161
Views
4
CrossRef citations to date
0
Altmetric
Review

Immune mechanism–targeted treatment of experimental epidermolysis bullosa acquisita

References

  • Elliott GT. Two cases of epidermolysis bullosa. J Cutan Genitourin Dis 1895;13:10
  • Roenigk HHJ, Ryan JG, Bergfeld WF. Epidermolysis bullosa acquisita. Report of three cases and review of all published cases. Arch Dermatol 1971;103:1-10
  • Ishii N, Hamada T, Dainichi T, et al. Epidermolysis bullosa acquisita: what’s new? J Dermatol 2010;37:220-30
  • Gupta R, Woodley DT, Chen M. Epidermolysis bullosa acquisita. Clin Dermatol 2012;30:60-9
  • Schmidt E, Zillikens D. Pemphigoid diseases. Lancet 2013;381:320-32
  • Ludwig RJ. Clinical Presentation, Pathogenesis, Diagnosis, and Treatment of Epidermolysis Bullosa Acquisita. ISRN Dermatol 2013;ID 812029:25
  • Bernard P, Vaillant L, Labeille B, et al. Incidence and distribution of subepidermal autoimmune bullous skin diseases in three French regions. Bullous Diseases French Study Group. Arch Dermatol 1995;131:48-52
  • Wong SN, Chua SH. Spectrum of subepidermal immunobullous disorders seen at the National Skin Centre, Singapore: a 2-year review. Br J Dermatol 2002;147:476-80
  • Bertram F, Brocker EB, Zillikens D, et al. Prospective analysis of the incidence of autoimmune bullous disorders in Lower Franconia. Germany. J Dtsch Dermatol Ges 2009;7:434-40
  • Buijsrogge JJ, Diercks GF, Pas HH, et al. The many faces of epidermolysis bullosa acquisita after serration pattern analysis by direct immunofluorescence microscopy. Br J Dermatol 2011;165:92-8
  • Kim JH, Kim YH, Kim SC. Epidermolysis Bullosa Acquisita: A Retrospective Clinical Analysis of 30 Cases. Acta Derm Venereol 2011;91:307-12
  • Zumelzu C, Le Roux-Villet C, Loiseau P, et al. Black patients of African descent and HLA-DRB1•15:03 frequency overrepresented in epidermolysis bullosa acquisita. J Invest Dermatol 2011;131:2386-93
  • Nieboer C, Boorsma DM, Woerdeman MJ, et al. Epidermolysis bullosa acquisita. Immunofluorescence, electron microscopic and immunoelectron microscopic studies in four patients. Br J Dermatol 1980;102:383-92
  • Yaoita H, Briggaman RA, Lawley TJ, et al. Epidermolysis bullosa acquisita: ultrastructural and immunological studies. J Invest Dermatol 1981;76:288-92
  • Woodley DT, Briggaman RA, O’Keefe EJ, et al. Identification of the skin basement-membrane autoantigen in epidermolysis bullosa acquisita. N Engl J Med 1984;310:1007-13
  • Woodley DT, Burgeson RE, Lunstrum G, et al. Epidermolysis bullosa acquisita antigen is the globular carboxyl terminus of type VII procollagen. J Clin Invest 1988;81:683-7
  • Parente MG, Chung LC, Ryynanen J, et al. Human type VII collagen: cDNA cloning and chromosomal mapping of the gene. Proc Natl Acad Sci USA 1991;88:6931-5
  • Komorowski L, Muller R, Vorobyev A, et al. Sensitive and specific assays for routine serological diagnosis of epidermolysis bullosa acquisita. J Am Acad Dermatol 2012;68:e89-95
  • Sitaru C, Kromminga A, Hashimoto T, et al. Autoantibodies to type VII collagen mediate Fcgamma-dependent neutrophil activation and induce dermal-epidermal separation in cryosections of human skin. Am J Pathol 2002;161:301-11
  • Woodley DT, Chang C, Saadat P, et al. Evidence that anti-type VII collagen antibodies are pathogenic and responsible for the clinical, histological, and immunological features of epidermolysis bullosa acquisita. J Invest Dermatol 2005;124:958-64
  • Sitaru C, Mihai S, Otto C, et al. Induction of dermal-epidermal separation in mice by passive transfer of antibodies specific to type VII collagen. J Clin Invest 2005;115:870-8
  • Vorobyev A, Ujiie H, Recke A, et al. Autoantibodies to Multiple Epitopes on the Non-Collagenous-1 Domain of Type VII Collagen Induce Blisters. J Invest Dermatol 2015
  • Sitaru C, Chiriac MT, Mihai S, et al. Induction of complement-fixing autoantibodies against type VII collagen results in subepidermal blistering in mice. J Immunol 2006;177:3461-8
  • Iwata H, Bieber K, Tiburzy B, et al. B cells, dendritic cells, and macrophages are required to induce an autoreactive CD4 helper T cell response in experimental epidermolysis bullosa acquisita. J Immunol 2013;191:2978-88
  • Prussmann J, Prussmann W, Recke A, et al. Co-occurrence of autoantibodies in healthy blood donors. Exp Dermatol 2014;23:519
  • Prüßmann W, Prüßmann J, Koga H, et al. Prevalence of pemphigus and pemphigoid autoantibodies in the general population. Orphan J Rare Dis 2015;10:63
  • Bain EE, Grover RK, Plunkett RW, et al. Detection of collagen VII autoantibodies to NC1 and NC2 domains of collagen VII by ELISA in suspected epidermolysis bullosa acquisita and bullous lupus erythematosus patients.[letter]. J Dermatol Sci 2012;65(2):155-6
  • Vodegel RM, Jonkman MF, Pas HH, et al. U-serrated immunodeposition pattern differentiates type VII collagen targeting bullous diseases from other subepidermal bullous autoimmune diseases. Br J Dermatol 2004;151:112-18
  • Engineer L, Ahmed AR. Emerging treatment for epidermolysis bullosa acquisita. J Am Acad Dermatol 2001;44:818-28
  • Kim JH, Kim SC. Epidermolysis bullosa acquisita. J Eur Acad Dermatol Venereol 2013
  • Ludwig RJ. Model systems duplicating epidermolysis bullosa acquisita: a methodological review. Autoimmunity 2012;45:102-10
  • Iwata H, Bieber K, Hirose M, et al. Animal models to investigate pathomechanisms and evaluate novel treatments for autoimmune bullous dermatoses. Curr Pharm Des 2015
  • Witebsky E. Concept of autoimmune disease. Ann NY Acad Sci 1966;135:443-50
  • Rose NR, Bona C. Defining criteria for autoimmune diseases (Witebsky’s postulates revisited). Immunol Today 1993;14:426-30
  • Hashimoto T, Ishii N, Ohata C, et al. Pathogenesis of epidermolysis bullosa acquisita, an autoimmune subepidermal bullous disease. J Pathol 2012;228:1-7
  • Chen M, Kim GH, Prakash L, et al. Epidermolysis bullosa acquisita: Autoimmunity to anchoring fibril collagen. Autoimmunity 2011;45:91-101
  • Ludwig RJ, Kalies K, Köhl J, et al. Emerging treatments for pemphigoid diseases. Trends Mol Med 2013;19:501-12
  • Csorba K, Chiriac MT, Florea F, et al. Blister-inducing antibodies target multiple epitopes on collagen VII in mice. J Cell Mol Med 2014;18:1727-39
  • Woodley DT, Ram R, Doostan A, et al. Induction of epidermolysis bullosa acquisita in mice by passive transfer of autoantibodies from patients. J Invest Dermatol 2006;126:1323-30
  • Chen M, Doostan A, Bandyopadhyay P, et al. The cartilage matrix protein subdomain of type VII collagen is pathogenic for epidermolysis bullosa acquisita. Am J Pathol 2007;170:2009-18
  • Wang X, Gupta R, Garlapati A, et al. Type IV collagen binding-site within type VII collagen is a pathogenic epitope for EBA autoantibodies. J Invest Derm 2011;131:S7
  • Kopecki Z, Ruzehaji N, Turner C, et al. Topically applied flightless I neutralizing antibodies improve healing of blistered skin in a murine model of epidermolysis bullosa acquisita. J Invest Dermatol 2013;133:1008-16
  • Ludwig RJ, Recke A, Bieber K, et al. Generation of antibodies of distinct subclasses and specificity Is linked to H2s in an active mouse model of epidermolysis bullosa acquisita. J Invest Dermatol 2011;131:167-76
  • Samavedam UK, Iwata H, Muller S, et al. GM-CSF modulates autoantibody production and skin blistering in experimental epidermolysis bullosa acquisita. J Immunol 2014;192:559-71
  • Sadeghi H, Lockmann A, Hund AC, et al. Caspase-1-Independent IL-1 Release Mediates Blister Formation in Autoantibody-Induced Tissue Injury through Modulation of Endothelial Adhesion Molecules. J Immunol 2015
  • Iwata H, Pipi E, Mockel N, et al. Recombinant soluble CD32 suppresses disease progression in experimental epidermolysis bullosa acquisita. J Invest Dermatol 2015;135:916-19
  • Mayadas TN, Cullere X, Lowell CA. The multifaceted functions of neutrophils. Annu Rev Pathol 2014;9:181-218
  • Chiriac MT, Roesler J, Sindrilaru A, et al. NADPH oxidase is required for neutrophil-dependent autoantibody-induced tissue damage. J Pathol 2007;212:56-65
  • Yu X, Holdorf K, Kasper B, et al. FcgammaRIIA and FcgammaRIIIB Are Required for Autoantibody-Induced Tissue Damage in Experimental Human Models of Bullous Pemphigoid. J Invest Dermatol 2010;30:2841-4
  • Recke A, Sitaru C, Vidarsson G, et al. Pathogenicity of IgG subclass autoantibodies to type VII collagen: induction of dermal-epidermal separation. J Autoimmun 2010;34:435-44
  • Recke A, Trog LM, Pas HH, et al. Recombinant human IgA1 and IgA2 autoantibodies to type VII collagen induce subepidermal blistering ex vivo. J Immunol 2014;193:1600-8
  • Gammon WR, Merritt CC, Lewis DM, et al. An in vitro model of immune complex-mediated basement membrane zone separation caused by pemphigoid antibodies, leukocytes, and complement. J Invest Dermatol 1982;78:285-90
  • Tukaj S, Hellberg L, Ueck C, et al. Heat shock protein 90 is required for ex vivo neutrophil-driven autoantibody-induced tissue damage in experimental epidermolysis bullosa acquisita.[letter]. Exp Dermatol 2015;24(6):471-3
  • Sundberg JP, Roopenian DC, Liu ET, et al. The Cinderella Effect: Searching for the Best Fit between Mouse Models and Human Diseases. J Invest Dermatol 2013;133:2509-13
  • Tsunoda K, Ota T, Aoki M, et al. Induction of pemphigus phenotype by a mouse monoclonal antibody against the amino-terminal adhesive interface of desmoglein 3. J Immunol 2003;170:2170-8
  • Sitaru AG, Sesarman A, Mihai S, et al. T cells are required for the production of blister-inducing autoantibodies in experimental epidermolysis bullosa acquisita. J Immunol 2010;184:1596-603
  • Tiburzy B, Szyska M, Iwata H, et al. Persistent Autoantibody-Production by Intermediates between Short-and Long-Lived Plasma Cells in Inflamed Lymph Nodes of Experimental Epidermolysis Bullosa Acquisita. PLoS One 2013;8:e83631
  • Puga I, Cols M, Barra CM, et al. B cell-helper neutrophils stimulate the diversification and production of immunoglobulin in the marginal zone of the spleen. Nat Immunol 2012;13:170-80
  • Muller R, Dahler C, Mobs C, et al. T and B cells target identical regions of the non-collagenous domain 1 of type VII collagen in epidermolysis bullosa acquisita. Clin Immunol 2010;135:99-107
  • Hammers CM, Bieber K, Kalies K, et al. Complement-Fixing Anti-Type VII Collagen Antibodies Are Induced in Th1-Polarized Lymph Nodes of Epidermolysis Bullosa Acquisita-Susceptible Mice. J Immunol 2011;187:5043-50
  • Tukaj S, Zillikens D, Kasperkiewicz M. Heat shock protein 90: A pathophysiological factor and novel treatment target in autoimmune bullous skin diseases. Exp Dermatol 2015
  • Kasperkiewicz M, Muller R, Manz R, et al. Heat-shock protein 90 inhibition in autoimmunity to type VII collagen: evidence that nonmalignant plasma cells are not therapeutic targets. Blood 2011;117:6135-42
  • Tukaj S, Tiburzy B, Manz R, et al. Immunomodulatory effects of heat shock protein 90 inhibition on humoral immune responses. Exp Dermatol 2014;23:585-90
  • Kuo TT, Baker K, Yoshida M, et al. Neonatal Fc receptor: from immunity to therapeutics. J Clin Immunol 2010;30:777-89
  • Sesarman A, Sitaru AG, Olaru F, et al. Neonatal Fc receptor deficiency protects from tissue injury in experimental epidermolysis bullosa acquisita. J Mol Med (Berl) 2008;86:951-9
  • Kasperkiewicz M, Nimmerjahn F, Wende S, et al. Genetic identification and functional validation of FcγRIV as key molecule in autoantibody-induced tissue injury. J Pathol 2012;228:8-19
  • Sadeghi H, Gupta Y, Möller M, et al. The retinoid-related orphan receptor alpha is essential for the end-stage effector phase of experimental epidermolysis bullosa acquisita. J Pathol 2015;237:111-22
  • Kasprick A, Yu X, Scholten J, et al. Conditional depletion of mast cells has no impact on the severity of experimental epidermolysis bullosa acquisita. Eur J Immunol 2015
  • Karsten CM, Pandey MK, Figge J, et al. Anti-inflammatory activity of IgG1 mediated by Fc galactosylation and association of FcgammaRIIB and dectin-1. Nat Med 2012;18:1401-6
  • Mihai S, Chiriac MT, Takahashi K, et al. The alternative pathway in complement activation is critical for blister induction in experimental epidermolysis bullosa acquisita. J Immunol 2007;178:6514-21
  • Ludwig RJ, Muller S, Marques A, et al. Identification of quantitative trait loci in experimental epidermolysis bullosa acquisita. J Invest Dermatol 2012;132:1409-15
  • Grando SA, Glukhenky BT, Drannik GN, et al. Mediators of inflammation in blister fluids from patients with pemphigus vulgaris and bullous pemphigoid. Arch Dermatol 1989;125:925-30
  • Ameglio F, D’Auria L, Bonifati C, et al. Cytokine pattern in blister fluid and serum of patients with bullous pemphigoid: relationships with disease intensity. Br J Dermatol 1998;138:611-14
  • D’Auria L, Mussi A, Bonifati C, et al. Increased serum IL-6, TNF-alpha and IL-10 levels in patients with bullous pemphigoid: relationships with disease activity. J Eur Acad Dermatol Venereol 1999;12:11-15
  • Ludwig RJ, Schmidt E. Cytokines in autoimmune bullous skin diseases. Epiphenomena or contribution to pathogenesis? G Ital Dermatol Venereol 2009;144:339-49
  • Samavedam UK, Kalies K, Scheller J, et al. Recombinant IL-6 treatment protects mice from organ specific autoimmune disease by IL-6 classical signalling-dependent IL-1ra induction. J Autoimmun 2013;40:74-85
  • Hirose M, Brandolini L, Zimmer D, et al. The allosteric CXCR1/2 inhibitor DF2156A improves experimental epidermolysis bullosa acquisita. J Genet Syndr Gene Ther 2013. [Epub ahead of print]
  • Dinarello CA. IL-1: discoveries, controversies and future directions. Eur J Immunol 2010;40:599-606
  • Guma M, Ronacher L, Liu-Bryan R, et al. Caspase 1-independent activation of interleukin-1beta in neutrophil-predominant inflammation. Arthritis Rheum 2009;60:3642-50
  • Sesarman A, Mihai S, Chiriac MT, et al. Binding of avian IgY to type VII collagen does not activate complement and leuckocytes fail to induce subepidermal blistering in mice. Br J Dermatol 2008;158:463-71
  • Collin M, Ehlers M. The carbohydrate switch between pathogenic and immunosuppressive antigen-specific antibodies. Exp Dermatol 2013;22:511-14
  • Maverakis E, Kim K, Shimoda M, et al. Glycans in the immune system and The Altered Glycan Theory of Autoimmunity: a critical review. J Autoimmun 2015;57:1-13
  • Collin M, Olsen A. EndoS, a novel secreted protein from Streptococcus pyogenes with endoglycosidase activity on human IgG. EMBO J 2001;20:3046-55
  • Collin M, Shannon O, Bjorck L. IgG glycan hydrolysis by a bacterial enzyme as a therapy against autoimmune conditions. Proc Natl Acad Sci U S A 2008;105:4265-70
  • Hirose M, Vafia K, Kalies K, et al. Enzymatic autoantibody glycan hydrolysis alleviates autoimmunity against type VII collagen. J Autoimmun 2012;39:304-14
  • Recke A, Vidarsson G, Ludwig RJ, et al. Allelic and copy-number variations of FcγRs affect granulocyte function and susceptibility for autoimmune blistering diseases. J Autoimmun 2015
  • Mócsai A, Walzog B, Lowell CA. Intracellular signalling during neutrophil recruitment. Cardiovasc Res 2015
  • Stanley JR, Amagai M. Pemphigus, bullous impetigo, and the staphylococcal scalded-skin syndrome. N Engl J Med 2006;355:1800-10
  • Kitajima Y. Mechanisms of desmosome assembly and disassembly. Clin Exp Dermatol 2002;27:684-90
  • Berkowitz P, Hu P, Liu Z, et al. Desmosome signaling. Inhibition of p38MAPK prevents pemphigus vulgaris IgG-induced cytoskeleton reorganization. J Biol Chem 2005;280:23778-84
  • Berkowitz P, Hu P, Warren S, et al. p38MAPK inhibition prevents disease in pemphigus vulgaris mice. Proc Natl Acad Sci USA 2006;103:12855-60
  • Kitajima Y. 150(th) anniversary series: Desmosomes and autoimmune disease, perspective of dynamic desmosome remodeling and its impairments in pemphigus. Cell Commun Adhes 2014;21:269-80
  • Kulkarni S, Sitaru C, Andersson KE, et al. Essential role for PI3Kβ in neutrophil activation by immune complexes. Sci Signal 2011;4:ra23
  • Hellberg L, Samavedam UK, Holdorf K, et al. Methylprednisolone blocks autoantibody-induced tissue damage through inhibition of neutrophil activation. J Invest Derm 2013;133:2390-9
  • Kovacs M, Nemeth T, Jakus Z, et al. The Src family kinases Hck, Fgr, and Lyn are critical for the generation of the in vivo inflammatory environment without a direct role in leukocyte recruitment. J Exp Med 2014;211:1993-2011
  • Hayes JM, Cosgrave EF, Struwe WB, et al. Glycosylation and Fc receptors. Curr Top Microbiol Immunol 2014;382:165-99
  • Kopecki Z, Arkell R, Powell BC, et al. Flightless I regulates hemidesmosome formation and integrin-mediated cellular adhesion and migration during wound repair. J Invest Dermatol 2009;129:2031-45
  • Kopecki Z, Arkell RM, Strudwick XL, et al. Overexpression of the Flii gene increases dermal-epidermal blistering in an autoimmune ColVII mouse model of epidermolysis bullosa acquisita. J Pathol 2011;225:401-13
  • van der Steen LP, Bakema JE, Sesarman A, et al. Blocking fcalpha receptor i on granulocytes prevents tissue damage induced by IgA autoantibodies. J Immunol 2012
  • Delgado L, Aoki V, Santi C, et al. Clinical and immunopathological evaluation of epidermolysis bullosa acquisita. Clin Exp Dermatol 2011;36:12-18
  • Rubenstein R, Esterly NB, Fine JD. Childhood epidermolysis bullosa acquisita. Detection in a 5-year-old girl. Arch Dermatol 1987;123:772-6
  • Ghoreschi K, Gadina M. Jakpot! New small molecules in autoimmune and inflammatory diseases. Exp Dermatol 2014;23:7-11
  • Effect of KB003 in Subjects With Asthma Inadequately Controlled by Corticosteroids (KB003-04). Available from: https://clinicaltrials.gov/ct2/show/NCT01603277
  • Pilot Efficacy and Safety Study of Oral DF2156A in Patients With Active Bullous Pemphigoid. Available from: https://clinicaltrials.gov/ct2/show/NCT01571895
  • Herrero-Gonzalez JE, Sitaru C, Klinker E, et al. Successful adjuvant treatment of severe bullous pemphigoid by tryptophan immunoadsorption. Clin Exp Dermatol 2005;30:519-22
  • Baerenwaldt A, Biburger M, Nimmerjahn F. Mechanisms of action of intravenous immunoglobulins. Expert Rev Clin Immunol 2010;6:425-34
  • Ishii N, Hashimoto T, Zillikens D, et al. High-dose intravenous immunoglobulin (IVIG) therapy in autoimmune skin blistering diseases. Clin Rev Allergy Immunol 2010;38:186-95
  • Hirose M, Tiburzy B, Ishii N, et al. Effects of Intravenous Immunoglobulins on Mice with Experimental Epidermolysis Bullosa Acquisita. J Invest Dermatol 2015;135:768-75
  • Schwab I, Mihai S, Seeling M, et al. Broad requirement for terminal sialic acid residues and FcgammaRIIB for the preventive and therapeutic activity of intravenous immunoglobulins in vivo. Eur J Immunol 2014;44:1444-53
  • Burls A, Jobanputra P. The trials of anakinra. Lancet 2004;364:827-8
  • Reichert JM. Marketed therapeutic antibodies compendium. MAbs 2012;4:413-15

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.