic sclerosis. Curr. Opin. Rheumatol. 22(6), 671–676 (2010).
  • Wei J, Ghosh AK, Sargent JL et al. PPARgamma downregulation by TGFss in fibroblast and impaired expression and function in systemic sclerosis: a novel mechanism for progressive fibrogenesis. PLoS One 5(11), e13778 (2010).
  • Shetty S, Kusminski CM, Scherer PE. Adiponectin in health and disease: evaluation of adiponectin-targeted drug development strategies. Trends Pharmacol. Sci. 30(5), 234–239 (2009).
  • Lakota K, Wei J, Carns M et al. Levels of adiponectin, a marker for PPAR-gamma activity, correlate with skin fibrosis in systemic sclerosis: potential utility as biomarker? Arthritis Res. Ther. 14(3), R102 (2012).
  • Arakawa H, Jinnin M, Muchemwa FC et al. Adiponectin expression is decreased in the involved skin and sera of diffuse cutaneous scleroderma patients. Exp. Dermatol. 20(9), 764–766 (2011).
  • Sargent JL, Whitfield ML. Capturing the heterogeneity in systemic sclerosis with genome-wide expression profiling. Expert Rev. Clin. Immunol. 7(4), 463–473 (2011).
  • Milano A, Pendergrass SA, Sargent JL et al. Molecular subsets in the gene expression signatures of scleroderma skin. PLoS ONE 3(7), e2696 (2008).
  • Farina G, Lemaire R, Pancari P, Bayle J, Widom RL, Lafyatis R. Cartilage oligomeric matrix protein expression in systemic sclerosis reveals heterogeneity of dermal fibroblast responses to transforming growth factor beta. Ann. Rheum. Dis. 68(3), 435–441 (2009).
  • Farina G, Lafyatis D, Lemaire R, Lafyatis R. A four-gene biomarker predicts skin disease in patients with diffuse cutaneous systemic sclerosis. Arthritis Rheum. 62(2), 580–588 (2010).
  • Abignano G, Aydin SZ, Castillo-Gallego C et al. Virtual skin biopsy by optical coherence tomography: the first quantitative imaging biomarker for scleroderma. Ann. Rheum. Dis. DOI: 10.1136/annrheumdis-2012-202682 (2013) (Epub ahead of print).
  • Tyndall AJ, Bannert B, Vonk M et al. Causes and risk factors for death in systemic sclerosis: a study from the EULAR Scleroderma Trials and Research (EUSTAR) database. Ann. Rheum. Dis. 69(10), 1809–1815 (2010).
  • Wells AU, Steen V, Valentini G. Pulmonary complications: one of the most challenging complications of systemic sclerosis. Rheumatology (Oxford), 48 (Suppl. 3), iii40–iii44 (2009).
  • Behr J, Furst DE. Pulmonary function tests. Rheumatology (Oxford) 47 (Suppl. 5), v65–v67 (2008).
  • Goh NS, Desai SR, Veeraraghavan S et al. Interstitial lung disease in systemic sclerosis: a simple staging system. Am. J. Respir. Crit. Care Med. 177(11), 1248–1254 (2008).
  • Behr J. Approach to the diagnosis of interstitial lung disease. Clin. Chest Med. 33(1), 1–10 (2012).
  • Moore OA, Goh N, Corte T et al. Extent of disease on high-resolution computed tomography lung is a predictor of decline and mortality in systemic sclerosis-related interstitial lung disease. Rheumatology (Oxford) 52(1), 155–160 (2013).
  • Corvol H, Flamein F, Epaud R, Clement A, Guillot L. Lung alveolar epithelium and interstitial lung disease. Int. J. Biochem. Cell Biol. 41(8–9), 1643–1651 (2009).
  • Bonella F, Volpe A, Caramaschi P et al. Surfactant protein D and KL-6 serum levels in systemic sclerosis: correlation with lung and systemic involvement. Sarcoidosis. Vasc. Diffuse Lung Dis. 28(1), 27–33 (2011).
  • Yanaba K, Hasegawa M, Takehara K, Sato S. Comparative study of serum surfactant protein-D and KL-6 concentrations in patients with systemic sclerosis as markers for monitoring the activity of pulmonary fibrosis. J. Rheumatol. 31(6), 1112–1120 (2004).
  • Hant FN, Ludwicka-Bradley A, Wang HJ et al. Surfactant protein D and KL-6 as serum biomarkers of interstitial lung disease in patients with scleroderma. J. Rheumatol. 36(4), 773–780 (2009).
  • Prasse A, Pechkovsky DV, Toews GB et al. A vicious circle of alveolar macrophages and fibroblasts perpetuates pulmonary fibrosis via CCL18. Am. J. Respir. Crit. Care Med. 173(7), 781–792 (2006).
  • Kodera M, Hasegawa M, Komura K, Yanaba K, Takehara K, Sato S. Serum pulmonary and activation-regulated chemokine/CCL18 levels in patients with systemic sclerosis: a sensitive indicator of active pulmonary fibrosis. Arthritis Rheum. 52(9), 2889–2896 (2005).
  • Tiev KP, Hua-Huy T, Kettaneh A et al. Serum CC chemokine ligand-18 predicts lung disease worsening in systemic sclerosis. Eur. Respir. J. 38(6), 1355–1360 (2011).
  • Elhaj M, Charles J, Pedroza C et al. Can serum surfactant protein d or cc-chemokine ligand 18 predict outcome of interstitial lung disease in patients with early systemic sclerosis? J. Rheumatol. 40(7), 1114–1120 (2013).
  • Lee CG, Da Silva CA, Dela Cruz CS et al. Role of chitin and chitinase/chitinase-like proteins in inflammation, tissue remodeling, and injury. Ann. Rev. Physiol. 73, 479–501 (2011).
  • Migliaccio CT, Buford MC, Jessop F, Holian A. The IL-4Ralpha pathway in macrophages and its potential role in silica-induced pulmonary fibrosis. J. Leukocyte Biol. 83(3), 630–639 (2008).
  • Lee CG, Herzog EL, Ahangari F et al. Chitinase 1 is a biomarker for and therapeutic target in scleroderma-associated interstitial lung disease that augments TGF-beta1 signaling. J. Immunol. 189(5), 2635–2644 (2012).
  • Muangchan C, Harding S, Khimdas S, Bonner A, Baron M, Pope J. Association of C-reactive protein with high disease activity in systemic sclerosis: results from the Canadian Scleroderma Research Group. Arthritis Care Res. (Hoboken), 64(9), 1405–1414 (2012).
  • Liu X, Mayes MD, Pedroza C et al. Does C-reactive protein predict the long-term progression of interstitial lung disease and survival in patients with early systemic sclerosis? Arthritis Care Res. (Hoboken), 65(8), 1375–1380 (2013).
  • Hsu E, Shi H, Jordan RM, Lyons-Weiler J, Pilewski JM, Feghali-Bostwick CA. Lung tissues in patients with systemic sclerosis have gene expression patterns unique to pulmonary fibrosis and pulmonary hypertension. Arthritis Rheum. 63(3), 783–794 (2011).
  • Assassi S, Wu M, Tan FK et al. Skin gene expression correlates of severity of interstitial lung disease in systemic sclerosis. Arthritis Rheum. () (2013) (Epub ahead of print).
  • Radstake TR, Gorlova O, Rueda B et al. Genome-wide association study of systemic sclerosis identifies CD247 as a new susceptibility locus. Nat. Genet. 42(5), 426–429 (2010).
  • Sharif R, Mayes MD, Tan FK et al. IRF5 polymorphism predicts prognosis in patients with systemic sclerosis. Ann Rheum. Dis. 71(7), 1197–1202 (2012).
  • Dimitroulas T, Giannakoulas G, Karvounis H, Settas L, Kitas GD. Systemic sclerosis-related pulmonary hypertension: unique characteristics and future treatment targets. Curr. Pharm. Des. 18(11), 1457–1464 (2012).
  • Humbert M, Yaici A, de Groote P et al. Screening for pulmonary arterial hypertension in patients with systemic sclerosis: clinical characteristics at diagnosis and long-term survival. Arthritis Rheum. 63(11), 3522–3530 (2011).
  • Chung L, Liu J, Parsons L et al. Characterization of connective tissue disease-associated pulmonary arterial hypertension from REVEAL: identifying systemic sclerosis as a unique phenotype. Chest 138(6), 1383–1394).
  • Dimitroulas T, Giannakoulas G, Karvounis H, Gatzoulis MA, Settas L. Natriuretic peptides in systemic sclerosis-related pulmonary arterial hypertension. Semin. Arthritis Rheum. 39(4), 278–284 (2010).
  • Galie N, Hoeper MM, Humbert M et al. Guidelines for the diagnosis and treatment of pulmonary hypertension: the Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT). Eur. Heart J. 30(20), 2493–2537 (2009).
  • Williams MH, Handler CE, Akram R et al. Role of N-terminal brain natriuretic peptide (N-TproBNP) in scleroderma-associated pulmonary arterial hypertension. Eur. Heart J. 27(12), 1485–1494 (2006).
  • Cavagna L, Caporali R, Klersy C et al. Comparison of brain natriuretic peptide (BNP) and NT-proBNP in screening for pulmonary arterial hypertension in patients with systemic sclerosis. J. Rheumatol. 37(10), 2064–2070 (2010).
  • Voelkel MA, Wynne KM, Badesch DB, Groves BM, Voelkel NF. Hyperuricemia in severe pulmonary hypertension. Chest 117(1), 19–24 (2000).
  • Dimitroulas T, Giannakoulas G, Dimitroula H et al. Significance of serum uric acid in pulmonary hypertension due to systemic sclerosis: a pilot study. Rheumatol. Int. 31(2), 263–267 (2012).
  • Meadows CA, Risbano MG, Zhang L et al. Increased expression of growth differentiation factor-15 in systemic sclerosis-associated pulmonary arterial hypertension. Chest 139(5), 994–1002 (2011).
  • Yanaba K, Asano Y, Tada Y, Sugaya M, Kadono T, Sato S. Clinical significance of serum growth differentiation factor-15 levels in systemic sclerosis: association with disease severity. Mod. Rheumatol. 22(5), 668–675 (2012).
  • Lenting PJ, Casari C, Christophe OD, Denis CV. von Willebrand factor: the old, the new and the unknown. J Thromb Haemost, 10(12), 2428–2437 (2012).
  • Barnes T, Gliddon A, Dore CJ, Maddison P, Moots RJ. Baseline vWF factor predicts the development of elevated pulmonary artery pressure in systemic sclerosis. Rheumatology (Oxford) 51(9), 1606–1609 (2012).
  • van Loon JE, Kavousi M, Leebeek FW et al. von Willebrand factor plasma levels, genetic variations and coronary heart disease in an older population. J. Thromb. Haemost. 10(7), 1262–1269 (2012).
  • Shao D, Park JE, Wort SJ. The role of endothelin-1 in the pathogenesis of pulmonary arterial hypertension. Pharmacol. Res. 63(6), 504–511 (2011).
  • Schmidt J, Launay D, Soudan B et al. [Assessment of plasma endothelin level measurement in systemic sclerosis]. Rev. Med. Interne. 28(6), 371–376 (2007).
  • Cheadle C, Berger AE, Mathai SC et al. Erythroid-specific transcriptional changes in PBMCs from pulmonary hypertension patients. PLoS ONE 7(4), e34951 (2012).
  • Pendergrass SA, Hayes E, Farina G et al. Limited systemic sclerosis patients with pulmonary arterial hypertension show biomarkers of inflammation and vascular injury. PLoS One 5(8), e12106 (2010).
  • Steen VD, Medsger TA Jr. The value of the Health Assessment Questionnaire and special patient-generated scales to demonstrate change in systemic sclerosis patients over time. Arthritis Rheum. 40(11), 1984–1991 (1997).
  • Medsger TA, Jr., Bombardieri S, Czirjak L, Scorza R, Della Rossa A, Bencivelli W. Assessment of disease severity and prognosis. Clin. Exp. Rheumatol. 21(3 Suppl. 29), S42–46 (2003).
  • Abignano G, Cuomo G, Buch MH et al. The enhanced liver fibrosis test: a clinical grade, validated serum test, biomarker of overall fibrosis in systemic sclerosis. Ann. Rheum Dis, (2013) (Epub ahead of print).
  • Parkes J, Roderick P, Harris S et al. Enhanced liver fibrosis test can predict clinical outcomes in patients with chronic liver disease. Gut, 59(9), 1245–1251 (2010).
  • Liu X, Mayes MD, Tan FK et al. Correlation of interferon-inducible chemokine plasma levels with disease severity in systemic sclerosis. Arthritis Rheum. 65(1), 226–235 (2013).
  • Khan K, Xu S, Nihtyanova S et al. Clinical and pathological significance of interleukin 6 overexpression in systemic sclerosis. Ann. Rheum. Dis. 71(7), 1235–1242 (2012).
  • De Lauretis A, Sestini P, Pantelidis P et al. Serum interleukin 6 is predictive of early functional decline and mortality in interstitial lung disease associated with systemic sclerosis. J. Rheumatol. 40(4), 435–446 (2013).
  • Hinchcliff M, Huang CC, Wood TA et al. Molecular signatures in skin associated with clinical improvement during mycophenolate treatment in systemic sclerosis. J. Invest. Dermatol. 133(8), 1979–1989 (2013).
  • Chung L, Fiorentino DF, Benbarak MJ et al. Molecular framework for response to imatinib mesylate in systemic sclerosis. Arthritis Rheum. 60(2), 584–591 (2009).
  • Aden N, Shiwen X, Aden D et al. Proteomic analysis of scleroderma lesional skin reveals activated wound healing phenotype of epidermal cell layer. Rheumatology (Oxford) 47(12), 1754–1760 (2008).
  • Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome. Res 19(1), 92–105 (2009).
  • Maurer B, Stanczyk J, Jungel A et al. MicroRNA-29, a key regulator of collagen expression in systemic sclerosis. Arthritis Rheum. 62(6), 1733–1743 (2010).
  • Zhu H, Li Y, Qu S et al. MicroRNA expression abnormalities in limited cutaneous scleroderma and diffuse cutaneous scleroderma. J. Clin. Immunol. 32(3), 514–522 (2012).
  • Robinson WH, Lindstrom TM, Cheung RK, Sokolove J. Mechanistic biomarkers for clinical decision making in rheumatic diseases. Nat. Rev. Rheumatol. 9(5), 267–276 (2013).
  • van den Hoogen F, Khanna D, Fransen J et al. Classification criteria for systemic sclerosis. Arthritis Rheum. (2013) (In press).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.