500
Views
86
CrossRef citations to date
0
Altmetric
Review

The immunomodulatory effects of intravenous immunoglobulin therapy in Kawasaki disease

&

References

  • Newburger JW, Takahashi M, Gerber MA, et al. Diagnosis, treatment and long term management of kawaski disease: a statement for helath professionals from the committee for rheumatic fever, endocarditis and kawaski disease, council on cardiovascular diseases in the young, american heart association. Circulation 2004;110:2747-71
  • Kawasaki T, Kosaki F, Okawa S, et al. A new infantile acute febrile mucocutaneous lymph node syndrome (MLNS) prevailing in Japan. Pediatrics 1974;54(3):271-6
  • Burns JC, Shike H, Gordon JB, et al. Sequelae of Kawasaki disease in adolescents and young adults. J Am Coll Cardiol 1996;28:253-7
  • Imbach P, Barandun S, d’Apuzzo V. High-dose intravenous gammaglobulin for idiopathic thrombocytopenic purpura in childhood. Lancet 1981;1:1228-31
  • Furusho K, Sato K, Soeda T, et al. High-dose intravenous gammaglobulin for Kawasaki disease. Lancet 1983;2(8363):1359
  • Newburger JW, Takahashi M, Burns JC, et al. The treatment of Kawasaki syndrome with intravenous gamma globulin. N Engl J Med 1986;315(6):341-7
  • Durongpisitkul K, Gururaj VJ, Park JM, et al. The prevention of coronary artery aneurysm in Kawasaki disease: a meta-analysis on the efficacy of aspirin and immunoglobulin treatment. Pediatrics 1995;96(6):1057-61
  • Newburger JW, Takahashi M, Beiser AS, et al. A single intravenous infusion of gamma globulin as compared with four infusions in the treatment of acute Kawasaki syndrome. N Engl J Med 1991;324(23):1633-9
  • Kazatchkine MD, Kaveri SV. Immunomodulation of autoimmune and inflammatory diseases with intravenous immune globulin. N Engl J Med 2001;345(10):747-55
  • Tha-In T, Bayry J, Metselaar HJ, et al. Modulation of the cellular immune system by intravenous immunoglobulin. Trends Immunol 2008;29(12):608-15
  • Nagelkerke S, Dekkers G, Kustiawan I, et al. Inhibition of FcgR-mediated phagocytosis by IVIG is independent of IgG-Fc sialylation and FcgRIIb in human macrophages. Blood 2014;124:3709-18
  • Anthony RM, Kobayashi T, Wermeling F, et al. Intravenous gammaglobulin suppresses inflammation through a novel T(H)2 pathway. Nature 2011;475(7354):110-13
  • Khor CC, Davila S, Breunis WB, et al. Genome-wide association study identifies FCGR2A as a susceptibility locus for Kawasaki disease. Nat Gen 2011;43(12):1241-6
  • Duan J, Lou J, Zhang Q, et al. A genetic variant rs1801274 in FCGR2A as a potential risk marker for kawasaki disease: A case-control study and meta-analysis. PLoS One 2014;9(8):e103329
  • Shrestha S, Wiener H, Shendre A, et al. Role of activating FcgammaR gene polymorphisms in Kawasaki disease susceptibility and intravenous immunoglobulin response. Circ Cardiovasc Genet 2012;5(3):309-16
  • Shrestha S, Wiener HW, Olson AK, et al. Functional FCGR2B gene variants influence intravenous immunoglobulin response in patients with Kawasaki disease. J Allergy Clin Immunol 2011;128(3):677-80
  • Shendre A, Wiener HW, Zhi D, et al. High-density genotyping of immune loci in Kawasaki disease and IVIG treatment response in European-American case-parent trio study. Genes Immun 2014;15(8):534-42
  • Onouchi Y, Ozaki K, Burns JC, et al. A genome-wide association study identifies three new risk loci for Kawasaki disease. Nat Gen 2012;44(5):517-21
  • Abe J, Jibiki T, Noma S, et al. Gene expression profiling of the effect of high-dose intravenous Ig in patients with Kawasaki disease. J Immunol 2005;174(9):5837-45
  • Trinath J, Hegde P, Sharma M, et al. Intravenous immunoglobulin expands regulatory T cells via induction of cyclooxygenase-2-dependent prostaglandin E2 in human dendritic cells. Blood 2013;122(8):1419-27
  • Burns JC, Song Y, Bujold M, et al. Immune-monitoring in Kawasaki disease patients treated with infliximab and intravenous immunoglobulin. Clin Exp Immunol 2013;174(3):337-44
  • Ephrem A, Chamat S, Miquel C, et al. Expansion of CD4+CD25+ regulatory T cells by intravenous immunoglobulin: a critical factor in controlling experimental autoimmune encephalomyelitis. Blood 2008;1151(2):715-22
  • Maddur MS, Vani J, Hegde P, et al. Inhibition of differentiation, amplification, and function of human TH17 cells by intravenous immunoglobulin. J Allergy Clin Immunol 2011;127(3):823-30
  • Franco A, Touma R, Song Y, et al. Specificity of regulatory T cells that modulate vascular inflammation. Autoimmunity 2014;47:95-104
  • von Gunten S, Schaub A, Vogel M, et al. Immunologic and functional evidence for anti-Siglec-9 autoantibodies in intravenous immunoglobulin preparations. Blood 2006;108(13):4255-9
  • Finberg RW, Newburger JW, Mikati MA, et al. Effect of high doses of intravenously administered immune globulin on natural killer cell activity in peripheral blood. J Pediatr 1992;120(3):376-80
  • Franco A, Shimizu C, Tremoulet AH, et al. Memory T cells and characterization of peripheral T cell clones in acute Kawasaki disease. Autoimmunity 2010;43:317-24
  • Shimizu C, Oharaseiki T, Takahashi K, et al. The role of TGF-b and myofibroblasts in the arteritis of Kawasaki disease. Hum Pathol 2012;44:189-98
  • Makoto M, Yoshioka Y, Kitoh A, et al. Functional delination and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity 2009;30:899-911
  • Feuerer M, Hill JA, Mathis D, et al. Foxp3+ regulatory T cells: differentiation, specification, subphenotypes. Nat Immunol 2010;10:698-5
  • Jordan MS, Boesteanu A, Reed AJ, et al. Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nat Immunol 2001;2:301-6
  • Miyara M, Yoshioka Y, Kito A, et al. Functional delineation and differentiation dinamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity 2009;30:899-911
  • Chen WJ, Jin W, Hardegen N, et al. Conversion of Peripheral CD4+CD25- Naive T Cells to CD4+CD25+ Regulatory T Cells by TGF-ß Induction of Transcription Factor Foxp3. J Exp Med 2003;198:1875-86
  • Kretschmer K, Apostolou I, Hawiger D, et al. Inducing and expanding regulatory T cell populations by foreign antigen. Nature Immunol 2005;6:1-9
  • Apostolou I, Sarukhan A, Klein L, et al. Origin of regulatory T cells with known specificity for antigen. Nat Immunol 2002;3:756-63
  • Apostolou I, von Boemer H. In vivo instruction od suppressor committment in naive T cells. J Experimental Med 2004;199:1401-8
  • Rivino L, Gruarin P, Häringer B, et al. CCR6 is expressed on IL-10 producing, autoreactive memory T cell population with context-dependent regulatory function. J Exp Med 2010;207:565-77
  • Roncarolo MG, Battaglia M. Regulatory T cell immunotherapy for tolerance to self antigens and to alloantigens in humans. Nat Rev 2007;7:585-98
  • Wing K, Sakaguchi S. Regulatory T cells exert checks and balances on self tolerance and autoimmunity. Nat Immunol 2010;11:7-13
  • von Boehmer H, Melchers F. Checkpoints in lymphocytes development and autoimmune disease. Nat Immunol 2010;11:14-20
  • Kassiotis G, O’Garra A. Immunology. Immunity benefits from a little suppression. Science 2008;320:1168-9
  • O’Garra A, Vieira PL, Vieira P, et al. IL-10-producing and naturally occurring CD4+ Tregs: limiting collateral damage. J Clin Invest 2004;114:1372-8
  • Saraiva M, O’Garra A. The regulation of IL-10 production by immune cells. Nat Rev Immunol 2010;10:170-81
  • Hsu CH, Chen MR, Hwang FY, et al. Efficacy of plasmin-treated intravenous gamma-globulin for therapy of Kawasaki syndrome. Pediatr Infect Dis J 1993;12(6):509-12
  • Harada K. Intravenous gamma-globulin treatment in Kawasaki disease. Acta paediatrica Japonica 1991;33(6):805-10
  • Burns JC, Touma R, Song Y, et al. Fine specificities of natural regulatory T cells after IVIG therapy in patients with Kawasaki disease. Autoimmunity 2015:1-8
  • Sundel RP, Burns JC, Baker A, et al. Gamma globulin re-treatment in Kawasaki disease. J Pediatr 1993;123(4):657-9
  • Burns JC, Best BM, Mejias A, et al. Infliximab treatment of intravenous immunoglobulin-resistant Kawasaki disease. J Pediatr 2008;153(6):833-8
  • Zhu BH, Lv HT, Sun L, et al. A meta-analysis on the effect of corticosteroid therapy in Kawasaki disease. Eur J Pediatr 2012;171(3):571-8
  • Tremoulet AH, Pancoast P, Franco A, et al. Calcineurin inhibitor treatment of intravenous immunoglobulin-resistant Kawasaki disease. J Pediatr 2012;161(3):506-512 e501
  • Cohen S, Tacke CE, Straver B, et al. A child with severe relapsing Kawasaki disease rescued by IL-1 receptor blockade and extracorporeal membrane oxygenation. Ann Rheum Dis 2012;71(12):2059-61
  • Hokosaki T, Mori M, Nishizawa T, et al. Long-term efficacy of plasma exchange treatment for refractory Kawasaki disease. Pediatr Int 2012;54(1):99-103
  • Son MB, Gauvreau K, Burns JC, et al. Infliximab for intravenous immunoglobulin resistance in Kawasaki disease: a retrospective study. J Pediatr 2011;158(4):644-649 e641
  • Kobayashi T, Saji T, Otani T, et al. Efficacy of immunoglobulin plus prednisolone for prevention of coronary artery abnormalities in severe Kawasaki disease (RAISE study): a randomised, open-label, blinded-endpoints trial. Lancet 2012;379(9826):1613-20
  • Sleeper LA, Minich LL, McCrindle BM, et al. Evaluation of Kawasaki disease risk-scoring systems for intravenous immunoglobulin resistance. J Pediatr 2011;158(5):831-835 e833
  • Tremoulet AH, Best BM, Song S, et al. Resistance to intravenous immunoglobulin in children with Kawasaki disease. J Pediatr 2008;153(1):117-21
  • Dominguez SR, Anderson MS, El-Adawy M, Glode MP. Preventing coronary artery abnormalities: a need for earlier diagnosis and treatment of kawasaki disease. Pediatr Infect Dis J 2012;31(12):1217-20
  • Newburger JW, Sleeper LA, McCrindle BW, et al. Randomized trial of pulsed corticosteroid therapy for primary treatment of Kawasaki disease. N Engl J Med 2007;356(7):663-75
  • Tremoulet AH, Jain S, Jaggi P, et al. Infliximab for intensification of primary therapy for Kawasaki disease: a phase 3 randomised, double-blind, placebo-controlled trial. Lancet 2014;383(9930):1731-8
  • Ogata S, Shimizu C, Franco A, et al. Treatment response in Kawasaki disease is associated with sialylation levels of endogenous but not therapeutic intravenous immunoglobulin g. PLoS ONE 2013;8(12):e81448

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.