879
Views
38
CrossRef citations to date
0
Altmetric
Reviews

Toll-like receptor signaling in parasitic infections

References

  • Ospelt C, Gay S. TLRs and chronic inflammation. Int J Biochem Cell Biol 2010;42:495-505
  • Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell 2006;124:783-801
  • Thompson MR, Kaminski JJ, Kurt-Jones EA, et al. Pattern recognition receptors and the innate immune response to viral infection. Viruses 2011;3(6):920-40
  • Medzhitov R, Preston-Hurlburt P, Janeway CAJr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 1997;388:394-7
  • Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 2010;11:373-84
  • Yarovinsky F. Innate immunity to Toxoplasma gondii infection. Nat Rev Immunol 2014;14(2):109-21
  • Ulevitch RJ. Therapeutics targeting the innate immune system. Nat Rev Immunol 2004;4:512-20
  • Kluwe J, Mencin A, Schwabe RF. Toll-like receptors, wound healing, and carcinogenesis. J Mol Med 2009;87:125-38
  • Chang ZL. Important aspects of toll-like receptors, ligands and their signaling pathways. Inflamm Res 2010;59:791-808
  • Rezaei N. Therapeutic targeting of pattern-recognition receptors. Int Immunopharmacol 2006;6:863-9
  • Cario E, Rosenberg IM, Brandwein SL, et al. Lipopolysaccharide activates distinct signaling pathways in intestinal epithelial cell lines expressing Toll-like receptors. J Immunol 2000;164:966-72
  • Otte JM, Rosenberg IM, Podolsky DK. Intestinal myofibroblasts in innate immune responses of the intestine. Gastroenterol 2003;124:1866-78
  • Hart AL, Al-Hassi HO, Rigby RJ, et al. Characteristics of intestinal dendritic cells in inflammatory bowel diseases. Gastroenterol 2005;129:50-65
  • Bsibsi M, Ravid R, Gveric D, et al. Broad expression of Toll-like receptors in the human central nervous system. Neuropathol Exp Neurol 2002;61:1013-21
  • Yu L, Chen S. Toll-like receptors expressed in tumor cells: targets for therapy. Cancer Imm Immun 2008;57:1271-8
  • Takeda K, Akira S. Toll-like receptors in innate immunity. Int Immunology 2005;17:1-14
  • Doyle SL, O’Neill LA. Toll-like receptors: from the discovery of NF kappa B to new insights into transcriptional regulations in innate immunity. Biochem Pharmacol 2006;72:1102-13
  • Barton GM, Kagan JC. A cell biological view of Toll-like receptor function: regulation through compartmentalization. Nat Rev Immunol 2009;9:535-42
  • Rakoff-Nahoum S, Medzhitov R. Role of toll-like receptors in tissue repair and tumorigenesis. Biochemistry (Mosc) 2008;73:555-61
  • Mogensen TH. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev 2009;22:240-73
  • Akira S. Toll-like receptors and innate immunity. Adv Immunol 2001;78:1-56
  • Kawai T, Akira S. TLR signaling. Cell Death Differ 2006;13:816-25
  • Yamamoto M, Sato S, Hemmi H, et al. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 2003;301:640-3
  • Pasare C, Medzhitov R. Toll-like receptors: linking innate and adaptive immunity. Adv Exp Med Biol 2005;560:11-18
  • Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol 2004;4:499-511
  • Iwasaki A, Medzhitov R. Regulation of adaptive immunity by the innate immune system. Science 2010;327:291-5
  • Netea MG, van der Graaf C, Van der Meer JW, et al. Toll-like receptors and the host defense against microbial pathogens: bringing specificity to the innate-immune system. J Leukoc Biol 2004;75:749-55
  • Faria MS, Reis FC, Lima AP. Toll-like receptors in leishmania infections: guardians or promoters? J Parasitol Res 2012;2012:930257
  • Lopes MF, Zamboni DS, Lujan HD, et al. Immunity to protozoan parasites. J Parasitol Res 2012;2012:250793
  • Whitaker SM, Colmenares M, Pestana KG, et al. Leishmania pifanoi proteoglycolipid complex P8 induces macrophage cytokine production through Toll-like receptor 4. Infect Immun 2008;76:2149-56
  • Kropf P, Freudenberg MA, Modolell M, et al. Toll-like receptor 4 contributes to efficient control of infection with the protozoan parasite Leishmania major. Infect Immun 2004;72:1920-8
  • Kropf P, Freudenberg N, Kalis C, et al. Infection of C57BL/10ScCr and C57BL/10ScNCr mice with Leishmania major reveals a role for Toll-like receptor 4 in the control of parasite replication. J Leukoc Biol 2004;76:48-57
  • Becker I, Salaiza N, Aguirre M, et al. Leishmania lipophosphoglycan (LPG) activates NK cells through toll-like receptor-2. Mol Biochem Parasitol 2003;130:65-74
  • Hawn TR, Ozinsky A, Underhill DM, et al. Leishmania major activates IL-1 alpha expression in macrophages through a MyD88-dependent pathway. Microbes Infect 2002;4:763-71
  • Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immun 2011;34:637-50
  • Srivastava S, Pandey SP, Jha MK, et al. Leishmania expressed lipophosphoglycan interacts with Toll-like receptor (TLR)-2 to decrease TLR-9 expression and reduce anti-leishmanial responses. Clin Exp Immunol 2013;172:403-9
  • Chandra D, Naik S. Leishmania donovani infection down-regulates TLR2-stimulated IL-12p40 and activates IL-10 in cells of macrophage/monocytic lineage by modulating MAPK pathways through a contact-dependent mechanism. Clin Exp Immunol 2008;154:224-34
  • Osanya A, Song EH, Metz K, et al. Pathogen-derived oligosaccharides improve innate immune response to intracellular parasite infection. Am J Pathol 2011;179:1329-37
  • Colmenares M, Tiemeyer M, Kima P, et al. Biochemical and biological characterization of the protective Leishmania pifanoi amastigote antigen P-8. Infec Immun 2001;69:6776-84
  • Vivarini Ade C, Pereira Rde M, Teixeira KL, et al. Human cutaneous leishmaniasis: interferon-dependent expression of double-stranded RNA-dependent protein kinase (PKR) via TLR2. FASEB 2011;25:4162-73
  • Ribeiro-Gomes FL, Moniz-de-Souza MC, Alexandre-Moreira MS, et al. Neutrophils activate macrophages for intracellular killing of Leishmania major through recruitment of TLR4 by neutrophil elastase. J Immunol 2007;179:3988-94
  • Filardy AA, Pires DR, Nunes MP, et al. Pro-inflammatory clearance of apoptotic neutrophils induces an IL-12 (low) IL-10 (high) regulatory phenotype in macrophages. J Immunol 2010;185:2044-50
  • Nakagawa R, Naka T, Tsutsui H, et al. SOCS-1 participates in negative regulation of LPS responses. Immun 2002;17:677-87
  • de Veer MJ, Curtis JM, Baldwin TM, et al. MyD88 is essential for clearance of Leishmania major: possible role for lipophosphoglycan and Toll-like receptor 2 signaling. Eur J Immunol 2003;33:2822-31
  • O’Neill LA. How Toll-like receptors signal: what we know and what we don’t know. Curr Opin Immunol 2006;18:3-9
  • Paun A, Bankoti R, Joshi T, et al. Critical role of IRF-5 in the development of T helper 1 responses to Leishmania donovani infection. PLoS Pathog 2011;7(1):e1001246
  • Li Y, Ishii K, Hisaeda H, et al. IL-18 gene therapy develops Th1-type immune responses in Leishmania major-infected BALB/c mice: is the effect mediated by the CpG signaling TLR9? Gene ther 2004;11:941-8
  • Abou Fakher FH, Rachinel N, Klimczak M, et al. TLR9-dependent activation of dendritic cells by DNA from Leishmania major favors Th1 cell development and the resolution of lesions. J Immunol 2009;182:1386-96
  • Liese J, Schleicher U, Bogdan C. TLR9 signaling is essential for the innate NK cell response in murine cutaneous leishmaniasis. Eur J Immunol 2007;37:3424-34
  • Ives A, Ronet C, Prevel F, et al. Leishmania RNA virus controls the severity of mucocutaneous leishmaniasis. Science 2011;331:775-8
  • Zangger H, Hailu A, Desponds C, et al. Leishmania aethiopica field isolates bearing an endosymbiontic dsRNA virus induce pro-inflammatory cytokine response. PLoS Negl Trop Dis 2014;8(4):e2836
  • Flandin JF, Chano F, Descoteaux A. RNA interference reveals a role for TLR2 and TLR3 in the recognition of Leishmania donovani promastigotes by interferon-gamma-primed macrophages. Eur J Immunol 2006;36:411-20
  • Ribeiro-Gomes FL, Otero AC, Gomes NA, et al. Macrophage interactions with neutrophils regulate Leishmania major infection. J Immunol 2004;172:4454-62
  • Schamber-Reis BL, Petritus PM, Caetano BC, et al. UNC93B1 and nucleic acid-sensing Toll like receptors mediate host resistance to infection with Leishmania major. J Biol Chem 2013;288(10):7127-36
  • Friberg IM, Bradley JE, Jackson JA. Macroparasites, innate immunity and immunoregulation: developing natural models. Trends Parasitol 2010;26:540-9
  • McManus DP, Loukas A. Current status of vaccines for schistosomiasis. Clin Microbiol Rev 2008;21:225-42
  • Jenkins SJ, Hewitson JP, Ferret-Bernard S, et al. Schistosome larvae stimulate macrophage cytokine production through TLR4-dependent and -independent pathways. Int Immunol 2005;17:1409-18
  • Thomas PG, Carter MR, Atochina O, et al. Maturation of dendritic cell 2 phenotype by a helminth glycan uses a Toll-like receptor 4-dependent mechanism. J Immunol 2003;171:5837-41
  • van der Kleij D, Latz E, Brouwers JF, et al. A novel host-parasite lipid cross-talk. Schistosomal lyso-phosphatidylserine activates toll-like receptor 2 and affects immune polarization. J Biol Chem 2002;277:48122-9
  • Vanhoutte F, Breuilh L, Fontaine J, et al. Toll-like receptor (TLR)2 and TLR3 sensing is required for dendritic cell activation, but dispensable to control Schistosoma mansoni infection and pathology. Microbes Infect 2007;9:1606-13
  • Zhang M, Gao Y, Du X, et al. Toll-like receptor (TLR) 2 and TLR4 deficiencies exert differential in vivo effects against Schistosoma japonicum. Parasite Immunol 2011;33:199-209
  • Ashour DS, Shohieb ZS, Sarhan NI. Upregulation of Toll-like receptor 2 and nuclear factor-kappa B expression in experimental colonic schistosomiasis. J Adv Res 2014. [Epub ahead of print]
  • Wang JH, Doyle M, Manning BJ, et al. Induction of bacterial lipoprotein tolerance is associated with suppression of Toll-like receptor 2 expression. J Biol Chem 2002;277:36068-75
  • Layland LE, Rad R, Wagner H, et al. Immunopathology in schistosomiasis is controlled by antigen-specific regulatory T cells primed in the presence of TLR2. Eur J Immunol 2007;37:2174-84
  • Cheng PC, Lin CN, Peng SY, et al. A study of immunomodulatory genes responses to macrophages of Schistosoma japonicum infection during different stages by microarray analysis. Acta Trop 2013;127:251-60
  • Brossard M, Wikel SK. Tick immunobiology. Parasitol 2004;129:S161-76
  • Titus RG, Bishop JV, Mejia JS. The immunomodulatory factors of arthropod saliva and the potential for these factors to serve as vaccine targets to prevent pathogen transmission. Parasite Immunol 2006;28:131-41
  • Hovius JW, Levi M, Fikrig E. Salivating for knowledge: potential pharmacological agents in tick saliva. PLoS Med 2008;5:e43
  • Oliveira CJ, Sa-Nunes A, Francischetti IM, et al. Deconstructing tick saliva: non-protein molecules with potent immunomodulatory properties. J Biol Chem 2011;286:10960-9
  • Lieskovska J, Kopecky J. Effect of tick saliva on signalling pathways activated by TLR-2 ligand and Borrelia afzelii in dendritic cells. Parasite Immunol 2012;34:421-9
  • Skallova A, Iezzi G, Ampenberger F, et al. Tick saliva inhibits dendritic cell migration, maturation, and function while promoting development of Th2 responses. J Immunol 2008;180:6186-92
  • Kramer C, Nahmias Z, Norman DD, et al. Dermacentor variabilis: regulation of fibroblast migration by tick salivary gland extract and saliva. Exp Parasitol 2008;119:391-7
  • Oliveira CJ, Carvalho WA, Garcia GR, et al. Tick saliva induces regulatory dendritic cells: MAP-kinases and Toll-like receptor-2 expression as potential targets. Vet Parasitol 2010;167:288-97
  • Anguita J, Ramamoorthi N, Hovius JW, et al. Salp15, an Ixodes scapularis salivary protein, inhibits CD4(+) T cell activation. Immun 2002;16:849-59
  • Slamova M, Skallova A, Palenikova J, et al. Effect of tick saliva on immune interactions between Borrelia afzelii and murine dendritic cells. Parasite Immunol 2011;33:654-60
  • Chen G, Severo MS, Sohail M, et al. Ixodes scapularis saliva mitigates inflammatory cytokine secretion during Anaplasma phagocytophilum stimulation of immune cells. Parasite Vectors 2012;5:229
  • Costello EK, Lauber CL, Hamady M, et al. Bacterial community variation in human body habitats across space and time. Science 2009;326:1694-7
  • van der Kleij D, van den Biggelaar AH, Kruize YC, et al. Responses to Toll-like receptor ligands in children living in areas where schistosome infections are endemic. J Infect Dis 2004;189:1044-51
  • Onguru D, Liang Y, Griffith Q, et al. Short Report: Human Schistosomiasis Is Associated with Endotoxemia and Toll-Like Receptor 2- and 4-Bearing B Cells. Am J Trop Med Hyg 2011;84(2):321-4
  • Du L, Liu L, Yu Y, et al. Trichinella spiralis excretory secretory products protect against polymicrobial sepsis by suppressing MyD88 via mannose receptor. Biomed Res Int 2014;2014:898646
  • Méndez-Samperio P. Immunological mechanisms by which concomitant helminth infections predispose to the development of human tuberculosis. Korean J Parasitol 2012;50(4):281-6
  • Babu S, Bhat SQ, Kumar NP, et al. Attenuation of Toll-like receptor expression and function in latent tuberculosis by coexistent filarial infection with restoration following antifilarial chemotherapy. PLoS Negl Trop Dis 2009;3:e489
  • Caparrós E, Munoz P, Sierra-Filardi E, et al. DC-SIGN ligation on dendritic cells results in ERK and PI3K activation and modulates cytokine production. Blood 2006;107:3950-8
  • van Riet E, Everts B, Retra K, et al. Combined TLR2 and TLR4 ligation in the context of bacterial or helminth extracts in human monocyte derived dendritic cells: molecular correlates for Th1/Th2 polarization. BMC Immunol 2009;10:9
  • Ray A, Chakraborty K, Ray P. Immunosuppressive MDSCs induced by TLR signaling during infection and role in resolution of inflammation. Front Cell Infect Microbiol 2013;3:52
  • Venugopal PG, Nutman TB, Semnani RT. Activation and regulation of toll-like receptors (TLRs) by helminth parasites. Immunol Res 2009;43:252-63
  • Kondo T, Kawai T, Akira S. Dissecting negative regulation of Toll-like receptor signaling. Trends Immunol 2012;33:449-58
  • Bowie A, Kiss-Toth E, Symons JA, et al. A46R and A52R from vaccinia virus are antagonists of host IL-1 and toll-like receptor signaling. Proc Natl Acad Sci USA 2000;97:10162-7
  • Newman RM, Salunkhe P, Godzik A, et al. Identification and characterization of a novel bacterial virulence factor that shares homology with mammalian Toll/interleukin-1 receptor family proteins. Infect Immun 2006;74:594-601
  • Cirl C, Wieser A, Yadav M, et al. Subversion of Toll-like receptor signaling by a unique family of bacterial Toll/interleukin-1 receptor domain-containing proteins. Nat Med 2008;14:399-406
  • Iwami KI, Matsuguchi T, Masuda A, et al. Cutting edge: naturally occurring soluble form of mouse Toll-like receptor 4 inhibits lipopolysaccharide signaling. J Immunol 2000;165:6682-6
  • LeBouder E, Rey-Nores JE, Rushmere NK, et al. Soluble forms of Toll-like receptor (TLR)2 capable of modulating TLR2 signaling are present in human plasma and breast milk. J Immunol 2003;171:6680-9
  • Chi H, Barry SP, Roth RJ, et al. Dynamic regulation of pro- and anti-inflammatory cytokines by MAPK phosphatase 1 (MKP-1) in innate immune responses. Proc Natl Acad Sci USA 2006;103:2274-9
  • Cao W, Bao C, Padalko E, et al. Acetylation of mitogen-activated protein kinase phosphatase-1 inhibits Toll-like receptor signaling. J Exp Med 2008;205:1491-503
  • Maldonado C, Trejo W, Ramirez A, et al. Lipophosphopeptidoglycan of entamoeba histolytica induces an antiinflammatory innate immune response and down-regulation of toll-like receptor 2 (TLR-2) gene expression in human monocytes. Arch Med Res 2000;31:S71-3
  • Ropert C, Gazzinelli RT. Regulatory role of Toll-like receptor 2 during infection with Trypanosoma cruzi. J Endotoxin Res 2004;10:425-30
  • Zaccone P, Fehervari Z, Jones FM, et al. Schistosoma mansoni antigens modulate the activity of the innate immune response and prevent onset of type 1 diabetes. Eur J Immunol 2003;33:1439-49
  • Babu S, Blauvelt CP, Kumaraswami V, et al. Diminished expression and function of TLR in lymphatic filariasis: a novel mechanism of immune dysregulation. J Immunology 2005;175:1170-6
  • Turner JD, Langley RS, Johnston KL, et al. Wolbachia endosymbiotic bacteria of Brugia malayi mediate macrophage tolerance to TLR- and CD40-specific stimuli in a MyD88/TLR2-dependent manner. J Immunology 2006;177:1240-9
  • Semnani RT, Venugopal PG, Leifer CA, et al. Inhibition of TLR3 and TLR4 function and expression in human dendritic cells by helminth parasites. Blood 2008;112:1290-8
  • Segura M, Su Z, Piccirillo C, et al. Impairment of dendritic cell function by excretory-secretory products: a potential mechanism for nematode-induced immunosuppression. Eur J Immunology 2007;37:1887-904
  • Wilson MS, Taylor MD, Balic A, et al. Suppression of allergic airway inflammation by helminth-induced regulatory T cells. J Exp Med 2005;202:1199-212
  • Ince MN, Elliott DE, Setiawan T, et al. Heligmosomoides polygyrus induces TLR4 on murine mucosal T cells that produce TGF beta after lipopolysaccharide stimulation. J Immunology 2006;176:726-9
  • Campos MA, Closel M, Valente EP, et al. Impaired production of pro-inflammatory cytokines and host resistance to acute infection with Trypanosoma cruzi in mice lacking functional myeloid differentiation factor 88. J Immunology 2004;172:1711-18
  • Kulkarni R, Behboudi S, Sharif S. Insights into the role of Toll-like receptors in modulation of T cell responses. Cell Tissue Res 2011;343:141-52
  • Hayashi T, Gray CS, Chan M, et al. Prevention of autoimmune disease by induction of tolerance to Toll-like receptor 7. Proc Natl Acad Sci USA 2009;106:2764-9
  • Donnelly S, O’Neill SM, Stack CM, et al. Helminth cysteine proteases inhibit TRIF-dependent activation of macrophages via degradation of TLR3. J Biol Chem 2010;285:3383-92
  • Kanzler H, Barrat FJ, Hessel EM, et al. Therapeutic targeting of innate immunity with Toll-like receptor agonists and antagonists. Nat Med 2007;13:552-9
  • Johnston KL, Wu B, Guimaraes A, et al. Lipoprotein biosynthesis as a target for anti-Wolbachia treatment of filarial nematodes. Parasit Vectors 2010;3:99
  • Hedayat M, Takeda K, Rezaei N. Prophylactic and therapeutic implications of toll-like receptor ligands. Med Res Rev 2012;32:294-325
  • Franklin BS, Ishizaka ST, Lamphier M, et al. Therapeutical targeting of nucleic acid-sensing Toll-like receptors prevents experimental cerebral malaria. Proc Natl Acad Sci USA 2011;108:3689-94
  • Othoro C, Johnston D, Lee R, et al. Enhanced immunogenicity of Plasmodium falciparum peptide vaccines using a topical adjuvant containing a potent synthetic Toll-like receptor 7 agonist, imiquimod. Infect Immun 2009;77:739-48
  • Raman VS, Bhatia A, Picone A, et al. Applying TLR synergy in immunotherapy: implications in cutaneous leishmaniasis. J Immunol 2010;185:1701-10
  • Kar S, Ukil A, Das PK. Cystatin cures visceral leishmaniasis by NF-kappa B-mediated pro-inflammatory response through co-ordination of TLR/MyD88 signaling with p105-Tpl2-ERK pathway. Eur J Immunol 2011;41:116-27
  • Zhang WW, Matlashewski G. Immunization with a Toll-like receptor 7 and/or 8 agonist vaccine adjuvant increases protective immunity against Leishmania major in BALB/c mice. Infect Immun 2008;76(8):3777-83
  • Craft N, Birnbaum R, Quanquin N, et al. Topical resiquimod protects against visceral infection with Leishmania infantum chagasi in mice. Clin Vaccine Immunol 2014;21(9):1314-22
  • Sun S, Wang X, Wu X, et al. Toll-like receptor activation by helminths or helminth products to alleviate inflammatory bowel disease. Parasit Vectors 2011;4:186
  • Zhao Y, Zhang S, Jiang L, et al. Preventive effects of Schistosoma japonicum ova on trinitrobenzenesulfonic acid-induced colitis and bacterial translocation in mice. J Gastroenterol Hepatol 2009;24:1775-80
  • Campos MA, Almeida IC, Takeuchi O, et al. Activation of Toll-like receptor-2 by glycosylphosphatidylinositol anchors from a protozoan parasite. J Immunol 2001;167:416-23
  • Ouaissi A, Guilvard E, Delneste Y, et al. The Trypanosoma cruzi Tc52-released protein induces human dendritic cell maturation, signals via Toll-like receptor 2, and confers protection against lethal infection. J Immunol 2002;168:6366-74
  • Oliveira AC, Peixoto JR, de Arruda LB, et al. Expression of functional TLR4 confers pro-inflammatory responsiveness to Trypanosoma cruzi glycoinositolphospholipids and higher resistance to infection with T. cruzi. J Immunol 2004;173:5688-96
  • Bartholomeu DC, Ropert C, Melo MB, et al. Recruitment and endo-lysosomal activation of TLR9 in dendritic cells infected with Trypanosoma cruzi. J Immunol 2008;181:1333-44
  • Caetano BC, Carmo BB, Melo MB, et al. Requirement of UNC93B1 reveals a critical role for TLR7 in host resistance to primary infection with Trypanosoma cruzi. J Immunol 2011;187:1903-11
  • Coban C, Ishii KJ, Kawai T, et al. Toll-like receptor 9 mediates innate immune activation by the malaria pigment hemozoin. J Exp Med 2005;201:19-25
  • Wu X, Gowda NM, Kumar S, et al. Protein-DNA complex is the exclusive malaria parasite component that activates dendritic cells and triggers innate immune responses. J Immunol 2010;184:4338-48
  • Zhu J, Krishnegowda G, Gowda DC. Induction of pro-inflammatory responses in macrophages by the glycosylphosphatidylinositols of Plasmodium falciparum: the requirement of extracellular signal-regulated kinase, p38, c-Jun N-terminal kinase and NF-kappaB pathways for the expression of pro-inflammatory cytokines and nitric oxide. J Biol Chem 2005;280:8617-27
  • Krishnegowda G, Hajjar AM, Zhu J, et al. Induction of pro-inflammatory responses in macrophages by the glycosylphosphatidylinositols of Plasmodium falciparum: cell signaling receptors, glycosylphosphatidylinositol (GPI) structural requirement, and regulation of GPI activity. J Biol Chem 2005;280:8606-16
  • Yarovinsky F, Zhang D, Andersen JF, et al. TLR11 activation of dendritic cells by a protozoan profilin-like protein. Science 2005;308:1626-9
  • Maldonado-Bernal C, Kirschning CJ, Rosenstein Y, et al. The innate immune response to Entamoeba histolytica lipopeptidophosphoglycan is mediated by toll-like receptors 2 and 4. Parasite Immunol 2005;27:127-37
  • Galvan-Moroyoqui JM, Del Carmen Dominguez-Robles M, Meza I. Pathogenic bacteria prime the induction of Toll-like receptor signalling in human colonic cells by the Gal/GalNAc lectin Carbohydrate Recognition Domain of Entamoeba histolytica. Int J Parasitol 2011;41:1101-12
  • Wu W, Weigand L, Belkaid Y, et al. Immunomodulatory effects associated with a live vaccine against Leishmania major containing CpG oligodeoxynucleotides. Eur J Immunol 2006;36:3238-47
  • Riganò R, Buttari B, Profumo E, et al. Echinococcus granulosus Antigen B Impairs Human Dendritic Cell Differentiation and Polarizes Immature Dendritic Cell Maturation towards a Th2 Cell Response. Infect Immun 2007;75(4):1667-78

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.