544
Views
14
CrossRef citations to date
0
Altmetric
Reviews

Overcoming challenges in the diagnosis and treatment of myasthenia gravis

, &
Pages 157-168 | Received 31 Aug 2015, Accepted 16 Oct 2015, Published online: 16 Dec 2015

References

** The authors demonstrate that human IgG4 muscle-specific tyrosine kinase receptor (MuSK) antibodies bind to the first Ig-like domain in MuSK, thus disrupting MuSK–low-density lipoprotein receptor-related protein 4 interaction and inhibiting agrin-stimulated MuSK phosphorylation.

  • Zhang W, Coldefy AS, Hubbard SR, et al. Agrin binds to the N-terminal region of Lrp4 protein and stimulates association between Lrp4 and the first immunoglobulin-like domain in muscle-specific kinase (MuSK). J Biol Chem. 2011;286:40624–40630.
  • Zisimopoulou P, Evangelakou P, Tzartos J, et al. A comprehensive analysis of the epidemiology and clinical characteristics of anti-LRP4 in myasthenia gravis. J Autoimmun. 2014;52:139–145.

* A multinational survey of acetylcholine receptor/muscle-specific tyrosine kinase receptor negative patients reporting an overall low-density lipoprotein receptor-related protein 4 antibody frequency of 18.7% with differences among populations. Both clinical presentation and response to therapy in low-density lipoprotein receptor-related protein 4-myasthenia gravis (MG) patients were more similar to those in acetylcholine receptor-MG than in MuSK-MG.

* A comprehensive review of antibodies to muscle antigens in myasthenia gravis. The authors thoroughly discuss the relevance of different antibodies in diagnosis and as measure of disease severity.

  • Howard JF Jr. Electrodiagnosis of disorders of neuromuscular transmission. Phys Med Rehabil Clin N Am. 2013;24:169–192.
  • Benatar M. A systematic review of diagnostic studies in myasthenia gravis. Neuromusc Disord. 2006;16:459–467.
  • Evoli A, Padua L. Diagnosis and therapy of myasthenia gravis with antibodies to muscle-specific kinase. Autoimmun Rev. 2013;12:931–935.
  • Oger J, Frykman H. An update on laboratory diagnosis in myasthenia gravis. Clinica Chimica Acta. 2015;444:126–131.
  • Chan KH, Lachance DH, Harper CM, et al. Frequency of seronegativity in adult-acquired generalized myasthenia gravis. Muscle Nerve. 2007;36:651–658.
  • Berrih-Aknin S, Frenkian-Cuvelier M, Eymard B. Diagnostic and clinical classification of autoimmune myasthenia gravis. J Autoimmun. 2014;48-49:143–148.
  • Chiang LM, Darras BT, Kang PB. Juvenile myasthenia gravis. Muscle Nerve. 2009;39:423–431.
  • Zisimopoulou P, Brenner T, Trakas N, et al. Serological diagnostics in myasthenia gravis based on novel assays and recently identified antigens. Autoimmun Rev. 2013;12:924–930.
  • Rodriguez Cruz PM, Huda S, López-Ruiz P, et al. Use of cell-based assays in myasthenia gravis and other antibody-mediated diseases. Exp Neurol. 2015;270:66–71.
  • Evoli A, Tonali PA, Padua L, et al. Clinical correlates with anti-MuSK antibodies in generalized seronegative myasthenia gravis. Brain. 2003;126:2304–2311.
  • Deymeer F, Gungor-Tuncer O, Yilmaz V, et al. Clinical comparison of anti-MuSK- vs anti-AChR-positive and seronegative myasthenia gravis. Neurology. 2007;68:609–611.
  • Lauriola L, Ranelletti F, Maggiano N, et al. Thymus changes in anti-MuSK-positive and -negative myasthenia gravis. Neurology. 2005;64:536–538.
  • Leite MI, Ströbel P, Jones M, et al. Fewer thymic changes in MuSK antibody-positive than in MuSK antibody-negative MG. Ann Neurol. 2005;57:444–448.
  • Nikolic A, Djukic P, Basta I, et al. The predictive value of the presence of different antibodies and thymus pathology to the clinical outcome in patients with generalized myasthenia gravis. Clin Neurol Neurosurg. 2013;115:432–437.
  • Leite MI, Jacob S, Viegas S, et al. IgG1 antibodies to acetylcholine receptors in ‘seronegative’ myasthenia gravis. Brain. 2008;131:1940–1952.
  • Vincent A, Waters P, Leite MI, et al. Antibodies identified by cell-based assays in myasthenia gravis and associated diseases. Ann N Y Acad Sci. 2012;1274:92–98.
  • Jacob S, Viegas S, Leite MI, et al. Presence and pathogenic relevance of antibodies to clustered acetylcholine receptor in ocular and generalized myasthenia gravis. Arch Neurol. 2012;69:994–1001.
  • Rodríguez Cruz PM, Al-Hajjar M, Huda S, et al. Clinical features and diagnostic usefulness of antibodies to clustered acetylcholine receptors in the diagnosis of seronegative myasthenia gravis. JAMA Neurol. 2015;72:642–649.

* This study reports the clinical correlates of clustered-acetylcholine receptor antibodies, showing a high rate of positive results in patients with childhood or ocular myasthenia gravis.

  • Devic P, Petiot P, Simonet T, et al. Antibodies to clustered acetylcholine receptors: expanding the phenotype. Eur J Neurol. 2014;21:130–134.
  • Zhao G, Wang X, Yu X, et al. Clinical application of clustered-AChR for the detection of SNMG. Sci Rep. 2015;5:10193.
  • Tsonis AI, Zisimopoulou P, Lazaridis K, et al. MuSK autoantibodies in myasthenia gravis detected by cell based assay–A multinational study. J Neuroimmunol. 2015;284:10–17.
  • Kim N, Stiegler AL, Cameron TO, et al. Lrp4 is a receptor for agrin and forms a complex with MuSK. Cell. 2008;135:334–342.
  • Yumoto N, Kim N, Burden SJ. Lrp4 is a retrograde signal for presynaptic differentiation at neuromuscular synapses. Nature. 2012;489:438–442.
  • Higuchi O, Hamuro J, Motomura M, et al. Autoantibodies to low-density lipoprotein receptor-related protein 4 in myasthenia gravis. Ann Neurol. 2011;69:418–422.
  • Zhang B, Tzartos JS, Belimezi M, et al. Autoantibodies to lipoprotein-related protein 4 in patients with double-seronegative myasthenia gravis. Arch Neurol. 2012;69:445–451.
  • Shen C, Lu Y, Zhang B, et al. Antibodies against low-density lipoprotein receptor-related protein 4 induce myasthenia gravis. J Clin Invest. 2013;123:5190–5202.
  • Pevzner A, Schoser B, Peters K, et al. Anti-LRP4 autoantibodies in AChR- and MuSK-antibody-negative myasthenia gravis. J Neurol. 2012;259:427–435.
  • Marino M, Scuderi F, Samengo D, et al. Flow cytofluorimetric analysis of anti-LRP4 (LDL receptor-related protein 4) autoantibodies in Italian patients with myasthenia gravis. PLoS One. 2015;10:e0135378.
  • Tzartos JS, Zisimopoulou P, Rentzos M, et al. LRP4 antibodies in serum and CSF from amyotrophic lateral sclerosis patients. Ann Clin Transl Neurol. 2014;1:80–87.
  • Zhang B, Shen C, Bealmear B, et al. Autoantibodies to agrin in myasthenia gravis patients. PLoS One. 2014;9:e91816.
  • Gasperi C, Melms A, Schoser B, et al. Anti-agrin autoantibodies in myasthenia gravis. Neurology. 2014;82:1976–1983.
  • Cossin J, Belaya K, Zoltowska K, et al. The search for new antigens in myasthenia gravis. Ann N Y Acad Sci. 2012;1275:123–128.
  • Zoltowska Katarzyna M, Belaya K, Leite M, et al. Collagen Q - a potential target for autoantibodies in myasthenia gravis. J Neurol Sci. 2015;348:241–244.
  • Madhavan R, Gong ZL, Ma JJ, et al. The function of cortactin in the clustering of acetylcholine receptors at the vertebrate neuromuscular junction. PLos One. 2009;4:e8478.
  • Gallardo E, Martínez-Hernández E, Titulaer MJ, et al. Cortactin autoantibodies in myasthenia gravis. Autoimmun Rev. 2014;13:1003–1007.
  • Skeie GO, Aarli JA, Gilhus NE. Titin and ryanodine receptor antibodies in myasthenia gravis. Acta Neurol Scand. 2006;113(S183):19–23.
  • Choi Decroos E, Hobson-Webb LD, Juel VC, et al. Do acetylcholine receptor and striated muscle antibodies predict the presence of thymoma in patients with myasthenia gravis?. Muscle Nerve. 2014;49:30–34.
  • Suzuki S, Baba A, Kaida K, et al. Cardiac involvements in myasthenia gravis associated with anti-Kv1.4 antibodies. Eur J Neurol. 2014;21:223–230.
  • Romi F, Suzuki S, Suzuki N, et al Anti-voltage-gated potassium channel Kv1.4 antibodies in myasthenia gravis. J Neurol. 2011;259:1312–6.
  • Meriggioli MN, Sanders DB. Autoimmune myasthenia gravis: emerging clinical and biological heterogeneity. Lancet Neurol. 2009;8:475–490.
  • Mori S, Kubo S, Akiyoshi T, et al. Antibodies against muscle-specific kinase impair both presynaptic and postsynaptic functions in a murine model of myasthenia gravis. Am J Pathol. 2012;180:798–810.
  • Morsch M, Reddel SW, Ghazanfari N, et al. Pyridostigmine but not 3,4-diaminopyridine exacerbates ACh receptor loss and myasthenia induced in mice by muscle-specific kinase antibody. J Physiol. 2013;591:2747–2762.

** In this passive transfer study, pyridostigmine exacerbated the structural and functional alterations induced by muscle-specific tyrosine kinase receptor antibodies at motor endplate. In contrast, 3-4 diaminopyridine enhanced neuromuscular transmission.

  • Ghazanfari N, Morsch M, Tee N, et al. Effects of the β2-adrenoreceptor agonist, albuterol, in a mouse model of anti-MuSK myasthenia gravis. PLoS ONE. 2014;9:e87840.
  • Skjei KL, Lennon VA, Kuntz NL. Muscle specific kinase autoimmune myasthenia gravis in children: a case series. Neuromuscul Disord. 2013;23:874–882.
  • Haran M, Schattner A, Mate A, et al. Can a rare form of myasthenia gravis shed additional light on disease mechanisms?. Clin Neurol Neurosurg. 2013;115:562–566.
  • Mantegazza R, Bonanno S, Camera G, et al. Current and emerging therapies for the treatment of myasthenia gravis. Neuropsychiatr Dis Treat. 2011;7:151–160.
  • Sathasivam S. Current and emerging treatments for the management of myasthenia gravis. Ther Clin Risk Manag. 2011;7:313–323.
  • Gronseth GS, Barohn RJ. Practice parameter: thymectomy for autoimmune myasthenia gravis (an evidence-based review). Neurology. 2000;55:5–15.
  • Sonett JR, Jaretzki AIII. Thymectomy for nonthymomatous myasthenia gravis. Ann N Y Acad Sci. 2008;1132:315–328.
  • Dìaz A, Black E, Dunning J. Is thymectomy in non-thymomatous myasthenia gravis of any benefit?. Interact Cardiovasc Thorac Surg. 2014;18:381–389.
  • Barnett C, Katzberg HD, Keshavjee S, et al. Thymectomy for non-thymomatous myasthenia gravis: a propensity score matched study. Orphanet J Rare Dis. 2014;9:214.
  • Baggi F, Andreetta F, Maggi L, et al. Complete stable remission and autoantibody specificity in myasthenia gravis. Neurology. 2013;80:188–195.
  • Newsom-Davis J, Cutter G, Wolfe GI, et al. Status of the thymectomy trial for nonthymomatous myasthenia gravis patients receiving prednisone. Ann N Y Acad Sci. 2008;1132:344–347.
  • Reddel SW, Morsch M, Phillips WD. Clinical and scientific aspects of muscle-specific tyrosine kinase-related myasthenia gravis. Curr Opin Neurol. 2014;27:558–565.
  • El-Salem K, Yassin A, Al-Hayk K, et al. Treatment of MuSK-associated myasthenia gravis. Curr Treat Options Neurol. 2014;16:283.
  • Ito A, Sasaki R, Ii Y, et al. A case of thymoma-associated myasthenia gravis with anti-MuSK antibodies. Rinsho Shinkeigaku. 2013;53:372–375.
  • Gajdos P, Chevret S, Clair B, et al Clinical trial of plasma exchange and high-dose intravenous immunoglobulins in myasthenia gravis. Ann Neurol. 1997;41:789–796.
  • Barth D, Nabavi Nouri M, Ng E, et al. Comparison of IVIg and PLEX in patients with myasthenia gravis. Neurology. 2011;76:2017–2023.

* This study provides Class I evidence that intravenous immunoglobulin and plasma-exchange have comparable efficacy in patients with moderate to severe myasthenia gravis.

  • Dhawan PS, Goodman BP, Harper CM, et al. IVIG versus PLEX in the treatment of worsening myasthenia gravis: what is the evidence? A critically appraised topic. Neurologist. 2015;19:145–148.
  • Antozzi C. Immunoadsorption in patients with autoimmune ion channel disorders of the peripheral nervous system. Atheroscler Suppl. 2013;14:219–222.
  • Lazaridis K, Evaggelakou P, Bentenidi E, et al. Specific adsorbents for myasthenia gravis autoantibodies using mutants of the muscle nicotinic acetylcholine receptor extracellular domains. J Neuroimmunol. 2015;278:19–25.
  • Berger M. Subcutaneous IgG in neurologic diseases. Immunotherapy. 2014;6:71–83.
  • Jani-Acsadi A, Lisak RP. Myasthenia gravis. Curr Treat Options Neurol. 2010;12:231–243.
  • Sanders DB, Evoli A. Immunosuppressive therapies in myasthenia gravis. Autoimmunity. 2010;43(5–6):428–435.
  • Kerty E, Elsais A, Argov Z, et al. EFNS/ENS guidelines for the treatment of ocular myasthenia. Eur J Neurol. 2014;21:687–693.
  • Muscle Study Group. A trial of mycophenolate mofetil with prednisone as initial immunotherapy in myasthenia gravis. Neurology. 2008;71:394–399.
  • Sanders DB, Hart IK, Mantegazza R, et al. An international, phase III, randomized trial of mycophenolate mofetil in myasthenia gravis. Neurology. 2008;71:400–406.
  • Yoshikawa H, Kiuchi T, Saida T, et al. Randomised, double-blind, placebo-controlled study of tacrolimus in myasthenia gravis. J Neurol Neurosurg Psychiatry. 2011;82:970–977.
  • Burns TM, Sanders DB, Kaminski HJ, et al. Two steps forward, one step back: mycophenolate mofetil treatment for myasthenia gravis in the United States. Muscle Nerve. 2015;51:635–637.
  • Cruz JL, Wolff ML, Vanderman AJ, et al. The emerging role of tacrolimus in myasthenia gravis. Ther Adv Neurol Disord. 2015;8:92–103.
  • Heckmann JM, Rawoot A, Bateman K, et al. A single-blinded trial of methotrexate versus azathioprine as steroid-sparing agents in generalized myasthenia gravis. BMC Neurol. 2011;11:97.
  • Jaretzki A 3rd, Barohn RJ, Ernstoff RM, et al. Myasthenia gravis: recommendations for clinical research standards. Task Force of the Medical Scientific Advisory Board of the Myasthenia Gravis Foundation of America. Neurology. 2000;55:16–23.
  • Drachman DB, Adams RN, Hu R, et al. Rebooting the immune system with high-dose cyclophosphamide for treatment of refractory myasthenia gravis. Ann N Y Acad Sci. 2008;1132:305–314.
  • Suh J, Goldstein JM, Nowak RJ. Clinical characteristics of refractory myasthenia gravis patients. Yale J Biol Med. 2013;86:255–260.
  • Berrih-Aknin S, Ragheb S, Le Panse R, et al. Ectopic germinal centers, BAFF and anti-B-cell therapy in myasthenia gravis. Autoimmun Rev. 2013;12:885–893.
  • Winter O, Dame C, Jundt F, et al. Pathogenic long-lived plasma cells and their survival niches in autoimmunity, malignancy, and allergy. J Immunol. 2012;189:5105–5111.

* This review describes how long-lived plasma cells survive in a protected microenvironment and discusses the strategies for their specific depletion.

  • Ueno H, Banchereau J, Vinuesa CG. Pathophysiology of T follicular helper cells in humans and mice. Nat Immunol. 2015;16:142–152.
  • Huijbers MG, Lipka AF, Plomp JJ, et al. Pathogenic immune mechanisms at the neuromuscular synapse: the role of specific antibody-binding epitopes in myasthenia gravis. J Intern Med. 2014;275:12–26.
  • Buzzard KA, Meyer NJ, Hardy TA, et al. Induction intravenous cyclophosphamide followed by maintenance oral immunosuppression in refractory myasthenia gravis. Muscle Nerve. 2015;52:204–210.
  • Iorio R, Damato V, Alboini PE, et al. Efficacy and safety of rituximab for myasthenia gravis: a systematic review and meta-analysis. J Neurol. 2015;262:1115–1119.
  • Díaz-Manera J, Martínez-Hernández E, Querol L, et al. Long-lasting treatment effect of rituximab in MuSK myasthenia. Neurology. 2012;78:189–193.
  • Sun F, Ladha SS, Yang L, et al. Interleukin-10 producing-B cells and their association with responsiveness to rituximab in myasthenia gravis. Muscle Nerve. 2014;49:487–494.

* This study demonstrates responsiveness in myasthenia gravis patients was associated with a rapid repopulation of B regulatory cells.

  • Sfikakis PP, Souliotis VL, Fragiadaki KG, et al. Increased expression of the FoxP3 functional marker of regulatory T cells following B cell depletion with rituximab in patients with lupus nephritis. Clin Immunol. 2007;123:66–73.
  • Howard JF Jr, Barohn RJ, Cutter GR, et al. A randomized, double-blind, placebo-controlled phase II study of eculizumab in patients with refractory generalized myasthenia gravis. Muscle Nerve. 2013;48:76–84.
  • Berrih-Aknin S, Le Panse R. Myasthenia gravis: a comprehensive review of immune dysregulation and etiological mechanisms. J Autoimmun. 2014;52:90–100.
  • Ngalamika O, Zhang Y, Yin H, et al. Epigenetics, autoimmunity and hematologic malignancies: a comprehensive review. J Autoimmun. 2012;39:451–465.
  • Vlassov AV, Magdaleno S, Setterquist R, et al. Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim Biophys Acta. 2012;1820:940–948.
  • Thanou A, Merrill JT. Treatment of systemic lupus erythematosus: new therapeutic avenues and blind alleys. Nature Rev Rheumatol. 2014;10:23–34.
  • Luo J, Lindstrom J. Antigen-specific immunotherapeutic vaccine for experimental autoimmune myasthenia gravis. J Immunol. 2014;193:5044–5055.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.