350
Views
24
CrossRef citations to date
0
Altmetric
Reviews

Immunoglobulin class switch recombination deficiency type 1 or CD40 ligand deficiency: from bedside to bench and back again

, &

References

  • Davies EG, Thrasher AJ. Update on the hyper immunoglobulin M syndromes. Br. J. Haematol. 149(2), 167–180 (2010).
  • Etzioni A, Ochs HD. The hyper IgM syndrome--an evolving story. Pediatr. Res. 56(4), 519–525 (2004).
  • Hoeger PH, Mayer L. Expansion of a suppressor T-cell population associated with the hyper-IgM syndrome and generalized lymphadenopathy. Clin. Immunol. Immunopathol. 60(1), 118–127 (1991).
  • Renshaw BR, Fanslow WC 3rd, Armitage RJ et al. Humoral immune responses in CD40 ligand-deficient mice. J. Exp. Med. 180(5), 1889–1900 (1994).
  • Erdos M, Durandy A, Marodi L. Genetically acquired class-switch recombination defects: the multi-faced hyper-IgM syndrome. Immunol. Lett. 97(1), 1–6 (2005).
  • Levy J, Espanol-Boren T, Thomas C et al. Clinical spectrum of X-linked hyper-IgM syndrome. J. Pediatr. 131(1 Pt 1), 47–54 (1997).
  • Notarangelo LD, Hayward AR. X-linked immunodeficiency with hyper-IgM (XHIM). Clin. Exp. Immunol. 120(3), 399–405 (2000).
  • Schneider LC. X-linked hyper IgM syndrome. Clin. Rev. Allergy. Immunol. 19(2), 205–215 (2000).
  • Levitt D, Haber P, Rich K, Cooper MD. Hyper IgM immunodeficiency. A primary dysfunction of B lymphocyte isotype switching. J. Clin. Invest. 72(5), 1650–1657 (1983).
  • Piirila H, Valiaho J, Vihinen M. Immunodeficiency mutation databases (IDbases). Hum. Mutat. 27(12), 1200–1208 (2006).
  • Keerthikumar S, Raju R, Kandasamy K et al. RAPID: Resource of Asian Primary Immunodeficiency Diseases. Nucleic Acids Res. 37(Database issue), D863–867 (2009).
  • Allen RC, Armitage RJ, Conley ME et al. CD40 ligand gene defects responsible for X-linked hyper-IgM syndrome. Science 259(5097), 990–993 (1993).
  • Aruffo A, Farrington M, Hollenbaugh D et al. The CD40 ligand, gp39, is defective in activated T cells from patients with X-linked hyper-IgM syndrome. Cell 72(2), 291–300 (1993).
  • Korthauer U, Graf D, Mages HW et al. Defective expression of T-cell CD40 ligand causes X-linked immunodeficiency with hyper-IgM. Nature 361(6412), 539–541 (1993).
  • Hardy RR, Li YS, Allman D, Asano M, Gui M, Hayakawa K. B-cell commitment, development and selection. Immunol. Rev. 175, 23–32 (2000).
  • Hardy RR, Hayakawa K. B cell development pathways. Annu. Rev. Immunol. 19, 595–621 (2001).
  • Ma YC, Lee WI, Shyur SD, Lin SC, Huang LH, Wu JY. De novo mutation causing X-linked hyper-IgM syndrome: a family study in Taiwan. Asian Pac. J. Allergy Immunol. 23(1), 53–59 (2005).
  • Facchetti F, Appiani C, Salvi L, Levy J, Notarangelo LD. Immunohistologic analysis of ineffective CD40-CD40 ligand interaction in lymphoid tissues from patients with X-linked immunodeficiency with hyper-IgM. Abortive germinal center cell reaction and severe depletion of follicular dendritic cells. J. Immunol. 154(12), 6624–6633 (1995).
  • Lin SC, Shyur SD, Lee WI, Ma YC, Huang LH. X-linked hyper-immunoglobulin M syndrome: molecular genetic study and long-time follow-up of three generations of a Chinese family. Int. Arch. Allergy Immunol. 140(1), 1–8 (2006).
  • Ochs HD. Patients with abnormal IgM levels: assessment, clinical interpretation, and treatment. Ann. Allergy Asthma Immunol. 100(5), 509–511 (2008).
  • Simon G, Marodi L. [Successful treatment of cyclic neutropenia associated with hyperimmunoglobulin M syndrome using recombinant granulocyte-colony stimulating factor]. Orv. Hetil. 136(40), 2169–2172 (1995).
  • Seyama K, Nonoyama S, Gangsaas I et al. Mutations of the CD40 ligand gene and its effect on CD40 ligand expression in patients with X-linked hyper IgM syndrome. Blood 92(7), 2421–2434 (1998).
  • Tsai HY, Yu HH, Chien YH et al. X-linked hyper-IgM syndrome with CD40LG mutation: two case reports and literature review in Taiwanese patients. J. Microbiol. Immunol. Infect. doi:10.1016/j.jmii.2012.07.004 (2012) ( Epub ahead of print).
  • Seyama K, Kobayashi R, Hasle H et al. Parvovirus B19-induced anemia as the presenting manifestation of X-linked hyper-IgM syndrome. J. Infect. Dis. 178(2), 318–324 (1998).
  • Ostenstad B, Giliani S, Mellbye OJ, Nilsen BR, Abrahamsen T. A boy with X-linked hyper-IgM syndrome and natural killer cell deficiency. Clin. Exp. Immunol. 107(2), 230–234 (1997).
  • Micol R, Kayal S, Mahlaoui N et al. Protective effect of IgM against colonization of the respiratory tract by nontypeable Haemophilus influenzae in patients with hypogammaglobulinemia. J. Allergy Clin. Immunol. 129(3), 770–777 (2012).
  • Benesch M, Pfleger A, Eber E, Orth U, Zach MS. Disseminated cytomegalovirus infection as initial manifestation of hyper-IgM syndrome in a 15-month-old boy. Eur. J. Pediatr. 159(6), 453–455 (2000).
  • Lee WI, Torgerson TR, Schumacher MJ, Yel L, Zhu Q, Ochs HD. Molecular analysis of a large cohort of patients with the hyper immunoglobulin M (IgM) syndrome. Blood 105(5), 1881–1890 (2005).
  • Winkelstein JA, Marino MC, Ochs H et al. The X-linked hyper-IgM syndrome: clinical and immunologic features of 79 patients. Medicine (Baltimore) 82(6), 373–384 (2003).
  • Antachopoulos C. Invasive fungal infections in congenital immunodeficiencies. Clin. Microbiol. Infect. 16(9), 1335–1342 (2010).
  • Jo EK, Kim HS, Lee MY et al. X-linked hyper-IgM syndrome associated with Cryptosporidium parvum and Cryptococcus neoformans infections: the first case with molecular diagnosis in Korea. J. Korean Med. Sci. 17(1), 116–120 (2002).
  • Milledge J, Kakakios A, Gillis J, Fitzgerald DA. Pneumocystis carinii pneumonia as a presenting feature of X-linked hyper-IgM syndrome. J. Paediatr. Child Health 39(9), 704–706 (2003).
  • Bhatia V, Garg PK, Agarwal V, Sharma M, Ray S. Inflammatory papillary stenosis due to Giardia lamblia in a patient with hyper-immunoglobulin M immunodeficiency syndrome. Gastrointest. Endosc. 66(1), 181–182; discussion 182 (2007).
  • Hayward AR, Levy J, Facchetti F et al. Cholangiopathy and tumors of the pancreas, liver, and biliary tree in boys with X-linked immunodeficiency with hyper-IgM. J. Immunol. 158(2), 977–983 (1997).
  • Urban C, Benesch M, Sovinz P, Schwinger W, Lackner H. Fatal Evans’ syndrome after matched unrelated donor transplantation for hyper-IgM syndrome. Eur. J. Haematol. 72(6), 444–447 (2004).
  • Dogu F, Cipe FE, Reisli I, Erden E, Ikinciogullari A. CD40 ligand deficiency with grade III liver fibrosis, transplanted by a treosulphan-based conditioning regimen. Exp. Clin. Transplant. 9(5), 349–352 (2011).
  • Aschermann Z, Gomori E, Kovacs GG et al. X-linked hyper-IgM syndrome associated with a rapid course of multifocal leukoencephalopathy. Arch. Neurol. 64(2), 273–276 (2007).
  • Cunningham CK, Bonville CA, Ochs HD et al. Enteroviral meningoencephalitis as a complication of X-linked hyper IgM syndrome. J. Pediatr. 134(5), 584–588 (1999).
  • Bishu S, Madhavan D, Perez P et al. CD40 ligand deficiency: neurologic sequelae with radiographic correlation. Pediatr. Neurol. 41(6), 419–427 (2009).
  • Han GP, Miura K, Ide Y, Tsutsui Y. Genetic analysis of JC virus and BK virus from a patient with progressive multifocal leukoencephalopathy with hyper IgM syndrome. J. Med. Virol. 76(3), 398–405 (2005).
  • Suzuki H, Takahashi Y, Miyajima H. Progressive multifocal leukoencephalopathy complicating X-linked hyper-IgM syndrome in an adult. Intern. Med. 45(20), 1187–1188 (2006).
  • Rodriguez C, Carrion F, Marinovic MA et al. [X-linked hyper-IGM syndrome associated to sclerosing cholangitis and gallbladder neoplasm: clinical case]. Rev. Med. Chil. 131(3), 303–308 (2003).
  • Zirkin HJ, Levy J, Katchko L. Small cell undifferentiated carcinoma of the colon associated with hepatocellular carcinoma in an immunodeficient patient. Hum. Pathol. 27(9), 992–996 (1996).
  • Malhotra RK, Li W. Poorly differentiated gastroenteropancreatic neuroendocrine carcinoma associated with X-linked hyperimmunoglobulin M syndrome. Arch. Pathol. Lab. Med. 132(5), 847–850 (2008).
  • Gallerani I, Innocenti DD, Coronella G et al. Cutaneous sarcoid-like granulomas in a patient with X-linked hyper-IgM syndrome. Pediatr. Dermatol. 21(1), 39–43 (2004).
  • Nagasawa M, Itoh S, Sawada Y, Morio T, Nonoyama S, Mizutani S. Coagulopathy in a patient with X-linked hyper-IgM syndrome who developed Kaposi’s sarcoma. Am. J. Hematol. 75(2), 116–117 (2004).
  • Nagaraj N, Egwim C, Adler DG. X-linked hyper-IgM syndrome associated with poorly differentiated neuroendocrine tumor presenting as obstructive jaundice secondary to extensive adenopathy. Dig. Dis. Sci. 52(9), 2312–2316 (2007).
  • Immunodeficiency and Cancer (3rd Edition). Filipovich LGT ( Ed.). Elsevier/Churchill Livingstone, London, UK (2004).
  • Jesus AA, Duarte AJ, Oliveira JB. Autoimmunity in hyper-IgM syndrome. J. Clin. Immunol. 28( Suppl. 1), S62–S66 (2008).
  • Schuster A, Apfelstedt-Sylla E, Pusch CM, Zrenner E, Thirkill CE. Autoimmune retinopathy with RPE hypersensitivity and ‘negative ERG’ in X-linked hyper-IgM syndrome. Ocul. Immunol. Inflamm. 13(2–3), 235–243 (2005).
  • Lacroix-Desmazes S, Resnick I et al. Defective self-reactive antibody repertoire of serum IgM in patients with hyper-IgM syndrome. J. Immunol. 162(9), 5601–5608 (1999).
  • Gulino AV, Notarangelo LD. Hyper IgM syndromes. Curr. Opin. Rheumatol. 15(4), 422–429 (2003).
  • Lopez-Granados E, Temmerman ST, Wu L et al. Osteopenia in X-linked hyper-IgM syndrome reveals a regulatory role for CD40 ligand in osteoclastogenesis. Proc. Natl Acad. Sci. USA 104(12), 5056–5061 (2007).
  • Webster EA, Khakoo AY, Mackus WJ et al. An aggressive form of polyarticular arthritis in a man with CD154 mutation (X-linked hyper-IgM syndrome). Arthritis Rheum. 42(6), 1291–1296 (1999).
  • Callard RE, Armitage RJ, Fanslow WC, Spriggs MK. CD40 ligand and its role in X-linked hyper-IgM syndrome. Immunol. Today 14(11), 559–564 (1993).
  • Karpusas M, Hsu YM, Wang JH et al. 2 A crystal structure of an extracellular fragment of human CD40 ligand. Structure 3(12), 1426 (1995).
  • Hollenbaugh D, Wu LH, Ochs HD et al. The random inactivation of the X chromosome carrying the defective gene responsible for X-linked hyper IgM syndrome (X-HIM) in female carriers of HIGM1. J. Clin. Invest. 94(2), 616–622 (1994).
  • Hollenbaugh D, Grosmaire LS, Kullas CD et al. The human T cell antigen gp39, a member of the TNF gene family, is a ligand for the CD40 receptor: expression of a soluble form of gp39 with B cell co-stimulatory activity. EMBO J. 11(12), 4313–4321 (1992).
  • Shimadzu M, Nunoi H, Terasaki H et al. Structural organization of the gene for CD40 ligand: molecular analysis for diagnosis of X-linked hyper-IgM syndrome. Biochim. Biophys. Acta 1260(1), 67–72 (1995).
  • Garber E, Su L, Ehrenfels B, Karpusas M, Hsu YM. CD154 variants associated with hyper-IgM syndrome can form oligomers and trigger CD40-mediated signals. J. Biol. Chem. 274(47), 33545–33550 (1999).
  • Schonbeck U, Libby P. The CD40/CD154 receptor/ligand dyad. Cell Mol. Life Sci. 58(1), 4–43 (2001).
  • van Kooten C, Banchereau J. CD40-CD40 ligand. J. Leukoc. Biol. 67(1), 2–17 (2000).
  • Subauste CS, Wessendarp M, Sorensen RU, Leiva LE. CD40-CD40 ligand interaction is central to cell-mediated immunity against Toxoplasma gondii: patients with hyper IgM syndrome have a defective type 1 immune response that can be restored by soluble CD40 ligand trimer. J. Immunol. 162(11), 6690–6700 (1999).
  • Sipsas NV, Sfikakis PP, Kontos A, Kordossis T. Levels of soluble CD40 ligand (CD154) in serum are increased in human immunodeficiency virus type 1-infected patients and correlate with CD4(+) T-cell counts. Clin. Diagn. Lab. Immunol. 9(3), 558–561 (2002).
  • Grewal IS, Flavell RA. The CD40 ligand. At the center of the immune universe? Immunol. Res. 16(1), 59–70 (1997).
  • Leveille C, Bouillon M, Guo W et al. CD40 ligand binds to alpha5beta1 integrin and triggers cell signaling. J. Biol. Chem. 282(8), 5143–5151 (2007).
  • Singh J, Garber E, Van Vlijmen H et al. The role of polar interactions in the molecular recognition of CD40L with its receptor CD40. Protein Sci. 7(5), 1124–1135 (1998).
  • Ochs HD, Hollenbaugh D, Aruffo A. The role of CD40L (gp39)/CD40 in T/B cell interaction and primary immunodeficiency. Semin. Immunol. 6(5), 337–341 (1994).
  • Durandy A, Kracker S, Fischer A. Primary antibody deficiencies. Nat. Rev. Immunol. 13(7), 519–533 (2013).
  • Durandy A, Peron S, Fischer A. Hyper-IgM syndromes. Curr. Opin. Rheumatol. 18(4), 369–376 (2006).
  • Herve M, Isnardi I, Ng YS et al. CD40 ligand and MHC class II expression are essential for human peripheral B cell tolerance. J. Exp. Med. 204(7), 1583–1593 (2007).
  • Cron RQ. CD154 transcriptional regulation in primary human CD4 T cells. Immunol. Res. 27(2–3), 185–202 (2003).
  • Karmann K, Hughes CC, Schechner J, Fanslow WC, Pober JS. CD40 on human endothelial cells: inducibility by cytokines and functional regulation of adhesion molecule expression. Proc. Natl Acad. Sci. USA 92(10), 4342–4346 (1995).
  • Longo NS, Lugar PL, Yavuz S et al. Analysis of somatic hypermutation in X-linked hyper-IgM syndrome shows specific deficiencies in mutational targeting. Blood 113(16), 3706–3715 (2009).
  • Brezinschek HP, Dorner T, Monson NL, Brezinschek RI, Lipsky PE. The influence of CD40-CD154 interactions on the expressed human V(H) repertoire: analysis of V(H) genes expressed by individual B cells of a patient with X-linked hyper-IgM syndrome. Int. Immunol. 12(6), 767–775 (2000).
  • Jelinek DF, Lipsky PE. Comparative activation requirements of human peripheral blood, spleen, and lymph node B cells. J. Immunol. 139(4), 1005–1013 (1987).
  • Pascual V, Capra JD. Human immunoglobulin heavy-chain variable region genes: organization, polymorphism, and expression. Adv. Immunol. 49, 1–74 (1991).
  • Weller S, Faili A, Garcia C et al. CD40-CD40L independent Ig gene hypermutation suggests a second B cell diversification pathway in humans. Proc. Natl Acad. Sci. USA 98(3), 1166–1170 (2001).
  • Durandy A. Hyper-IgM syndromes: a model for studying the regulation of class switch recombination and somatic hypermutation generation. Biochem. Soc. Trans. 30(4), 815–818 (2002).
  • Mavroudi I, Papadaki V, Pyrovolaki K, Katonis P, Eliopoulos AG, Papadaki HA. The CD40/CD40 ligand interactions exert pleiotropic effects on bone marrow granulopoiesis. J. Leukoc. Biol. 89(5), 771–783 (2011).
  • Mavroudi I, Papadaki HA. The role of CD40/CD40 ligand interactions in bone marrow granulopoiesis. ScientificWorldJournal 11, 671453 (2011).
  • Scott MJ, Hoth JJ, Stagner MK, Gardner SA, Peyton JC, Cheadle WG. CD40-CD154 interactions between macrophages and natural killer cells during sepsis are critical for macrophage activation and are not interferon gamma dependent. Clin. Exp. Immunol. 137(3), 469–477 (2004).
  • Atochina O, Harn D. LNFPIII/LeX-stimulated macrophages activate natural killer cells via CD40-CD40L interaction. Clin. Diagn. Lab. Immunol. 12(9), 1041–1049 (2005).
  • El Fakhry Y, Alturaihi H, Yacoub D et al. Functional interaction of CD154 protein with alpha5beta1 integrin is totally independent from its binding to alphaIIbbeta3 integrin and CD40 molecules. J. Biol. Chem. 287(22), 18055–18066 (2012).
  • Clarke SR. The critical role of CD40/CD40L in the CD4-dependent generation of CD8+ T cell immunity. J. Leukoc. Biol. 67(5), 607–614 (2000).
  • Grewal IS, Flavell RA. CD40 and CD154 in cell-mediated immunity. Annu. Rev. Immunol. 16, 111–135 (1998).
  • Soong L, Xu JC, Grewal IS et al. Disruption of CD40-CD40 ligand interactions results in an enhanced susceptibility to Leishmania amazonensis infection. Immunity 4(3), 263–273 (1996).
  • Campbell KA, Ovendale PJ, Kennedy MK, Fanslow WC, Reed SG, Maliszewski CR. CD40 ligand is required for protective cell-mediated immunity to Leishmania major. Immunity 4(3), 283–289 (1996).
  • Chirmule N, Tazelaar J, Wilson JM. Th2-dependent B cell responses in the absence of CD40-CD40 ligand interactions. J. Immunol. 164(1), 248–255 (2000).
  • Kumanogoh A, Wang X, Lee I et al. Increased T cell autoreactivity in the absence of CD40-CD40 ligand interactions: a role of CD40 in regulatory T cell development. J. Immunol. 166(1), 353–360 (2001).
  • Hernandez MG, Shen L, Rock KL. CD40-CD40 ligand interaction between dendritic cells and CD8+ T cells is needed to stimulate maximal T cell responses in the absence of CD4+ T cell help. J. Immunol. 178(5), 2844–2852 (2007).
  • Quezada SA, Jarvinen LZ, Lind EF, Noelle RJ. CD40/CD154 interactions at the interface of tolerance and immunity. Annu. Rev. Immunol. 22, 307–328 (2004).
  • Howland KC, Ausubel LJ, London CA, Abbas AK. The roles of CD28 and CD40 ligand in T cell activation and tolerance. J. Immunol. 164(9), 4465–4470 (2000).
  • Toes RE, Schoenberger SP, van der Voort EI, Offringa R, Melief CJ. CD40–CD40 ligand interactions and their role in cytotoxic T lymphocyte priming and anti-tumor immunity. Semin. Immunol. 10(6), 443–448 (1998).
  • Bourgeois C, Rocha B, Tanchot C. A role for CD40 expression on CD8+ T cells in the generation of CD8+ T cell memory. Science 297(5589), 2060–2063 (2002).
  • Campos-Neto A, Ovendale P, Bement T et al. CD40 ligand is not essential for the development of cell-mediated immunity and resistance to Mycobacterium tuberculosis. J. Immunol. 160(5), 2037–2041 (1998).
  • Bachmann MF, Schwarz K, Wolint P et al. Cutting edge: distinct roles for T help and CD40/CD40 ligand in regulating differentiation of proliferation-competent memory CD8+ T cells. J. Immunol. 173(4), 2217–2221 (2004).
  • Bhadra R, Gigley JP, Khan IA. Cutting edge: CD40-CD40 ligand pathway plays a critical CD8-intrinsic and -extrinsic role during rescue of exhausted CD8 T cells. J. Immunol. 187(9), 4421–4425 (2011).
  • Danese S, de la Motte C, Reyes BM, Sans M, Levine AD, Fiocchi C. Cutting edge: T cells trigger CD40-dependent platelet activation and granular RANTES release: a novel pathway for immune response amplification. J. Immunol. 172(4), 2011–2015 (2004).
  • Murugaiyan G, Agrawal R, Mishra GC, Mitra D, Saha B. Differential CD40/CD40L expression results in counteracting antitumor immune responses. J. Immunol. 178(4), 2047–2055 (2007).
  • Sitati E, McCandless EE, Klein RS, Diamond MS. CD40-CD40 ligand interactions promote trafficking of CD8+ T cells into the brain and protection against West Nile virus encephalitis. J. Virol. 81(18), 9801–9811 (2007).
  • Schiemann B, Gommerman JL, Vora K et al. An essential role for BAFF in the normal development of B cells through a BCMA-independent pathway. Science 293(5537), 2111–2114 (2001).
  • Wardemann H, Yurasov S, Schaefer A, Young JW, Meffre E, Nussenzweig MC. Predominant autoantibody production by early human B cell precursors. Science 301(5638), 1374–1377 (2003).
  • Cuss SM, Green EA. Abrogation of CD40-CD154 signaling impedes the homeostasis of thymic resident regulatory T cells by altering the levels of IL-2, but does not affect regulatory T cell development. J. Immunol. 189(4), 1717–1725 (2012).
  • Guiducci C, Valzasina B, Dislich H, Colombo MP. CD40/CD40L interaction regulates CD4+CD25+ Treg homeostasis through dendritic cell-produced IL-2. Eur. J. Immunol. 35(2), 557–567 (2005).
  • Gambineri E, Torgerson TR, Ochs HD. Immune dysregulation, polyendocrinopathy, enteropathy, and X-linked inheritance (IPEX), a syndrome of systemic autoimmunity caused by mutations of FOXP3, a critical regulator of T-cell homeostasis. Curr. Opin. Rheumatol. 15(4), 430–435 (2003).
  • Cunningham-Rundles C. Autoimmunity in primary immune deficiency: taking lessons from our patients. Clin. Exp. Immunol. 164( Suppl. 2), 6–11 (2011).
  • Etzioni A. Immune deficiency and autoimmunity. Autoimmun. Rev. 2(6), 364–369 (2003).
  • Bussone G, Mouthon L. Autoimmune manifestations in primary immune deficiencies. Autoimmun. Rev. 8(4), 332–336 (2009).
  • Goyal R, Bulua AC, Nikolov NP, Schwartzberg PL, Siegel RM. Rheumatologic and autoimmune manifestations of primary immunodeficiency disorders. Curr. Opin. Rheumatol. 21(1), 78–84 (2009).
  • Devergne O, Hatzivassiliou E, Izumi KM et al. Association of TRAF1, TRAF2, and TRAF3 with an Epstein-Barr virus LMP1 domain important for B-lymphocyte transformation: role in NF-kappaB activation. Mol. Cell Biol. 16(12), 7098–7108 (1996).
  • Takayanagi H, Ogasawara K, Hida S et al. T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma. Nature 408(6812), 600–605 (2000).
  • Takayanagi H, Kim S, Taniguchi T. Signaling crosstalk between RANKL and interferons in osteoclast differentiation. Arthritis. Res. 4( Suppl. 3), S227–S232 (2002).
  • Feng X. RANKing intracellular signaling in osteoclasts. IUBMB Life 57(6), 389–395 (2005).
  • Scholl PR, O’Gorman MR, Pachman LM, Haut P, Kletzel M. Correction of neutropenia and hypogammaglobulinemia in X-linked hyper-IgM syndrome by allogeneic bone marrow transplantation. Bone Marrow Transplant. 22(12), 1215–1218 (1998).
  • Seyama K, Kira S, Ishidoh K, Souma S, Miyakawa T, Kominami E. Genomic structure and PCR-SSCP analysis of the human CD40 ligand gene: its application to prenatal screening for X-linked hyper-IgM syndrome. Hum. Genet. 97(2), 180–185 (1996).
  • Jayoussi-Assalia R, Etzioni A, Notarangelo LD et al. Prenatal diagnosis of X-linked hyper-IGM syndrome by direct detection of mutation Q220X in the CD40L gene using PCR-mediated site directed mutagenesis. Prenat. Diagn. 20(10), 822–823 (2000).
  • DiSanto JP, Markiewicz S, Gauchat JF, Bonnefoy JY, Fischer A, de Saint Basile G. Brief report: prenatal diagnosis of X-linked hyper-IgM syndrome. N. Engl. J. Med. 330(14), 969–973 (1994).
  • Kato T, Tsuge I, Inaba J, Kato K, Matsuyama T, Kojima S. Successful bone marrow transplantation in a child with X-linked hyper-IgM syndrome. Bone Marrow Transplant. 23(10), 1081–1083 (1999).
  • Duplantier JE, Seyama K, Day NK et al. Immunologic reconstitution following bone marrow transplantation for X-linked hyper IgM syndrome. Clin. Immunol. 98(3), 313–318 (2001).
  • Hadzic N, Pagliuca A, Rela M et al. Correction of the hyper-IgM syndrome after liver and bone marrow transplantation. N. Engl. J. Med. 342(5), 320–324 (2000).
  • Isam H, Al-Wahadneh A. Successful bone marrow transplantation in a child with X-linked hyper-IgM syndrome. Saudi J. Kidney Dis. Transpl. 15(4), 489–493 (2004).
  • Tomizawa D, Imai K, Ito S et al. Allogeneic hematopoietic stem cell transplantation for seven children with X-linked hyper-IgM syndrome: a single center experience. Am. J. Hematol. 76(1), 33–39 (2004).
  • Dimicoli S, Bensoussan D, Latger-Cannard V et al. Complete recovery from Cryptosporidium parvum infection with gastroenteritis and sclerosing cholangitis after successful bone marrow transplantation in two brothers with X-linked hyper-IgM syndrome. Bone Marrow Transplant. 32(7), 733–737 (2003).
  • Leone V, Tommasini A, Andolina M et al. Elective bone marrow transplantation in a child with X-linked hyper-IgM syndrome presenting with acute respiratory distress syndrome. Bone Marrow Transplant. 30(1), 49–52 (2002).
  • Jain A, Kovacs JA, Nelson DL et al. Partial immune reconstitution of X-linked hyper IgM syndrome with recombinant CD40 ligand. Blood 118(14), 3811–3817 (2011).
  • Fan X, Upadhyaya B, Wu L et al. CD40 agonist antibody mediated improvement of chronic Cryptosporidium infection in patients with X-linked hyper IgM syndrome. Clin. Immunol. 143(2), 152–161 (2012).
  • Brown MP, Topham DJ, Sangster MY et al. Thymic lymphoproliferative disease after successful correction of CD40 ligand deficiency by gene transfer in mice. Nat. Med. 4(11), 1253–1260 (1998).
  • Romero Z, Torres S, Cobo M et al. A tissue-specific, activation-inducible, lentiviral vector regulated by human CD40L proximal promoter sequences. Gene Ther. 18(4), 364–371 (2011).
  • Blaeser F, Kelly M, Siegrist K et al. Critical function of the CD40 pathway in parvovirus B19 infection revealed by a hypomorphic CD40 ligand mutation. Clin. Immunol. 117(3), 231–237 (2005).
  • Danielian S, Oleastro M, Eva Rivas M, Cantisano C, Zelazko M. Clinical follow-up of 11 Argentinian CD40L-deficient patients with 7 unique mutations including the so-called “milder” mutants. J. Clin. Immunol. 27(4), 455–459 (2007).
  • Aghamohammadi A, Parvaneh N, Rezaei N et al. Clinical and laboratory findings in hyper-IgM syndrome with novel CD40L and AICDA mutations. J. Clin. Immunol. 29(6), 769–776 (2009).
  • Nonoyama S, Shimadzu M, Toru H et al. Mutations of the CD40 ligand gene in 13 Japanese patients with X-linked hyper-IgM syndrome. Hum. Genet. 99(5), 624–627 (1997).
  • Katz F, Hinshelwood S, Rutland P, Jones A, Kinnon C, Morgan G. Mutation analysis in CD40 ligand deficiency leading to X-linked hypogammaglobulinemia with hyper IgM syndrome. Hum. Mutat. 8(3), 223–228 (1996).
  • Macchi P, Villa A, Strina D et al. Characterization of nine novel mutations in the CD40 ligand gene in patients with X-linked hyper IgM syndrome of various ancestry. Am. J. Hum. Genet. 56(4), 898–906 (1995).
  • Gilmour KC, Walshe D, Heath S et al. Immunological and genetic analysis of 65 patients with a clinical suspicion of X linked hyper-IgM. Mol. Pathol. 56(5), 256–262 (2003).
  • Rangel-Santos A, Wakim VL, Jacob CM et al. Molecular characterization of patients with X-linked Hyper-IgM syndrome: description of two novel CD40L mutations. Scand. J. Immunol. 69(2), 169–173 (2009).
  • Kraakman ME, de Weers M, Espanol T, Schuurman RK, Hendriks RW. Identification of a CD40L gene mutation and genetic counselling in a family with immunodeficiency with hyperimmunoglobulinemia M. Clin. Genet. 48(1), 46–48 (1995).
  • Lin Q, Rohrer J, Allen RC et al. A single strand conformation polymorphism study of CD40 ligand. Efficient mutation analysis and carrier detection for X-linked hyper IgM syndrome. J. Clin. Invest. 97(1), 196–201 (1996).
  • Erdos M, Lakos G, Derfalvi B, Notarangelo LD, Durandy A, Marodi L. Molecular genetic analysis of Hungarian patients with the hyper-immunoglobulin M syndrome. Mol. Immunol. 45(1), 278–282 (2008).
  • Prasad ML, Velickovic M, Weston SA, Benson EM. Mutational screening of the CD40 ligand (CD40L) gene in patients with X linked hyper-IgM syndrome (XHIM) and determination of carrier status in female relatives. J. Clin. Pathol. 58(1), 90–92 (2005).
  • Garcia-Perez MA, Paz-Artal E, Corell A et al. Mutations of CD40 ligand in two patients with hyper-IgM syndrome. Immunobiology 207(4), 285–294 (2003).
  • Kroczek RA, Graf D, Brugnoni D et al. Defective expression of CD40 ligand on T cells causes “X-linked immunodeficiency with hyper-IgM (HIGM1)”. Immunol. Rev. 138, 39–59 (1994).
  • Iseki M, Anzo M, Yamashita N, Matsuo N. Hyper-IgM immunodeficiency with disseminated cryptococcosis. Acta Paediatr. 83(7), 780–782 (1994).
  • Saiki O, Tanaka T, Wada Y et al. Signaling through CD40 rescues IgE but not IgG or IgA secretion in X-linked immunodeficiency with hyper-IgM. J. Clin. Invest. 95(2), 510–514 (1995).
  • Lin SC, Shyur SD, Ma YC, Huang LH, Lee WI. Hyper-IgM1 syndrome with interstitial pneumonia and diarrhea caused by coxsackievirus B4 in a 3-month-old infant. Ann. Allergy Asthma Immunol. 95(1), 93–97 (2005).
  • Hsu AP, Fleisher TA, Niemela JE. Mutation analysis in primary immunodeficiency diseases: case studies. Curr. Opin. Allergy Clin. Immunol. 9(6), 517–524 (2009).
  • Andrews FJ, Katz F, Jones A, Smith S, Finn A. CD40 ligand deficiency presenting as unresponsive neutropenia. Arch. Dis. Child. 74(5), 458–459 (1996).
  • Lopez-Granados E, Cambronero R, Ferreira A, Fontan G, Garcia-Rodriguez MC. Three novel mutations reflect the variety of defects causing phenotypically diverse X-linked hyper-IgM syndrome. Clin. Exp. Immunol. 133(1), 123–131 (2003).
  • Van Hoeyveld E, Zhang PX, De Boeck K, Fuleihan R, Bossuyt X. Hyper-immunoglobulin M syndrome caused by a mutation in the promotor for CD40L. Immunology 120(4), 497–501 (2007).
  • DiSanto JP, Bonnefoy JY, Gauchat JF, Fischer A, de Saint Basile G. CD40 ligand mutations in x-linked immunodeficiency with hyper-IgM. Nature 361(6412), 541–543 (1993).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.