140
Views
2
CrossRef citations to date
0
Altmetric
Reviews

Optimizing the use of regulatory T cells in allotransplantation: recent advances and future perspectives

, , , &
Pages 1303-1314 | Published online: 10 Jan 2014

References

  • Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 155(3), 1151–1164 (1995).
  • Abbas AK, Benoist C, Bluestone JA et al. Regulatory T cells: recommendations to simplify the nomenclature. Nat. Immunol. 14(4), 307–308 (2013).
  • Burchill MA, Yang J, Vang KB et al. Linked T cell receptor and cytokine signaling govern the development of the regulatory T cell repertoire. Immunity 28(1), 112–121 (2008).
  • Goldstein JD, Perol L, Zaragoza B, Baeyens A, Marodon G, Piaggio E. Role of cytokines in thymus- versus peripherally derived-regulatory T cell differentiation and function. Front. Immunol. 4, 155 (2013).
  • Lio CW, Hsieh CS. A two-step process for thymic regulatory T cell development. Immunity 28(1), 100–111 (2008).
  • Bluestone JA, Abbas AK. Natural versus adaptive regulatory T cells. Nat. Rev. Immunol. 3(3), 253–257 (2003).
  • Kretschmer K, Heng TS, Von Boehmer H. De novo production of antigen-specific suppressor cells in vivo. Nat. Protoc. 1(2), 653–661 (2006).
  • Daniel C, Ploegh H, Von Boehmer H. Antigen-specific induction of regulatory T cells in vivo and in vitro. Methods Mol. Biol. 707, 173–185 (2011).
  • Curotto De Lafaille MA, Lafaille JJ. Natural and adaptive foxp3+ regulatory T cells: more of the same or a division of labor? Immunity 30(5), 626–635 (2009).
  • Lin X, Chen M, Liu Y et al. Advances in distinguishing natural from induced Foxp3(+) regulatory T cells. Int. J. Clin. Exp. Pathol. 6(2), 116–123 (2013).
  • Liang S, Alard P, Zhao Y, Parnell S, Clark SL, Kosiewicz MM. Conversion of CD4+ CD25- cells into CD4+ CD25+ regulatory T cells in vivo requires B7 costimulation, but not the thymus. J. Exp. Med. 201(1), 127–137 (2005).
  • Hall BM, Pearce NW, Gurley KE, Dorsch SE. Specific unresponsiveness in rats with prolonged cardiac allograft survival after treatment with cyclosporine. III. Further characterization of the CD4+ suppressor cell and its mechanisms of action. J. Exp. Med. 171(1), 141–157 (1990).
  • Malek TR, Castro I. Interleukin-2 receptor signaling: at the interface between tolerance and immunity. Immunity 33(2), 153–165 (2010).
  • Sakaguchi S. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat. Immunol. 6(4), 345–352 (2005).
  • Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4(4), 330–336 (2003).
  • Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science 299(5609), 1057–1061 (2003).
  • Khattri R, Cox T, Yasayko SA, Ramsdell F. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat. Immunol. 4(4), 337–342 (2003).
  • Morgan ME, Van Bilsen JH, Bakker AM et al. Expression of FOXP3 mRNA is not confined to CD4+CD25+ T regulatory cells in humans. Hum. Immunol. 66(1), 13–20 (2005).
  • Bennett CL, Christie J, Ramsdell F et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat. Genet. 27(1), 20–21 (2001).
  • Gavin MA, Torgerson TR, Houston E et al. Single-cell analysis of normal and FOXP3-mutant human T cells: FOXP3 expression without regulatory T cell development. Proc. Natl Acad. Sci. USA 103(17), 6659–6664 (2006).
  • Shimizu J, Yamazaki S, Takahashi T, Ishida Y, Sakaguchi S. Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat. Immunol. 3(2), 135–142 (2002).
  • Gotsman I, Grabie N, Gupta R et al. Impaired regulatory T-cell response and enhanced atherosclerosis in the absence of inducible costimulatory molecule. Circulation 114(19), 2047–2055 (2006).
  • Liu W, Putnam AL, Xu-Yu Z et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J. Exp. Med. 203(7), 1701–1711 (2006).
  • Zheng Y, Rudensky AY. Foxp3 in control of the regulatory T cell lineage. Nat. Immunol. 8(5), 457–462 (2007).
  • Josefowicz SZ, Lu LF, Rudensky AY. Regulatory T cells: mechanisms of differentiation and function. Annu. Rev. Immunol. 30, 531–564 (2012).
  • Shevach EM. Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity 30(5), 636–645 (2009).
  • Takahashi T, Tagami T, Yamazaki S et al. Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J. Exp. Med. 192(2), 303–310 (2000).
  • Sugimoto N, Oida T, Hirota K et al. Foxp3-dependent and -independent molecules specific for CD25+CD4+ natural regulatory T cells revealed by DNA microarray analysis. Int. Immunol. 18(8), 1197–1209 (2006).
  • Yadav M, Louvet C, Davini D et al. Neuropilin-1 distinguishes natural and inducible regulatory T cells among regulatory T cell subsets in vivo. J. Exp. Med. 209(10), 1713–1722, S1711_S1719 (2012).
  • Getnet D, Grosso JF, Goldberg MV et al. A role for the transcription factor Helios in human CD4(+)CD25(+) regulatory T cells. Mol. Immunol. 47(7–8), 1595–1600 (2010).
  • Milpied P, Renand A, Bruneau J et al. Neuropilin-1 is not a marker of human Foxp3+ Treg. Eur. J. Immunol. 39(6), 1466–1471 (2009).
  • Tran DQ, Ramsey H, Shevach EM. Induction of FOXP3 expression in naive human CD4+FOXP3 T cells by T-cell receptor stimulation is transforming growth factor-beta dependent but does not confer a regulatory phenotype. Blood 110(8), 2983–2990 (2007).
  • Lal G, Zhang N, Van Der Touw W et al. Epigenetic regulation of Foxp3 expression in regulatory T cells by DNA methylation. J. Immunol. 182(1), 259–273 (2009).
  • Murai M, Krause P, Cheroutre H, Kronenberg M. Regulatory T-cell stability and plasticity in mucosal and systemic immune systems. Mucosal Immunol. 3(5), 443–449 (2010).
  • Goodman WA, Cooper KD, Mccormick TS. Regulation generation: the suppressive functions of human regulatory T cells. Crit. Rev. Immunol. 32(1), 65–79 (2012).
  • Takahashi T, Kuniyasu Y, Toda M et al. Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int. Immunol. 10(12), 1969–1980 (1998).
  • Thornton AM, Shevach EM. CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J. Exp. Med. 188(2), 287–296 (1998).
  • Wing K, Onishi Y, Prieto-Martin P et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science 322(5899), 271–275 (2008).
  • Onishi Y, Fehervari Z, Yamaguchi T, Sakaguchi S. Foxp3+ natural regulatory T cells preferentially form aggregates on dendritic cells in vitro and actively inhibit their maturation. Proc. Natl Acad. Sci. USA 105(29), 10113–10118 (2008).
  • Liang B, Workman C, Lee J et al. Regulatory T cells inhibit dendritic cells by lymphocyte activation gene-3 engagement of MHC class II. J. Immunol. 180(9), 5916–5926 (2008).
  • Grossman WJ, Verbsky JW, Barchet W, Colonna M, Atkinson JP, Ley TJ. Human T regulatory cells can use the perforin pathway to cause autologous target cell death. Immunity 21(4), 589–601 (2004).
  • Grossman WJ, Verbsky JW, Tollefsen BL, Kemper C, Atkinson JP, Ley TJ. Differential expression of granzymes A and B in human cytotoxic lymphocyte subsets and T regulatory cells. Blood 104(9), 2840–2848 (2004).
  • Pandiyan P, Zheng L, Ishihara S, Reed J, Lenardo MJ. CD4+CD25+Foxp3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells. Nat. Immunol. 8(12), 1353–1362 (2007).
  • Wang G, Khattar M, Guo Z et al. IL-2-deprivation and TGF-B are two non-redundant suppressor mechanisms of CD4+CD25+ regulatory T cell which jointly restrain CD4+CD25- cell activation. Immunol. Lett. 132(1–2), 61–68 (2010).
  • Chen W, Jin W, Hardegen N et al. Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J. Exp. Med. 198(12), 1875–1886 (2003).
  • Collison LW, Workman CJ, Kuo TT et al. The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature 450(7169), 566–569 (2007).
  • Yamaguchi T, Wing JB, Sakaguchi S. Two modes of immune suppression by Foxp3(+) regulatory T cells under inflammatory or non-inflammatory conditions. Semin. Immunol. 23(6), 424–430 (2011).
  • Cohen JL, Trenado A, Vasey D, Klatzmann D, Salomon BL. CD4(+)CD25(+) immunoregulatory T Cells: new therapeutics for graft-versus-host disease. J. Exp. Med. 196(3), 401–406 (2002).
  • Taylor PA, Lees CJ, Blazar BR. The infusion of ex vivo activated and expanded CD4(+)CD25(+) immune regulatory cells inhibits graft-versus-host disease lethality. Blood 99(10), 3493–3499 (2002).
  • Hoffmann P, Ermann J, Edinger M, Fathman CG, Strober S. Donor-type CD4(+)CD25(+) regulatory T cells suppress lethal acute graft-versus-host disease after allogeneic bone marrow transplantation. J. Exp. Med. 196(3), 389–399 (2002).
  • Trenado A, Sudres M, Tang Q et al. Ex vivo-expanded CD4+CD25+ immunoregulatory T cells prevent graft-versus-host-disease by inhibiting activation/differentiation of pathogenic T cells. J. Immunol. 176(2), 1266–1273 (2006).
  • Hanash AM, Levy RB. Donor CD4+CD25+ T cells promote engraftment and tolerance following MHC-mismatched hematopoietic cell transplantation. Blood 105(4), 1828–1836 (2005).
  • Clark FJ, Gregg R, Piper K et al. Chronic graft-versus-host disease is associated with increased numbers of peripheral blood CD4+CD25high regulatory T cells. Blood 103(6), 2410–2416 (2004).
  • Meignin V, Peffault De Latour R, Zuber J et al. Numbers of Foxp3-expressing CD4+CD25high T cells do not correlate with the establishment of long-term tolerance after allogeneic stem cell transplantation. Exp. Hematol.y 33(8), 894–900 (2005).
  • Rieger K, Loddenkemper C, Maul J et al. Mucosal FOXP3+ regulatory T cells are numerically deficient in acute and chronic GvHD. Blood 107(4), 1717–1723 (2006).
  • Trzonkowski P, Bieniaszewska M, Juscinska J et al. First-in-man clinical results of the treatment of patients with graft versus host disease with human ex vivo expanded CD4+CD25+CD127- T regulatory cells. Clin. Immunol. 133(1), 22–26 (2009).
  • Brunstein CG, Miller JS, Cao Q et al. Infusion of ex vivo expanded T regulatory cells in adults transplanted with umbilical cord blood: safety profile and detection kinetics. Blood 117(3), 1061–1070 (2011).
  • Edinger M, Hoffmann P. Regulatory T cells in stem cell transplantation: strategies and first clinical experiences. Curr. opin. Immunol. 23(5), 679–684 (2011).
  • Di Ianni M, Falzetti F, Carotti A et al. Tregs prevent GVHD and promote immune reconstitution in HLA-haploidentical transplantation. Blood 117(14), 3921–3928 (2011).
  • Yadav M, Szot G, Russ H et al. Regulatory T cells in prevention of islet-graft rejection in humanized mice (P2230). Presented at: Immunology 2013. Honolulu, HI, USA, 3–7 May 2013.
  • Shalev I, Selzner N, Shyu W, Grant D, Levy G. Role of regulatory T cells in the promotion of transplant tolerance. Liver Transpl. 18(7), 761-770 (2012).
  • Khattar M, Deng R, Kahan BD et al. Novel Sphingosine-1-Phosphate Receptor Modulator KRP203 Combined With Locally Delivered Regulatory T Cells Induces Permanent Acceptance of Pancreatic Islet Allografts. Transplantation 95(7), 919–927 (2013).
  • Miyahara Y, Khattar M, Schroder PM et al. Anti-TCRB mAb Induces Long-Term Allograft Survival by Reducing Antigen-Reactive T Cells and Sparing Regulatory T Cells. Am. J. Transplant. 12(6), 1409–1418 (2012).
  • Guo X, Jie Y, Ren D et al. In vitro-expanded CD4(+)CD25(high)Foxp3(+) regulatory T cells controls corneal allograft rejection. Hum. Immunol. 73(11), 1061–1067 (2012).
  • Shi Q, Lees JR, Scott DW, Farber DL, Bartlett ST. Endogenous expansion of regulatory T cells leads to long-term islet graft survival in diabetic NOD mice. Am. J. Transplant. 12(5), 1124–1132 (2012).
  • Berglund D, Karlsson M, Biglarnia AR et al. Obtaining regulatory T cells from uraemic patients awaiting kidney transplantation for use in clinical trials. Clin. exp. Immunol. 173(2), 310–322 (2013).
  • Baecher-Allan C. Human CD25high Tregs: isolation by beads versus by FACS sorting. Clin. Immunol. 120(2), 234–235 (2006).
  • Haase D, Starke M, Puan KJ, Lai TS, Rotzschke O. Immune modulation of inflammatory conditions: regulatory T cells for treatment of GvHD. Immunol. Res. 53(1–3), 200–212 (2012).
  • Kleinewietfeld M, Starke M, Di Mitri D et al. CD49d provides access to "untouched" human Foxp3+ Treg free of contaminating effector cells. Blood 113(4), 827–836 (2009).
  • Riley JL, June CH, Blazar BR. Human T regulatory cell therapy: take a billion or so and call me in the morning. Immunity 30(5), 656–665 (2009).
  • Zheng SG, Wang J, Horwitz DA. Cutting edge: Foxp3+CD4+CD25+ regulatory T cells induced by IL-2 and TGF-beta are resistant to Th17 conversion by IL-6. J. Immunol. 180(11), 7112–7116 (2008).
  • Tran DQ, Andersson J, Hardwick D, Bebris L, Illei GG, Shevach EM. Selective expression of latency-associated peptide (LAP) and IL-1 receptor Type I/II (CD121a/CD121b) on activated human FOXP3+ regulatory T cells allows for their purification from expansion cultures. Blood 113(21), 5125–5133 (2009).
  • Beyer M, Kochanek M, Darabi K et al. Reduced frequencies and suppressive function of CD4+CD25hi regulatory T cells in patients with chronic lymphocytic leukemia after therapy with fludarabine. Blood 106(6), 2018–2025 (2005).
  • Baecher-Allan C, Brown JA, Freeman GJ, Hafler DA. CD4+CD25high regulatory cells in human peripheral blood. J. Immunol. 167(3), 1245–1253 (2001).
  • Mcmurchy AN, Bushell A, Levings MK, Wood KJ. Moving to tolerance: clinical application of T regulatory cells. Semin. immunol. 23(4), 304–313 (2011).
  • Khattar M, Chen W, Stepkowski SM. Expanding and converting regulatory T cells: a horizon for immunotherapy. Arch. Immunol. Ther. Exp. 57(3), 199–204 (2009).
  • Godfrey WR, Ge YG, Spoden DJ et al. In vitro-expanded human CD4+CD25+ T-regulatory cells can markedly inhibit allogeneic dendritic cell-stimulated MLR cultures. Blood 104(2), 453–461 (2004).
  • Selvaraj RK, Geiger TL. A kinetic and dynamic analysis of Foxp3 induced in T cells by TGF-beta. J. Immunol. 179(2), 11 p following 1390 (2007).
  • Guo Z, Khattar M, Schroder PM et al. A dynamic dual role of IL-2 signaling in the two-step differentiation process of adaptive regulatory T Cells. J. Immunol. 190(7), 3153–3162 (2013).
  • Apostolou I, Sarukhan A, Klein L, Von Boehmer H. Origin of regulatory T cells with known specificity for antigen. Nat. Immunol. 3(8), 756–763 (2002).
  • Apostolou I, Von Boehmer H. In vivo instruction of suppressor commitment in naive T cells. J. Exp. Med. 199(10), 1401–1408 (2004).
  • Daniel C, Wennhold K, Kim HJ, Von Boehmer H. Enhancement of antigen-specific Treg vaccination in vivo. Proc. Nat Acad Sci US 107(37), 16246–16251 (2010).
  • Wolf D, Schreiber TH, Tryphonopoulos P et al. Tregs expanded in vivo by TNFRSF25 agonists promote cardiac allograft survival. Transplantation 94(6), 569–574 (2012).
  • Boyman O, Kovar M, Rubinstein MP, Surh CD, Sprent J. Selective stimulation of T cell subsets with antibody-cytokine immune complexes. Science 311(5769), 1924–1927 (2006).
  • Vokaer B, Charbonnier LM, Lemaitre PH, Le Moine A. Impact of interleukin-2-expanded regulatory T cells in various allogeneic combinations on mouse skin graft survival. Transplant Proc. 44(9), 2840–2844 (2012).
  • Ahmadzadeh M, Rosenberg SA. IL-2 administration increases CD4+ CD25(hi) Foxp3+ regulatory T cells in cancer patients. Blood 107(6), 2409–2414 (2006).
  • Koreth J, Matsuoka K, Kim HT et al. Interleukin-2 and Regulatory T Cells in Graft-versus-Host Disease. N Engl J Med 365(22), 2055–2066 (2011).
  • Hunig T. The storm has cleared: lessons from the CD28 superagonist TGN1412 trial. Nat. Rev. Immunol. 12(5), 317–318 (2012).
  • Sakaguchi S, Vignali DA, Rudensky AY, Niec RE, Waldmann H. The plasticity and stability of regulatory T cells. Nat. Rev. Immunol. 13(6), 461–467 (2013).
  • Williams LM, Rudensky AY. Maintenance of the Foxp3-dependent developmental program in mature regulatory T cells requires continued expression of Foxp3. Nat. Immunol. 8(3), 277–284 (2007).
  • Tsuji M, Komatsu N, Kawamoto S et al. Preferential generation of follicular B helper T cells from Foxp3+ T cells in gut Peyer's patches. Science 323(5920), 1488–1492 (2009).
  • Duarte JH, Zelenay S, Bergman ML, Martins AC, Demengeot J. Natural Treg cells spontaneously differentiate into pathogenic helper cells in lymphopenic conditions. Eur. J. Immunol. 39(4), 948–955 (2009).
  • Komatsu N, Mariotti-Ferrandiz ME, Wang Y, Malissen B, Waldmann H, Hori S. Heterogeneity of natural Foxp3+ T cells: a committed regulatory T-cell lineage and an uncommitted minor population retaining plasticity. Proc. Natl Acad. Sci. USA 106(6), 1903–1908 (2009).
  • Floess S, Freyer J, Siewert C et al. Epigenetic control of the foxp3 locus in regulatory T cells. PLoS Biol. 5(2), e38 (2007).
  • Polansky JK, Kretschmer K, Freyer J et al. DNA methylation controls Foxp3 gene expression. Eur. J. Immunol. 38(6), 1654–1663 (2008).
  • Rubtsov YP, Niec RE, Josefowicz S et al. Stability of the regulatory T cell lineage in vivo. Science 329(5999), 1667–1671 (2010).
  • Zhou X, Bailey-Bucktrout SL, Jeker LT et al. Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nat. Immunol. 10(9), 1000–1007 (2009).
  • Mcclymont SA, Putnam AL, Lee MR et al. Plasticity of human regulatory T cells in healthy subjects and patients with Type 1 diabetes. J. Immunol. 186(7), 3918–3926 (2011).

Websites

  • European Commission. ONE Study. www.onestudy.org (Acessed 4 August 2013)
  • Geissler E; University of Regensburg and European Commission. Reference Group Trial for The ONE Study. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US) 2000. http://clinicaltrials.gov/show/NCT01656135 (Acessed 1 August 2013)
  • Gitelman S, Bluestone J; University of California, San Francisco, Juvenile Diabetes Research Foundation, and National Institute of Allergy and Infectious Diseases. T1DM Immunotherapy Using CD4+CD127lo/-CD25+ Polyclonal Tregs. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US) 2000. http://clinicaltrials.gov/show/NCT01210664 (Acessed 1 August 2013)
  • Pidala J; H Lee Moffitt Cancer Center and Research Institute. Ex-vivo Expanded Donor Regulatory T Cells for Prevention of Acute Graft-versus-host Disease. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US) 2000. http://clinicaltrials.gov/show/NCT01795573 (Accessed 1 August 2013)
  • Johnston L; Stanford University and National Institutes of Health. Phase I Infused Donor T Regulatory Cells in Steroid-Dependent/Refractory Chronic GVHD. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US) 2000 http://clinicaltrials.gov/show/NCT01911039 (Accessed 1 August 2013)
  • Baron F; University Hospital of Liege. Donor Regulatory T Cells Infusion in Patients with Chronic Graft-versus-host Disease (GVHD). In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US) 2000. http://clinicaltrials.gov/show/NCT01903473 (Accessed 1 August 2013)
  • Laport G; Stanford University and Doris Duke Charitable Foundation. Haploidentical Allogeneic Transplant w/Post Transplant Infusion of Regulatory T-cells (BMT Protocol 204). In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US) 2000. http://clinicaltrials.gov/show/NCT01050764 (Accessed 1 August 2013)
  • Bykovskaia SN, Kaabak MM; The Russian State Medical University and Russian Academy of Medical Sciences. Treatment of Children with Kidney Transplants by Injection of CD4+CD25+FoxP3+ T Cells to Prevent Organ Rejection. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US) 2000. http://clinicaltrials.gov/show/NCT01446484 (Acessed 01 August 2013)
  • Lu L, Blazar B; Nanjing Medical University and University of Minnesota Clinical and Translational Science Institute. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US) 2000. http://clinicaltrials.gov/show/NCT01624077 (Acessed 1 August 2013)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.