251
Views
24
CrossRef citations to date
0
Altmetric
Reviews

Agammaglobulinemia: causative mutations and their implications for novel therapies

, , , , &
Pages 1205-1221 | Published online: 10 Jan 2014

References

  • Bousfiha AA, Jeddane L, Ailal F et al. A phenotypic approach for IUIS PID classification and diagnosis: guidelines for clinicians at the bedside. J. Clin. Immunol. 33(6), 1078–1087 (2013).
  • Conley ME, Broides A, Hernandez-Trujillo V et al. Genetic analysis of patients with defects in early B-cell development. Immunol. Rev. 203, 216–34 (2005).
  • Primary immunodeficiency diseases: a molecular & cellular approach. (3rd Edition). Ochs H, Smith C, Puck J ( Eds). Oxford University Press, New York, USA.
  • Winkelstein JA, Marino MC, Lederman HM et al. X-linked agammaglobulinemia: report on a United States registry of 201 patients. Medicine 85(4), 193–202 (2006).
  • Conley ME, Dobbs AK, Farmer DM et al. Primary B cell immunodeficiencies: comparisons and contrasts. Ann. Rev. Immunol. 27, 199–227 (2009).
  • Vetrie D, Vorechovský I, Sideras P et al. The gene involved in X-linked agammaglobulinaemia is a member of the src family of protein-tyrosine kinases. Nature 361(6409), 226–233 (1993).
  • Tsukada S, Saffran DC, Rawlings DJ et al. Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia. Cell 72(2), 279–290 (1993).
  • Lindvall JM, Blomberg KEM, Väliaho J et al. Bruton’s tyrosine kinase: cell biology, sequence conservation, mutation spectrum, siRNA modifications, and expression profiling. Immunol. Rev. 203, 200–215 (2005).
  • Noordzij JG, de Bruin-Versteeg S, Hartwig NG et al. XLA patients with BTK splice-site mutations produce low levels of wild-type BTK transcripts. J. Clin. Immunol. 22(5), 306–318 (2002).
  • Minegishi Y, Coustan-Smith E, Wang YH, Cooper MD, Campana D, Conley ME. Mutations in the human λ5/14.1 gene result in B cell deficiency and agammaglobulinemia. J. Exp. Med. 187(1), 71–77 (1998).
  • Yel L, Minegishi Y, Coustan-Smith E et al. Mutations in the mu heavy-chain gene in patients with agammaglobulinemia. N. Engl. J. Med. 335(20), 1486–1493 (1996).
  • Minegishi Y, Coustan-Smith E, Rapalus L, Ersoy F, Campana D, Conley ME. Mutations in Igα(CD79a) result in a complete block in B-cell development. J. Clin. Invest. 104(8), 1115–1121 (1999).
  • Ferrari S, Lougaris V, Caraffi S et al. Mutations of the Igβ gene cause agammaglobulinemia in man. J. Exp. Med. 204(9), 2047–2051 (2007).
  • Dobbs AK, Yang T, Farmer D, Kager L, Parolini O, Conley ME. Cutting edge: a hypomorphic mutation in Igβ (CD79b) in a patient with immunodeficiency and a leaky defect in B cell development. J. Immunol. 179(4), 2055–2059 (2007).
  • Minegishi Y, Rohrer J, Coustan-Smith E et al. An essential role for BLNK in human B cell development. Science 286(5446), 1954–1957 (1999).
  • Conley ME, Dobbs AK, Quintana AM et al. Agammaglobulinemia and absent B lineage cells in a patient lacking the p85α subunit of PI3K. J. Exp. Med. 209(3), 463–70 (2012).
  • Dobbs AK, Bosompem A, Coustan-Smith E, Tyerman G, Saulsbury FT, Conley ME. Agammaglobulinemia associated with BCR-B cells and enhanced expression of CD19. Blood 118(7), 1828–1837 (2011).
  • Van Zelm MC, Reisli I, van der Burg M et al. An antibody-deficiency syndrome due to mutations in the CD19 gene. N. Engl. J. Med. 354(18), 1901–1912 (2006).
  • Van Zelm MC, Geertsema C, Nieuwenhuis N et al. Gross deletions involving IGHM, BTK, or Artemis: a model for genomic lesions mediated by transposable elements. Am. J. Hum. Genet. 82(2), 320–332 (2008).
  • Rickert RC, Roes J, Rajewsky K. B lymphocyte-specific, Cre-mediated mutagenesis in mice. Nucleic Acids Res. 25(6), 1317–1318 (1997).
  • Nodland SE, Berkowska MA, Bajer AA et al. IL-7R expression and IL-7 signaling confer a distinct phenotype on developing human B-lineage cells. Blood 118(8), 2116–2127 (2011).
  • Conley ME, Rohrer J, Rapalus L, Boylin EC, Minegishi Y. Defects in early B-cell development: comparing the consequences of abnormalities in pre-BCR signaling in the human and the mouse. Immunol. Rev. 178, 75–90 (2000).
  • Khan WN, Alt FW, Gerstein RM et al. Defective B cell development and function in Btk-deficient mice. Immunity 3(3), 283–299 (1995).
  • Berglöf A, Sandstedt K, Feinstein R, Bölske G, Smith CIE. B cell-deficient muMT mice as an experimental model for Mycoplasma infections in X-linked agammaglobulinemia. Eur. J. Immunol. 27(8), 2118–2121 (1997).
  • Ellmeier W, Jung S, Sunshine MJ et al. Severe B cell deficiency in mice lacking the tec kinase family members Tec and Btk. J. Exp. Med. 192(11), 1611–1624 (2000).
  • Kitamura D, Rajewsky K. Targeted disruption of µ chain membrane exon causes loss of heavy-chain allelic exclusion. Nature 356(6365), 154–156 (1992).
  • Pelanda R, Braun U, Hobeika E, Nussenzweig MC, Reth M. B cell progenitors are arrested in maturation but have intact VDJ recombination in the absence of Ig-α and Ig-β. J. Immunol. 169(2), 865–872 (2002).
  • Gong S, Nussenzweig MC. Regulation of an early developmental checkpoint in the B cell pathway by Igβ. Science 272(5260), 411–414 (1996).
  • Kitamura D, Kudo A, Schaal S, Müller W, Melchers F, Rajewsky K. A critical role of λ5 protein in B cell development. Cell 69(5), 823–831 (1992).
  • Yablonski D, Weiss A. Mechanisms of signaling by the hematopoietic-specific adaptor proteins, SLP-76 and LAT and their B cell counterpart, BLNK/SLP-65. Adv. Immunol. 79, 93–128 (2001).
  • Engel P, Zhou LJ, Ord DC, Sato S, Koller B, Tedder TF. Abnormal B lymphocyte development, activation, and differentiation in mice that lack or overexpress the CD19 signal transduction molecule. Immunity 3(1), 39–50 (1995).
  • Maas A, Dingjan GM, Grosveld F, Hendriks RW. Early arrest in B cell development in transgenic mice that express the E41K Bruton’s tyrosine kinase mutant under the control of the CD19 promoter region. J. Immunol. 162(11), 6526–6533 (1999).
  • Satterthwaite AB, Cheroutre H, Khan WN, Sideras P, Witte ON. Btk dosage determines sensitivity to B cell antigen receptor cross-linking. Proc. Natl Acad. Sci. USA. 94(24), 13152–13157 (1997).
  • Drabek D, Raguz S, De Wit TP et al. Correction of the X-linked immunodeficiency phenotype by transgenic expression of human Bruton tyrosine kinase under the control of the class II major histocompatibility complex Ea locus control region. Proc. Natl Acad. Sci. USA 94(2), 610–615 (1997).
  • Maas A, Dingjan GM, Savelkoul HF, Kinnon C, Grosveld F, Hendriks RW. The X-linked immunodeficiency defect in the mouse is corrected by expression of human Bruton’s tyrosine kinase from a yeast artificial chromosome transgene. Eur. J. Immunol. 27(9), 2180–2187 (1997).
  • Thomis DC, Gurniak CB, Tivol E, Sharpe AH, Berg LJ. Defects in B lymphocyte maturation and T lymphocyte activation in mice lacking Jak3. Science 270(5237), 794–797 (1995).
  • Fruman DA, Satterthwaite AB, Witte ON. Xid-like phenotypes: a B cell signalosome takes shape. Immunity 13(1), 1–3 (2000).
  • Yamazaki T, Takeda K, Gotoh K, Takeshima H, Akira S, Kurosaki T. Essential immunoregulatory role for BCAP in B cell development and function. J. Exp. Med. 195(5), 535–545 (2002).
  • Ombrello MJ, Remmers EF, Sun G et al. Cold urticaria, immunodeficiency, and autoimmunity related to PLCG2 deletions. N. Engl. J. Med. 366(4), 330–338 (2012).
  • Hendriks RW, Middendorp S. The pre-BCR checkpoint as a cell-autonomous proliferation switch. Trends Immunol. 25(5), 249–56 (2004).
  • Kurosaki T. Regulation of BCR signaling. Mol. Immunol. 48(11), 1287–1291 (2011).
  • Cunningham-Rundles C. Key aspects for successful immunoglobulin therapy of primary immunodeficiencies. Clin. Exp. Neuroimmunol. 164(Suppl.) 16–19 (2011).
  • Howard V, Myers LA, Williams DA, et al. Stem cell transplants for patients with X-linked agammaglobulinemia. Clin. Immunol. 107(2), 98–102 (2003).
  • Segal DJ, Meckler JF. Genome Engineering at the Dawn of the Golden Age. Annu. Rev. Genomics Hum Genet. 14, 135–158 (2013).
  • Fischer A, Hacein-Bey-Abina S, Cavazzana-Calvo M. 20 years of gene therapy for SCID. Nat. Immunol. 11(6), 457–460 (2010).
  • Ginn SL, Alexander IE, Edelstein ML, Abedi MR, Wixon J. Gene therapy clinical trials worldwide to 2012 – an update. J. Gene Med. 15(2), 65–77 (2013).
  • Moreau T, Barlogis V, Bardin F et al. Development of an enhanced B-specific lentiviral vector expressing BTK: a tool for gene therapy of XLA. Gene Ther. 15(12), 942–952 (2008).
  • Yu PW, Tabuchi RS, Kato RM et al. Sustained correction of B-cell development and function in a murine model of X-linked agammaglobulinemia (XLA) using retroviral-mediated gene transfer. Blood 104(5), 1281–1290 (2004).
  • Kerns HM, Ryu BY, Stirling B V et al. B cell-specific lentiviral gene therapy leads to sustained B-cell functional recovery in a murine model of X-linked agammaglobulinemia. Blood 115(11), 2146–2155 (2010).
  • Ng YY, Baert MR, Pike-Overzet K et al. Correction of B-cell development in Btk-deficient mice using lentiviral vectors with codon-optimized human BTK. Leukemia 24(9), 1617–1630 (2010).
  • Li L, Krymskaya L, Wang J et al. Genomic Editing of the HIV-1 Coreceptor CCR5 in Adult Hematopoietic Stem and Progenitor Cells Using Zinc Finger Nucleases. Mol. Ther. 21(6), 1259–1269 (2013).
  • Ellis BL, Hirsch ML, Porter SN, Samulski RJ, Porteus MH. Zinc-finger nuclease-mediated gene correction using single AAV vector transduction and enhancement by Food and Drug Administration-approved drugs. Gene Ther. 20(1), 35–42 (2013).
  • Lombardo A, Cesana D, Genovese P et al. Site-specific integration and tailoring of cassette design for sustainable gene transfer. Nat. Methods 8(10), 861–869 (2011).
  • Wood AJ, Lo TW, Zeitler B et al. Targeted genome editing across species using ZFNs and TALENs. Science 333(6040), 307 (2011).
  • Hockemeyer D, Wang H, Kiani S et al. Genetic engineering of human pluripotent cells using TALE nucleases. Nat. Biotechnol. 29(8), 731–734 (2011).
  • Li H, Haurigot V, Doyon Y et al. In vivo genome editing restores haemostasis in a mouse model of haemophilia. Nature 475(7355), 217–221 (2011).
  • Mali P, Yang L, Esvelt KM et al. RNA-guided human genome engineering via Cas9. Science 339(6121), 823–826 (2013).
  • Cong L, Ran FA, Cox D et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121), 819–823 (2013).
  • Kim E, Kim S, Kim DH, Choi B-S, Choi I-Y, Kim J-S. Precision genome engineering with programmable DNA-nicking enzymes. Genome Res. 22(7), 1327–1333 (2012).
  • Havens MA, Duelli DM, Hastings ML. Targeting RNA splicing for disease therapy. Wiley Interdiscip Rev. RNA 4(3), 247–266 (2013).
  • Lopez-Herrera G, Berron-Ruiz L, Mogica-Martinez D, Espinosa-Rosales F, Santos-Argumedo L. Characterization of Bruton’s tyrosine kinase mutations in Mexican patients with X-linked agammaglobulinemia. Mol. Immunol. 45(4), 1094–1098 (2008).
  • Kralovicova J, Hwang G, Asplund AC, Churbanov A, Smith CIE, Vorechovsky I. Compensatory signals associated with the activation of human GC 5’ splice sites. Nucleic Acids Res. 39(16), 7077–7091 (2011).
  • Cirak S, Arechavala-Gomeza V, Guglieri M et al. Exon skipping and dystrophin restoration in patients with Duchenne muscular dystrophy after systemic phosphorodiamidate morpholino oligomer treatment: an open-label, phase 2, dose-escalation study. Lancet 378(9791), 595–605 (2011).
  • Goemans NM, Tulinius M, van den Akker JT et al. Systemic administration of PRO051 in Duchenne’s muscular dystrophy. N. Engl. J. Med. 364(16), 1513–1522 (2011).
  • Douglas AGL, Wood MJA. Splicing therapy for neuromuscular disease. Mol. Cell Neurosci. 56C, 169–185 (2013).
  • Pinotti M, Balestra D, Rizzotto L, Maestri I, Pagani F, Bernardi F. Rescue of coagulation factor VII function by the U1+5A snRNA. Blood 113(25), 6461–6464 (2009).
  • Fernandez Alanis E, Pinotti M, Dal Mas A et al. An exon-specific U1 small nuclear RNA (snRNA) strategy to correct splicing defects. Hum. Mol. Genet. 21(11), 2389–2398 (2012).
  • Owen N, Zhou H, Malygin AA et al. Design principles for bifunctional targeted oligonucleotide enhancers of splicing. Nucleic Acids Res. 39(16), 7194–7208 (2011).
  • Chao H, Mansfield SG, Bartel RC et al. Phenotype correction of hemophilia A mice by spliceosome-mediated RNA trans-splicing. Nat. Med. 9(8), 1015–1019 (2003).
  • Cooray S, Howe SJ, Thrasher AJ. Retrovirus and lentivirus vector design and methods of cell conditioning. Methods Enzymol. 507, 29–57 (2012).
  • Fischer A, Hacein-Bey-Abina S, Cavazzana-Calvo M. Gene therapy of primary T cell immunodeficiencies. Gene (2013).
  • Sather BD, Ryu BY, Stirling B V et al. Development of B-lineage predominant lentiviral vectors for use in genetic therapies for B cell disorders. Mol. Ther. 19(3), 515–525 (2011).
  • Suerth JD, Maetzig T, Brugman MH et al. Alpharetroviral self-inactivating vectors: long-term transgene expression in murine hematopoietic cells and low genotoxicity. Mol. Ther. 20(5), 1022–1032 (2012).
  • Nienhuis AW. Development of gene therapy for blood disorders: an update. Blood 122(9), 1556–1564 (2013).
  • Di Matteo M, Belay E, Chuah MK, VandenDriessche T. Recent developments in transposon-mediated gene therapy. Expert Opin. Biol. Ther. 12(7), 841–858 (2012).
  • Hackett PB, Largaespada DA, Switzer KC, Cooper LJN. Evaluating risks of insertional mutagenesis by DNA transposons in gene therapy. Transl. Res. 161(4), 265–283 (2013).
  • Lopez Granados E, Porpiglia AS, Hogan MB, et al. Clinical and molecular analysis of patients with defects in μ heavy chain gene. J. Clin. Invest. 110(7), 1029–1035 (2002).
  • Väliaho J, Smith CIE, Vihinen M. BTKbase: the mutation database for X-linked agammaglobulinemia. Hum. Mutat. 27(12), 1209–1217 (2006).
  • Robinton DA, Daley GQ. The promise of induced pluripotent stem cells in research and therapy. Nature 481(7381), 295–305 (2012).
  • Hanna J, Wernig M, Markoulaki S et al. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 318(5858), 1920–1923 (2007).
  • Panopoulos AD, Belmonte JC. Induced pluripotent stem cells in clinical hematology: potentials, progress, and remaining obstacles. Curr. Opin. Hematol. 19(4), 256–260 (2012).
  • Zhao T, Zhang ZN, Rong Z, Xu Y. Immunogenicity of induced pluripotent stem cells. Nature 474(7350), 212–215 (2011).
  • Mayshar Y, Ben-David U, Lavon N et al. Identification and classification of chromosomal aberrations in human induced pluripotent stem cells. Cell Stem Cell. 7(4), 521–531 (2010).
  • Bar-Nur O, Russ HA, Efrat S, Benvenisty N. Epigenetic memory and preferential lineage-specific differentiation in induced pluripotent stem cells derived from human pancreatic islet beta cells. Cell Stem Cell. 9(1), 17–23 (2011).
  • Abad M, Mosteiro L, Pantoja C et al. Reprogramming in vivo produces teratomas and iPS cells with totipotency features. Nature doi:10.1038/nature12586 (2013) (Epub ahead of print).
  • Rais Y, Zviran A, Geula S et al. Deterministic direct reprogramming of somatic cells to pluripotency. Nature doi:10.1038/nature 12587 (2013) (Epub ahead of print).
  • Limon JJ, Fruman DA. Akt and mTOR in B Cell Activation and Differentiation. Front Immunol. 3, 228 (2012).
  • Schuman J, Chen Y, Podd A et al. A critical role of TAK1 in B-cell receptor-mediated nuclear factor κB activation. Blood 113(19), 4566–4574 (2009).
  • Samuelson EM, Laird RM, Maue AC, Rochford R, Hayes SM. Blk haploinsufficiency impairs the development, but enhances the functional responses, of MZ B cells. Immunol. Cell Biol. 90(6), 620–629 (2012).
  • Pappu BP, Lin X. Potential role of CARMA1 in CD40-induced splenic B cell proliferation and marginal zone B cell maturation. Eur. J. Immunol. 36(11), 3033–3043 (2006).
  • Winslow MM, Gallo EM, Neilson JR, Crabtree GR. The calcineurin phosphatase complex modulates immunogenic B cell responses. Immunity 24(2), 141–152 (2006).
  • Yasuda T, Sanjo H, Pagès G et al. Erk kinases link pre-B cell receptor signaling to transcriptional events required for early B cell expansion. Immunity 28(4), 499–508 (2008).
  • Dengler HS, Baracho G V, Omori SA et al. Distinct functions for the transcription factor Foxo1 at various stages of B cell differentiation. Nat. Immunol. 9(12), 1388–1398 (2008).
  • Hinman RM, Nichols WA, Diaz TM, Gallardo TD, Castrillon DH, Satterthwaite AB. Foxo3-/- mice demonstrate reduced numbers of pre-B and recirculating B cells but normal splenic B cell sub-population distribution. Int. Immunol. 21(7), 831–842 (2009).
  • Chaimowitz NS, Falanga YT, Ryan JJ, Conrad DH. Fyn kinase is required for optimal humoral responses. PloS ONE 8(4), e60640 (2013).
  • Hibbs ML, Tarlinton DM, Armes J et al. Multiple defects in the immune system of Lyn-deficient mice, culminating in autoimmune disease. Cell 83(2), 301–311 (1995).
  • Saijo K, Schmedt C, Su I-H et al. Essential role of Src-family protein tyrosine kinases in NF-κB activation during B cell development. Nat. Immunol. 4(3), 274–279 (2003).
  • Coughlin JJ, Stang SL, Dower NA, Stone JC. RasGRP1 and RasGRP3 regulate B cell proliferation by facilitating B cell receptor-Ras signaling. J. Immunol. 175(11), 7179–7184 (2005).
  • Turner M, Gulbranson-Judge A, Quinn ME, Walters AE, MacLennan IC, Tybulewicz VL. Syk tyrosine kinase is required for the positive selection of immature B cells into the recirculating B cell pool. J. Exp. Med. 186(12), 2013–2021 (1997).
  • Cheng AM, Rowley B, Pao W, Hayday A, Bolen JB, Pawson T. Syk tyrosine kinase required for mouse viability and B-cell development. Nature 378(6554), 303–306 (1995).
  • Tedford K, Nitschke L, Girkontaite I et al. Compensation between Vav-1 and Vav-2 in B cell development and antigen receptor signaling. Nat. Immunol. 2(6), 548–55 (2001).
  • Mundt C, Licence S, Shimizu T, Melchers F, Mårtensson IL. Loss of precursor B cell expansion but not allelic exclusion in VpreB1/VpreB2 double-deficient mice. J. Exp. Med. 193(4), 435–445 (2001).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.