246
Views
19
CrossRef citations to date
0
Altmetric
Reviews

Understanding the role of B cells in atherosclerosis: potential clinical implications

, &

References

  • Laslett Lj, Alagona P Jr, Clark Ba 3rd et al. The worldwide environment of cardiovascular disease: prevalence, diagnosis, therapy, and policy issues: a report from the American College of Cardiology. J. Am. Coll. Cardiol. 60(25 Suppl.), S1–S49 (2012).
  • Hansson GK, Hermansson A. The immune system in atherosclerosis. Nat. Immunol. 12(3), 204–212 (2011).
  • Tabas I, Williams KJ, Boren J. Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation 116(16), 1832–1844 (2007).
  • Wilson PW. Established risk factors and coronary artery disease: the Framingham Study. Am. J. Hypertens. 7(7 Pt 2), S7–S12 (1994).
  • Canto JG, Iskandrian AE. Major risk factors for cardiovascular disease: debunking the “only 50%” myth. JAMA 290(7), 947–949 (2003).
  • Petretta M, Cuocolo A. In search of a marker of vulnerable carotid plaque: is the key in the heart? Atherosclerosis 223(1), 95–97 (2012).
  • Kannel WB. Some lessons in cardiovascular epidemiology from Framingham. Am. J. Cardiol. 37(2), 269–282 (1976).
  • Ambrose JA, Winters SL, Arora RR et al. Angiographic evolution of coronary artery morphology in unstable angina. J. Am. Coll. Cardiol. 7(3), 472–478 (1986).
  • Ambrose JA, Tannenbaum MA, Alexopoulos D et al. Angiographic progression of coronary artery disease and the development of myocardial infarction. J. Am. Coll. Cardiol. 12(1), 56–62 (1988).
  • Little WC, Constantinescu M, Applegate RJ et al. Can coronary angiography predict the site of a subsequent myocardial infarction in patients with mild-to-moderate coronary artery disease? Circulation 78(5 Pt 1), 1157–1166 (1988).
  • Libby P, Lichtman AH, Hansson GK. Immune effector mechanisms implicated in atherosclerosis: from mice to humans. Immunity 38(6), 1092–1104 (2013).
  • Weber C, Zernecke A, Libby P. The multifaceted contributions of leukocyte subsets to atherosclerosis: lessons from mouse models. Nat. Rev. Immunol. 8(10), 802–815 (2008).
  • Lichtman AH, Binder CJ, Tsimikas S, Witztum JL. Adaptive immunity in atherogenesis: new insights and therapeutic approaches. J. Clin. Invest. 123(1), 27–36 (2013).
  • Swirski FK, Nahrendorf M. Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science 339(6116), 161–166 (2013).
  • Perry HM, Bender TP, Mcnamara CA. B cell subsets in atherosclerosis. Front. Immunol. 3, 373 (2012).
  • Gerlis LM. The significance of adventitial infiltrations in coronary atherosclerosis. Br. Heart J. 18(2), 166–172 (1956).
  • Houtkamp MA, De Boer OJ, Van Der Loos CM, Van Der Wal AC, Becker AE. Adventitial infiltrates associated with advanced atherosclerotic plaques: structural organization suggests generation of local humoral immune responses. J. Pathol. 193(2), 263–269 (2001).
  • Ramshaw AL, Parums DV. Immunohistochemical characterization of inflammatory cells associated with advanced atherosclerosis. Histopathology 17(6), 543–552 (1990).
  • Zhou X, Hansson GK. Detection of B cells and proinflammatory cytokines in atherosclerotic plaques of hypercholesterolaemic apolipoprotein E knockout mice. Scand. J. Immunol. 50(1), 25–30 (1999).
  • Hamze M, Desmetz C, Berthe ML et al. Characterization of resident B cells of vascular walls in human atherosclerotic patients. J. Immunol. 191(6), 3006–3016 (2013).
  • Grabner R, Lotzer K, Dopping S et al. Lymphotoxin beta receptor signaling promotes tertiary lymphoid organogenesis in the aorta adventitia of aged ApoE-/- mice. J. Exp. Med. 206(1), 233–248 (2009).
  • Moos MP, John N, Grabner R et al. The lamina adventitia is the major site of immune cell accumulation in standard chow-fed apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 25(11), 2386–2391 (2005).
  • Caligiuri G, Nicoletti A, Poirier B, Hansson GK. Protective immunity against atherosclerosis carried by B cells of hypercholesterolemic mice. J. Clin. Invest. 109(6), 745–753 (2002).
  • Major AS, Fazio S, Linton MF. B-lymphocyte deficiency increases atherosclerosis in LDL receptor-null mice. Arterioscler. Thromb. Vasc. Biol. 22(11), 1892–1898 (2002).
  • Yla-Herttuala S, Palinski W, Butler SW, Picard S, Steinberg D, Witztum JL. Rabbit and human atherosclerotic lesions contain IgG that recognizes epitopes of oxidized LDL. Arterioscler. Thromb. 14(1), 32–40 (1994).
  • Palinski W, Miller E, Witztum JL. Immunization of low density lipoprotein (LDL) receptor-deficient rabbits with homologous malondialdehyde-modified LDL reduces atherogenesis. Proc. Natl Acad. Sci. USA 92(3), 821–825 (1995).
  • Chang MK, Bergmark C, Laurila A et al. Monoclonal antibodies against oxidized low-density lipoprotein bind to apoptotic cells and inhibit their phagocytosis by elicited macrophages: evidence that oxidation-specific epitopes mediate macrophage recognition. Proc. Natl Acad. Sci. USA 96(11), 6353–6358 (1999).
  • Lewis MJ, Malik TH, Ehrenstein MR, Boyle JJ, Botto M, Haskard DO. Immunoglobulin M is required for protection against atherosclerosis in low-density lipoprotein receptor-deficient mice. Circulation 120(5), 417–426 (2009).
  • Kyaw T, Tay C, Khan A et al. Conventional B2 B cell depletion ameliorates whereas its adoptive transfer aggravates atherosclerosis. J. Immunol. 185(7), 4410–4419 (2010).
  • Ait-Oufella H, Herbin O, Bouaziz JD et al. B cell depletion reduces the development of atherosclerosis in mice. J. Exp. Med. 207(8), 1579–1587 (2011).
  • Kyaw T, Tay C, Hosseini H et al. Depletion of B2 but not B1a B cells in BAFF receptor-deficient ApoE mice attenuates atherosclerosis by potently ameliorating arterial inflammation. PLoS ONE 7(1), e29371 (2012).
  • Sage AP, Tsiantoulas D, Baker L et al. BAFF receptor deficiency reduces the development of atherosclerosis in mice--brief report. Arterioscler. Thromb. Vasc. Biol. 32(7), 1573–1576 (2012).
  • Kyaw T, Tay C, Krishnamurthi S et al. B1a B lymphocytes are atheroprotective by secreting natural IgM that increases IgM deposits and reduces necrotic cores in atherosclerotic lesions. Circ. Res. 109(8), 830–840 (2011).
  • Doran AC, Lipinski MJ, Oldham SN et al. B-cell aortic homing and atheroprotection depend on Id3. Circ. Res. 110(1), e1–e12 (2012).
  • Lipinski MJ, Perry HM, Doran AC, Oldham SN, Mcnamara CA. Comment on “Conventional B2 B cell depletion ameliorates whereas its adoptive transfer aggravates atherosclerosis”. J. Immunol. 186(1), 4, author reply 6 (2011).
  • Yoshimoto M, Montecino-Rodriguez E, Ferkowicz MJ et al. Embryonic day 9 yolk sac and intra-embryonic hemogenic endothelium independently generate a B-1 and marginal zone progenitor lacking B-2 potential. Proc. Natl Acad. Sci. USA 108(4), 1468–1473 (2011).
  • Barber CL, Montecino-Rodriguez E, Dorshkind K. Developmental relationships between B-1 and B-2 progenitors. Cell Cycle 10(22), 3810–3811 (2011).
  • Pennell CA, Mercolino TJ, Grdina TA, Arnold LW, Haughton G, Clarke SH. Biased immunoglobulin variable region gene expression by Ly-1 B cells due to clonal selection. Eur. J. Immunol. 19(7), 1289–1295 (1989).
  • Mercolino TJ, Locke AL, Afshari A et al. Restricted immunoglobulin variable region gene usage by normal Ly-1 (CD5+) B cells that recognize phosphatidyl choline. J. Exp. Med. 169(6), 1869–1877 (1989).
  • Binder CJ. Natural IgM antibodies against oxidation-specific epitopes. J. Clin. Immunol. 30(Suppl. 1), S56–S60 (2010).
  • Chou MY, Fogelstrand L, Hartvigsen K et al. Oxidation-specific epitopes are dominant targets of innate natural antibodies in mice and humans. J. Clin. Invest. 119(5), 1335–1349 (2009).
  • Binder CJ, Horkko S, Dewan A et al. Pneumococcal vaccination decreases atherosclerotic lesion formation: molecular mimicry between Streptococcus pneumoniae and oxidized LDL. Nat. Med. 9(6), 736–743 (2003).
  • Binder CJ, Hartvigsen K, Chang MK et al. IL-5 links adaptive and natural immunity specific for epitopes of oxidized LDL and protects from atherosclerosis. J. Clin. Invest. 114(3), 427–437 (2004).
  • Rauch PJ, Chudnovskiy A, Robbins CS et al. Innate response activator B cells protect against microbial sepsis. Science 335(6068), 597–601 (2012).
  • Di Gregoli K, Johnson JL. Role of colony-stimulating factors in atherosclerosis. Curr. Opin. Lipidol. 23(5), 412–421 (2012).
  • Mauri C, Bosma A. Immune regulatory function of B cells. Annu. Rev. Immunol. 30, 221–241 (2012).
  • Dilillo DJ, Matsushita T, Tedder TF. B10 cells and regulatory B cells balance immune responses during inflammation, autoimmunity, and cancer. Ann. NY Acad. Sci. 1183, 38–57 (2010).
  • Vitale G, Mion F, Pucillo C. Regulatory B cells: evidence, developmental origin and population diversity. Mol. Immunol. 48(1–3), 1–8 (2010).
  • Ait-Oufella H, Taleb S, Mallat Z, Tedgui A. Recent advances on the role of cytokines in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 31(5), 969–979 (2011).
  • Blair PA, Norena LY, Flores-Borja F et al. CD19(+)CD24(hi)CD38(hi) B cells exhibit regulatory capacity in healthy individuals but are functionally impaired in systemic Lupus Erythematosus patients. Immunity 32(1), 129–140 (2010).
  • Correale J, Farez M, Razzitte G. Helminth infections associated with multiple sclerosis induce regulatory B cells. Ann. Neurol. 64(2), 187–199 (2008).
  • Huan T, Zhang B, Wang Z et al. A systems biology framework identifies molecular underpinnings of coronary heart disease. Arterioscler. Thromb. Vasc. Biol. 33(6), 1427–1434 (2013).
  • Tanigawa T, Kitamura A, Yamagishi K et al. Relationships of differential leukocyte and lymphocyte subpopulations with carotid atherosclerosis in elderly men. J. Clin. Immunol. 23(6), 469–476 (2003).
  • Lee J, Kuchen S, Fischer R, Chang S, Lipsky PE. Identification and characterization of a human CD5+ pre-naive B cell population. J. Immunol. 182(7), 4116–4126 (2009).
  • Griffin DO, Holodick NE, Rothstein TL. Human B1 cells in umbilical cord and adult peripheral blood express the novel phenotype CD20+ CD27+ CD43+ CD70. J. Exp. Med. 208(1), 67–80 (2011).
  • Griffin DO, Rothstein TL. Human “orchestrator” CD11b(+) B1 cells spontaneously secrete interleukin-10 and regulate T-cell activity. Mol. Med. 18, 1003–1008 (2012).
  • Descatoire M, Weill JC, Reynaud CA, Weller S. A human equivalent of mouse B-1 cells? J. Exp. Med. 208(13), 2563–2564, author reply 2566–2569 (2011).
  • Reynaud CA, Weill JC. Gene profiling of CD11b(+) and CD11b(-) B1 cell subsets reveals potential cell sorting artifacts. J. Exp. Med. 209(3), 433–434, author reply 434–436 (2012).
  • Perez-Andres M, Grosserichter-Wagener C, Teodosio C, Van Dongen JJ, Orfao A, Van Zelm MC. The nature of circulating CD27+CD43+ B cells. J. Exp. Med. 208(13), 2565–2566, author reply 2566–2569 (2011).
  • Griffin DO, Rothstein TL. Human b1 cell frequency: isolation and analysis of human b1 cells. Front. Immunol. 3, 122 (2012).
  • Baumgarth N. The double life of a B-1 cell: self-reactivity selects for protective effector functions. Nat. Rev. Immunol. 11(1), 34–46 (2011).
  • Covens K, Verbinnen B, Geukens N et al. Characterization of proposed human B-1 cells reveals pre-plasmablast phenotype. Blood 121(26), 5176–5183 (2013).
  • Coller BS. Leukocytosis and ischemic vascular disease morbidity and mortality: is it time to intervene? Arterioscler. Thromb. Vasc. Biol. 25(4), 658–670 (2005).
  • Lipinski MJ, Martin RE, Cowley MJ et al. Effect of statins and white blood cell count on mortality in patients with ischemic left ventricular dysfunction undergoing percutaneous coronary intervention. Clin. Cardiol. 29(1), 36–41 (2006).
  • Asadollahi K, Beeching NJ, Gill GV. Leukocytosis as a predictor for non-infective mortality and morbidity. QJM 103(5), 285–292 (2010).
  • Barron HV, Cannon CP, Murphy SA, Braunwald E, Gibson CM. Association between white blood cell count, epicardial blood flow, myocardial perfusion, and clinical outcomes in the setting of acute myocardial infarction: a thrombolysis in myocardial infarction 10 substudy. Circulation 102(19), 2329–2334 (2000).
  • Arbel Y, Finkelstein A, Halkin A et al. Neutrophil/lymphocyte ratio is related to the severity of coronary artery disease and clinical outcome in patients undergoing angiography. Atherosclerosis 225(2), 456–460 (2012).
  • Sbrana F, Cocci F, Papa A et al. Routine laboratory tests to risk-stratify patients with chronic coronary artery disease. J. Cardiol. 61(2), 132–137 (2013).
  • Tsimikas S, Brilakis ES, Lennon RJ et al. Relationship of IgG and IgM autoantibodies to oxidized low density lipoprotein with coronary artery disease and cardiovascular events. J. Lipid Res. 48(2), 425–433 (2007).
  • Muscari A, Bozzoli C, Gerratana C et al. Association of serum IgA and C4 with severe atherosclerosis. Atherosclerosis 74(1–2), 179–186 (1988).
  • Choi SH, Chae A, Miller E et al. Relationship between biomarkers of oxidized low-density lipoprotein, statin therapy, quantitative coronary angiography, and atheroma: volume observations from the REVERSAL (Reversal of Atherosclerosis with Aggressive Lipid Lowering) study. J. Am. Coll. Cardiol. 52(1), 24–32 (2008).
  • Fraley AE, Schwartz GG, Olsson AG et al. Relationship of oxidized phospholipids and biomarkers of oxidized low-density lipoprotein with cardiovascular risk factors, inflammatory biomarkers, and effect of statin therapy in patients with acute coronary syndromes: results from the MIRACL (Myocardial Ischemia Reduction With Aggressive Cholesterol Lowering) trial. J. Am. Coll. Cardiol. 53(23), 2186–2196 (2009).
  • Bjorkbacka H, Fredrikson GN, Nilsson J. Emerging biomarkers and intervention targets for immune-modulation of atherosclerosis – a review of the experimental evidence. Atherosclerosis 227(1), 9–17 (2013).
  • Galkina E, Kadl A, Sanders J, Varughese D, Sarembock IJ, Ley K. Lymphocyte recruitment into the aortic wall before and during development of atherosclerosis is partially L-selectin dependent. J. Exp. Med. 203(5), 1273–1282 (2006).
  • Campbell KA, Lipinski MJ, Doran AC, Skaflen MD, Fuster V, Mcnamara CA. Lymphocytes and the adventitial immune response in atherosclerosis. Circ. Res. 110(6), 889–900 (2012).
  • Sampi M, Ukkola O, Paivansalo M, Kesaniemi YA, Binder CJ, Horkko S. Plasma interleukin-5 levels are related to antibodies binding to oxidized low-density lipoprotein and to decreased subclinical atherosclerosis. J. Am. Coll. Cardiol. 52(17), 1370–1378 (2008).
  • Hollan I, Meroni PL, Ahearn JM et al. Cardiovascular disease in autoimmune rheumatic diseases. Autoimmun. Rev. 12(10), 1004–1015 (2013).
  • Zinger H, Sherer Y, Shoenfeld Y. Atherosclerosis in autoimmune rheumatic diseases-mechanisms and clinical findings. Clin. Rev. Allergy Immunol. 37(1), 20–28 (2009).
  • Aubry MC, Maradit-Kremers H, Reinalda MS, Crowson CS, Edwards WD, Gabriel SE. Differences in atherosclerotic coronary heart disease between subjects with and without rheumatoid arthritis. J. Rheumatol. 34(5), 937–942 (2007).
  • Moura RA, Graca L, Fonseca JE. To B or not to B the conductor of rheumatoid arthritis orchestra. Clin. Rev. Allergy Immunol. 43(3), 281–291 (2012).
  • O'neill SK, Shlomchik MJ, Glant TT, Cao Y, Doodes PD, Finnegan A. Antigen-specific B cells are required as APCs and autoantibody-producing cells for induction of severe autoimmune arthritis. J. Immunol. 174(6), 3781–3788 (2005).
  • Furst DE, Breedveld FC, Kalden JR et al. Updated consensus statement on biological agents for the treatment of rheumatic diseases, 2007. Ann. Rheum. Dis. 66(Suppl. 3), iii2–iii22 (2007).
  • Teng YK, Wheater G, Hogan VE et al. Induction of long-term B-cell depletion in refractory rheumatoid arthritis patients preferentially affects autoreactive more than protective humoral immunity. Arthritis Res. Ther. 14(2), R57 (2012).
  • Benucci M, Saviola G, Manfredi M, Sarzi-Puttini P, Atzeni F. Factors correlated with improvement of endothelial dysfunction during rituximab therapy in patients with rheumatoid arthritis. Biologics 7, 69–75 (2013).
  • Kerekes G, Soltesz P, Der H et al. Effects of rituximab treatment on endothelial dysfunction, carotid atherosclerosis, and lipid profile in rheumatoid arthritis. Clin. Rheumatol. 28(6), 705–710 (2009).
  • Raterman HG, Levels H, Voskuyl AE, Lems WF, Dijkmans BA, Nurmohamed MT. HDL protein composition alters from proatherogenic into less atherogenic and proinflammatory in rheumatoid arthritis patients responding to rituximab. Ann. Rheum. Dis. 72(4), 560–565 (2013).
  • Mathieu S, Pereira B, Dubost JJ, Lusson JR, Soubrier M. No significant change in arterial stiffness in RA after 6 months and 1 year of rituximab treatment. Rheumatology (Oxford) 51(6), 1107–1111 (2012).
  • Cohen SB, Emery P, Greenwald MW et al. Rituximab for rheumatoid arthritis refractory to anti-tumor necrosis factor therapy: Results of a multicenter, randomized, double-blind, placebo-controlled, phase III trial evaluating primary efficacy and safety at twenty-four weeks. Arthritis Rheum. 54(9), 2793–2806 (2006).
  • Edwards JC, Szczepanski L, Szechinski J et al. Efficacy of B-cell-targeted therapy with rituximab in patients with rheumatoid arthritis. N. Engl. J. Med. 350(25), 2572–2581 (2004).
  • Emery P, Fleischmann R, Filipowicz-Sosnowska A et al. The efficacy and safety of rituximab in patients with active rheumatoid arthritis despite methotrexate treatment: results of a phase IIB randomized, double-blind, placebo-controlled, dose-ranging trial. Arthritis Rheum. 54(5), 1390–1400 (2006).
  • Emery P, Deodhar A, Rigby WF et al. Efficacy and safety of different doses and retreatment of rituximab: a randomised, placebo-controlled trial in patients who are biological naive with active rheumatoid arthritis and an inadequate response to methotrexate (Study Evaluating Rituximab's Efficacy in MTX iNadequate rEsponders (SERENE)). Ann. Rheum. Dis. 69(9), 1629–1635 (2010).
  • Greenwald MW, Shergy WJ, Kaine JL, Sweetser MT, Gilder K, Linnik MD. Evaluation of the safety of rituximab in combination with a tumor necrosis factor inhibitor and methotrexate in patients with active rheumatoid arthritis: results from a randomized controlled trial. Arthritis Rheum. 63(3), 622–632 (2011).
  • Tak PP, Rigby WF, Rubbert-Roth A et al. Inhibition of joint damage and improved clinical outcomes with rituximab plus methotrexate in early active rheumatoid arthritis: the IMAGE trial. Ann. Rheum. Dis. 70(1), 39–46 (2011).
  • Davatchi F, Shams H, Rezaipoor M et al. Rituximab in intractable ocular lesions of Behcet's disease; randomized single-blind control study (pilot study). Int. J. Rheum. Dis. 13(3), 246–252 (2010).
  • De Vita S, Quartuccio L, Isola M et al. A randomized controlled trial of rituximab for the treatment of severe cryoglobulinemic vasculitis. Arthritis Rheum. 64(3), 843–853 (2012).
  • Jones RB, Tervaert JW, Hauser T et al. Rituximab versus cyclophosphamide in ANCA-associated renal vasculitis. N. Engl. J. Med. 363(3), 211–220 (2010).
  • Sneller MC, Hu Z, Langford CA. A randomized controlled trial of rituximab following failure of antiviral therapy for hepatitis C virus-associated cryoglobulinemic vasculitis. Arthritis Rheum. 64(3), 835–842 (2012).
  • Stone JH, Merkel PA, Spiera R et al. Rituximab versus cyclophosphamide for ANCA-associated vasculitis. N. Engl. J. Med. 363(3), 221–232 (2010).
  • Merrill JT, Neuwelt CM, Wallace DJ et al. Efficacy and safety of rituximab in moderately-to-severely active systemic lupus erythematosus: the randomized, double-blind, phase II/III systemic lupus erythematosus evaluation of rituximab trial. Arthritis Rheum. 62(1), 222–233 (2010).
  • Rovin BH, Furie R, Latinis K et al. Efficacy and safety of rituximab in patients with active proliferative lupus nephritis: the Lupus Nephritis Assessment with Rituximab study. Arthritis Rheum. 64(4), 1215–1226 (2012).
  • Dass S, Bowman SJ, Vital EM et al. Reduction of fatigue in Sjogren syndrome with rituximab: results of a randomised, double-blind, placebo-controlled pilot study. Ann. Rheum. Dis. 67(11), 1541–1544 (2008).
  • Meijer JM, Meiners PM, Vissink A et al. Effectiveness of rituximab treatment in primary Sjogren's syndrome: a randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 62(4), 960–968 (2010).
  • Pescovitz MD, Greenbaum CJ, Krause-Steinrauf H et al. Rituximab, B-lymphocyte depletion, and preservation of beta-cell function. N. Engl. J. Med. 361(22), 2143–2152 (2009).
  • Daoussis D, Liossis SN, Tsamandas AC et al. Experience with rituximab in scleroderma: results from a 1-year, proof-of-principle study. Rheumatology (Oxford) 49(2), 271–280 (2010).
  • Lahoute C, Herbin O, Mallat Z, Tedgui A. Adaptive immunity in atherosclerosis: mechanisms and future therapeutic targets. Nat. Rev. Cardiol. 8(6), 348–358 (2011).
  • Mackay F, Schneider P. Cracking the BAFF code. Nat. Rev. Immunol. 9(7), 491–502 (2009).
  • Carbonatto M, Yu P, Bertolino M et al. Nonclinical safety, pharmacokinetics, and pharmacodynamics of atacicept. Toxicol. Sci. 105(1), 200–210 (2008).
  • Yang M, Sun L, Wang S et al. Novel function of B cell-activating factor in the induction of IL-10-producing regulatory B cells. J. Immunol. 184(7), 3321–3325 (2010).
  • Leibundgut G, Witztum JL, Tsimikas S. Oxidation-specific epitopes and immunological responses: Translational biotheranostic implications for atherosclerosis. Curr. Opin. Pharmacol. 13(2), 168–179 (2013).
  • Herbin O, Ait-Oufella H, Yu W et al. Regulatory T-cell response to apolipoprotein B100-derived peptides reduces the development and progression of atherosclerosis in mice. Arterioscler. Thromb. Vasc. Biol. 32(3), 605–612 (2012).
  • Carter NA, Rosser EC, Mauri C. Interleukin-10 produced by B cells is crucial for the suppression of Th17/Th1 responses, induction of T regulatory type 1 cells and reduction of collagen-induced arthritis. Arthritis Res. Ther. 14(1), R32 (2012).
  • Bentzon JF, Falk E. Atherosclerotic lesions in mouse and man: is it the same disease? Curr. Opin. Lipidol. 21(5), 434–440 (2010).
  • Mestas J, Hughes CC. Of mice and not men: differences between mouse and human immunology. J. Immunol. 172(5), 2731–2738 (2004).
  • Bruhns P. Properties of mouse and human IgG receptors and their contribution to disease models. Blood 119(24), 5640–5649 (2012).
  • Doran AC, Lehtinen AB, Meller N et al. Id3 is a novel atheroprotective factor containing a functionally significant single-nucleotide polymorphism associated with intima-media thickness in humans. Circ. Res. 106(7), 1303–1311 (2010).
  • Hardy RR. B-1 B cell development. J. Immunol. 177(5), 2749–2754 (2006).
  • Allman D, Pillai S. Peripheral B cell subsets. Curr. Opin. Immunol. 20(2), 149–157 (2008).
  • Pillai S, Cariappa A. The follicular versus marginal zone B lymphocyte cell fate decision. Nat. Rev. Immunol. 9(11), 767–777 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.