303
Views
21
CrossRef citations to date
0
Altmetric
Perspectives

A case for antibiotic perturbation of the microbiota leading to allergy development

&
Pages 1019-1030 | Published online: 10 Jan 2014

References

  • Wills-Karp M, Santeliz J, Karp CL. The germless theory of allergic disease: revisiting the hygiene hypothesis. Nat. Rev. Immunol. 1(1), 69–75 (2001).
  • McSorley HJ, Maizels RM. Helminth infections and host immune regulation. Clin. Microbiol. Rev. 25(4), 585–608 (2012).
  • Strachan DP. Hay fever, hygiene, and household size. BMJ 299(6710), 1259–1260 (1989).
  • Noverr MC, Huffnagle GB. The ‘microflora hypothesis' of allergic diseases. Clin. Exp. Allergy 35(12), 1511–1520 (2005).
  • Honda K, Littman DR. The microbiome in infectious disease and inflammation. Annu. Rev. Immunol. 30, 759–795 (2012).
  • Walk ST, Blum AM, Ewing SA, Weinstock JV, Young VB. Alteration of the murine gut microbiota during infection with the parasitic helminth Heligmosomoides polygyrus. Inflamm. Bowel Dis. 16(11), 1841–1849 (2010).
  • Penders J, Thijs C, Vink C et al. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 118(2), 511–521 (2006).
  • Dominguez-Bello MG, Costello EK, Contreras M et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl Acad. Sci. U.S.A. 107(26), 11971–11975 (2010).
  • Biasucci G, Rubini M, Riboni S, Morelli L, Bessi E, Retetangos C. Mode of delivery affects the bacterial community in the newborn gut. Early Hum. Dev. 86( Suppl. 86), 13–15 (2010).
  • Beck JM, Young VB, Huffnagle GB. The microbiome of the lung. Transl. Res. 160(4), 258–266 (2012).
  • The Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 486(7402), 207–214 (2012).
  • Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol. 9(5), 313–323 (2009).
  • Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118(2), 229–241 (2004).
  • Smith K, McCoy KD, Macpherson AJ. Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota. Semin. Immunol. 19(2), 59–69 (2007).
  • Prescott SL, Macaubas C, Holt BJ et al. Transplacental priming of the human immune system to environmental allergens: universal skewing of initial T cell responses toward the Th2 cytokine profile. J. Immunol. 160(10), 4730–4737 (1998).
  • Early EM, Reen DJ. Antigen-independent responsiveness to interleukin-4 demonstrates differential regulation of newborn human T cells. Eur. J. Immunol. 26(12), 2885–2889 (1996).
  • Upham JW, Lee PT, Holt BJ et al. Development of interleukin-12-producing capacity throughout childhood. Infect. Immun. 70(12), 6583–6588 (2002).
  • Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122(1), 107–118 (2005).
  • Holt PG, Upham JW, Sly PD. Contemporaneous maturation of immunologic and respiratory functions during early childhood: implications for development of asthma prevention strategies. J. Allergy Clin. Immunol. 116(1), 16–24, quiz 25 (2005).
  • Tang ML, Kemp AS, Thorburn J, Hill DJ. Reduced interferon-gamma secretion in neonates and subsequent atopy. Lancet 344(8928), 983–985 (1994).
  • Ivanov, II, Frutos Rde L, Manel N et al. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe 4(4), 337–349 (2008).
  • Gaboriau-Routhiau V, Rakotobe S, Lecuyer E et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 31(4), 677–689 (2009).
  • Ivanov, II, Atarashi K, Manel N et al. Induction of Intestinal Th17 Cells by Segmented Filamentous Bacteria. Cell 139(3), 485–498 (2009).
  • Atarashi K, Tanoue T, Oshima K et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 500, 232–236 (2013).
  • Atarashi K, Tanoue T, Shima T et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331(6015), 337–341 (2011).
  • Hall JA, Bouladoux N, Sun CM et al. Commensal DNA limits regulatory T cell conversion and is a natural adjuvant of intestinal immune responses. Immunity 29(4), 637–649 (2008).
  • Herbst T, Sichelstiel A, Schar C et al. Dysregulation of allergic airway inflammation in the absence of microbial colonization. Am. J. Respir. Crit. Care Med. 184(2), 198–205 (2011).
  • Olszak T, An D, Zeissig S et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science 336(6080), 489–493 (2012).
  • Song CX, Szulwach KE, Fu Y et al. Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat. Biotechnol. 29(1), 68–72 (2011).
  • Soroosh P, Doherty TA, Duan W et al. Lung-resident tissue macrophages generate Foxp3+ regulatory T cells and promote airway tolerance. J. Exp. Med. 210(4), 775–788 (2013).
  • Hill DA, Siracusa MC, Abt MC et al. Commensal bacteria-derived signals regulate basophil hematopoiesis and allergic inflammation. Nat. Med. 18(4), 538–546 (2012).
  • Willing BP, Russell SL, Finlay BB. Shifting the balance: antibiotic effects on host-microbiota mutualism. Nat. Rev. Microbiol. 9(4), 233–243 (2011).
  • Robinson CJ, Young VB. Antibiotic administration alters the community structure of the gastrointestinal micobiota. Gut Microbes 1(4), 279–284 (2010).
  • Jernberg C, Lofmark S, Edlund C, Jansson JK. Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J. 1(1), 56–66 (2007).
  • Dethlefsen L, Huse S, Sogin ML, Relman DA. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol. 6(11), e280 (2008).
  • Palmer C, Bik EM, DiGiulio DB, Relman DA, Brown PO. Development of the human infant intestinal microbiota. PLoS Biol. 5(7), e177 (2007).
  • Tanaka S, Kobayashi T, Songjinda P et al. Influence of antibiotic exposure in the early postnatal period on the development of intestinal microbiota. FEMS Immunol. Med. Microbiol. 56(1), 80–87 (2009).
  • Ichinohe T, Pang IK, Kumamoto Y et al. Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc. Natl Acad. Sci. U.S.A. 108(13), 5354–5359 (2011).
  • Abt MC, Osborne LC, Monticelli LA et al. Commensal bacteria calibrate the activation threshold of innate antiviral immunity. Immunity 37(1), 158–170 (2012).
  • Sekirov I, Russell SL, Antunes LC, Finlay BB. Gut microbiota in health and disease. Physiol. Rev. 90(3), 859–904 (2010).
  • Noverr MC, Noggle RM, Toews GB, Huffnagle GB. Role of antibiotics and fungal microbiota in driving pulmonary allergic responses. Infect. Immun. 72(9), 4996–5003 (2004).
  • Noverr MC, Falkowski NR, McDonald RA, McKenzie AN, Huffnagle GB. Development of allergic airway disease in mice following antibiotic therapy and fungal microbiota increase: role of host genetics, antigen, and interleukin-13. Infect. Immun. 73(1), 30–38 (2005).
  • Erb Downward JR, Falkowski NR, Mason KL, Muraglia R, Huffnagle GB. Modulation of Post-Antibiotic B acterial Community Reassembly and Host Response by Candida albicans. Sci. Rep. 3, 2191 (2013).
  • Sykes A, Johnston SL. Etiology of asthma exacerbations. J. Allergy Clin. Immunol. 122(4), 685–688 (2008).
  • Krishnamoorthy N, Khare A, Oriss TB et al. Early infection with respiratory syncytial virus impairs regulatory T cell function and increases susceptibility to allergic asthma. Nat. Med. 18(10), 1525–1530 (2012).
  • Risnes KR, Belanger K, Murk W, Bracken MB. Antibiotic exposure by 6 months and asthma and allergy at 6 years: Findings in a cohort of 1,401 US children. Am. J. Epidemiol. 173(3), 310–318 (2011).
  • Alm B, Erdes L, Mollborg P et al. Neonatal antibiotic treatment is a risk factor for early wheezing. Pediatrics 121(4), 697–702 (2008).
  • Stensballe LG, Simonsen J, Jensen SM, Bonnelykke K, Bisgaard H. Use of antibiotics during pregnancy increases the risk of asthma in early childhood. J. Pediatr. 162(4), 832–838 e833 (2013).
  • Marra F, Marra CA, Richardson K et al. Antibiotic use in children is associated with increased risk of asthma. Pediatrics 123(3), 1003–1010 (2009).
  • Kwon JW, Kim BJ, Song Y et al. Changes in the prevalence of childhood asthma in seoul from 1995 to 2008 and its risk factors. Allergy Asthma Immunol. Res. 3(1), 27–33 (2011).
  • Martel MJ, Rey E, Malo JL et al. Determinants of the incidence of childhood asthma: a two-stage case-control study. Am. J. Epidemiol. 169(2), 195–205 (2009).
  • Kozyrskyj AL, Ernst P, Becker AB. Increased risk of childhood asthma from antibiotic use in early life. Chest 131(6), 1753–1759 (2007).
  • Metsala J, Lundqvist A, Virta LJ, Kaila M, Gissler M, Virtanen SM. Mother's and offspring's use of antibiotics and infant allergy to cow's milk. Epidemiology 24(2), 303–309 (2011).
  • Goksor E, Alm B, Pettersson R et al. Early fish introduction and neonatal antibiotics affect the risk of asthma into school age. Pediatr. Allergy Immunol. 24(4), 339–344 (2013).
  • Celedon JC, Litonjua AA, Ryan L, Weiss ST, Gold DR. Lack of association between antibiotic use in the first year of life and asthma, allergic rhinitis, or eczema at age 5 years. Am. J. Respir. Crit. Care Med. 166(1), 72–75 (2002).
  • Mai XM, Kull I, Wickman M, Bergstrom A. Antibiotic use in early life and development of allergic diseases: respiratory infection as the explanation. Clin. Exp. Allergy 40(8), 1230–1237 (2010).
  • Russell SL, Gold MJ, Hartmann M et al. Early life antibiotic-driven changes in microbiota enhance susceptibility to allergic asthma. EMBO Rep. 13(5), 440–447 (2012).
  • Russell SL, Gold MJ, Willing BP, Thorson L, McNagny KM, Finlay BB. Perinatal antibiotic treatment affects murine microbiota, immune responses and allergic asthma. Gut Microbes 4(2), 158–164 (2013).
  • Diehl GE, Longman RS, Zhang JX et al. Microbiota restricts trafficking of bacteria to mesenteric lymph nodes by CX(3)CR1(hi) cells. Nature 494(7435), 116–120 (2013).
  • Jedrychowski W, Perera F, Maugeri U et al. Wheezing and asthma may be enhanced by broad spectrum antibiotics used in early childhood. Concept and results of a pharmacoepidemiology study. J. Physiol. Pharmacol. 62(2), 189–195 (2011).
  • Bouladoux N, Hall JA, Grainger JR et al. Regulatory role of suppressive motifs from commensal DNA. Mucosal. Immunol. 5(6), 623–634 (2012).
  • Brestoff JR, Artis D. Commensal bacteria at the interface of host metabolism and the immune system. Nat. Immunol. 14(7), 676–684 (2013).
  • Sutmuller RP, den Brok MH, Kramer M et al. Toll-like receptor 2 controls expansion and function of regulatory T cells. J. Clin. Invest. 116(2), 485–494 (2006).
  • Prescott SL. Allergy takes its toll: the role of Toll-like receptors in allergy pathogenesis. World Allergy Organ J. 1(1), 4–8 (2008).
  • Gill N, Wlodarska M, Finlay BB. The future of mucosal immunology: studying an integrated system-wide organ. Nat. Immunol. 11(7), 558–560 (2010).
  • Noverr MC, Huffnagle GB. Does the microbiota regulate immune responses outside the gut? Trends Microbiol. 12(12), 562–568 (2004).
  • Hilty M, Burke C, Pedro H et al. Disordered microbial communities in asthmatic airways. PLoS ONE 5(1), e8578 (2010).
  • Charlson ES, Bittinger K, Haas AR et al. Topographical continuity of bacterial populations in the healthy human respiratory tract. Am. J. Respir. Crit. Care Med. 184(8), 957–963 (2011).
  • Huang YJ, Nelson CE, Brodie EL et al. Airway microbiota and bronchial hyperresponsiveness in patients with suboptimally controlled asthma. J. Allergy Clin. Immunol. 127(2), 372–381 e371–373 (2011).
  • Kitaura J, Song J, Tsai M et al. Evidence that IgE molecules mediate a spectrum of effects on mast cell survival and activation via aggregation of the FcepsilonRI. Proc. Natl Acad. Sci. U.S.A. 100(22), 12911–12916 (2003).
  • Clarke TB, Davis KM, Lysenko ES, Zhou AY, Yu Y, Weiser JN. Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat. Med. 16(2), 228–231 (2010).
  • Mischke M, Plosch T. More than just a gut instinct-the potential interplay between a baby's nutrition, its gut microbiome, and the epigenome. Am. J. Physiol. Regul. Integr. Comp. Physiol. 304(12), R1065–1069 (2013).
  • Yap IK, Li JV, Saric J et al. Metabonomic and microbiological analysis of the dynamic effect of vancomycin-induced gut microbiota modification in the mouse. J. Proteome Res. 7(9), 3718–3728 (2008).
  • Maslowski KM, Vieira AT, Ng A et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461(7268), 1282–1286 (2009).
  • Su RC, Becker AB, Kozyrskyj AL, Hayglass KT. Altered epigenetic regulation and increasing severity of bronchial hyperresponsiveness in atopic asthmatic children. J. Allergy Clin. Immunol. 124(5), 1116–1118 (2009).
  • Fiocchi A, Burks W, Bahna SL et al. Clinical Use of Probiotics in Pediatric Allergy (CUPPA): A World Allergy Organization Position Paper. World Allergy Organ J. 5(11), 148–167 (2012).
  • Kuitunen M, Kukkonen K, Juntunen-Backman K et al. Probiotics prevent IgE-associated allergy until age 5 years in cesarean-delivered children but not in the total cohort. J. Allergy Clin. Immunol. 123(2), 335–341 (2009).
  • Kukkonen K, Savilahti E, Haahtela T et al. Probiotics and prebiotic galacto-oligosaccharides in the prevention of allergic diseases: a randomized, double-blind, placebo-controlled trial. J. Allergy Clin. Immunol. 119(1), 192–198 (2007).
  • Dotterud CK, Storro O, Johnsen R, Oien T. Probiotics in pregnant women to prevent allergic disease: a randomized, double-blind trial. Br. J. Dermatol. 163(3), 616–623 (2010).
  • Kukkonen AK, Kuitunen M, Savilahti E, Pelkonen A, Malmberg P, Makela M. Airway inflammation in probiotic-treated children at 5 years. Pediatr. Allergy Immunol. 22(2), 249–251 (2011).
  • Brand S, Teich R, Dicke T et al. Epigenetic regulation in murine offspring as a novel mechanism for transmaternal asthma protection induced by microbes. J. Allergy Clin. Immunol. 128(3), 618–625 e611–617 (2011).
  • Feleszko W, Jaworska J, Rha RD et al. Probiotic-induced suppression of allergic sensitization and airway inflammation is associated with an increase of T regulatory-dependent mechanisms in a murine model of asthma. Clin. Exp. Allergy 37(4), 498–505 (2007).
  • Jang SO, Kim HJ, Kim YJ et al. Asthma Prevention by Lactobacillus rhamnosus in a Mouse Model is Associated With CD4+CD25+Foxp3+ T Cells. Allergy Asthma Immunol. Res. 4(3), 150–156 (2012).
  • Forsythe P, Inman MD, Bienenstock J. Oral treatment with live Lactobacillus reuteri inhibits the allergic airway response in mice. Am. J. Respir. Crit. Care Med. 175(6), 561–569 (2007).
  • Schabussova I, Hufnagl K, Tang ML et al. Perinatal maternal administration of Lactobacillus paracasei NCC 2461 prevents allergic inflammation in a mouse model of birch pollen allergy. PLoS ONE 7(7), e40271 (2012).
  • Schabussova I, Hufnagl K, Wild C et al. Distinctive anti-allergy properties of two probiotic bacterial strains in a mouse model of allergic poly-sensitization. Vaccine 29(10), 1981–1990 (2011).
  • Blumer N, Sel S, Virna S et al. Perinatal maternal application of Lactobacillus rhamnosus GG suppresses allergic airway inflammation in mouse offspring. Clin. Exp. Allergy 37(3), 348–357 (2007).
  • Shah MM, Saio M, Yamashita H et al. Lactobacillus acidophilus strain L-92 induces CD4+CD25+Foxp3+ regulatory T cells and suppresses allergic contact dermatitis. Biol. Pharm. Bull. 35(4), 612–616 (2012).
  • Kim HJ, Kim YJ, Kang MJ et al. A novel mouse model of atopic dermatitis with epicutaneous allergen sensitization and the effect of Lactobacillus rhamnosus. Exp. Dermatol. 21(9), 672–675 (2012).
  • Kassam Z, Lee CH, Yuan Y, Hunt RH. Fecal microbiota transplantation for Clostridium difficile infection: systematic review and meta-analysis. Am. J. Gastroenterol. 108(4), 500–508 (2013).
  • Petrof EO, Gloor GB, Vanner SJ et al. Stool substitute transplant therapy for the eradication of Clostridium difficile infection: ‘RePOOPulating’ the gut. Microbiome 1(3) (2013).
  • van Nood E, Vrieze A, Nieuwdorp M et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N. Engl. J. Med. 368(5), 407–415 (2013).
  • Brown EM, Sadarangani M, Finlay BB. The role of the immune system in governing host-microbe interactions in the intestine. Nat. Immunol. 14(7), 660–667 (2013).
  • Chung H, Pamp SJ, Hill JA et al. Gut immune maturation depends on colonization with a host-specific microbiota. Cell 149(7), 1578–1593 (2012).
  • Ottman N, Smidt H, de Vos WM, Belzer C. The function of our microbiota: who is out there and what do they do? Front. Cell Infect. Microbiol. 2, 104 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.