36
Views
0
CrossRef citations to date
0
Altmetric
Review

Role of apoptosis failure in etiopathogenesis of systemic lupus erythematosus and murine lupus

, , &
Pages 33-42 | Published online: 10 Jan 2014

References

  • van Zandbergen G, Bollinger A, Wenzel A et al. Leishmania disease development depends on the presence of apoptotic promastigotes in the virulent inoculum. Proc. Natl Acad. Sci. USA103(37), 13837–13842 (2006).
  • Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer26(4), 239–257 (1972).
  • Bratton SB, MacFarlane M, Cain K, Cohen GM. Protein complexes activate distinct caspase cascades in death receptor and stress-induced apoptosis. Exp. Cell Res.256(1), 27–33 (2000).
  • Widmann C, Gibson S, Johnson GL. Caspase-dependent cleavage of signaling proteins during apoptosis. A turn-off mechanism for anti-apoptotic signals. J. Biol. Chem.273(12), 7141–7147 (1998).
  • Lazebnik YA, Kaufmann SH, Desnoyers S, Poirier GG, Earnshaw WC. Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature371(6495), 346–347 (1994).
  • Kothakota S, Azuma T, Reinhard C et al. Caspase-3-generated fragment of gelsolin: effector of morphological change in apoptosis. Science278(5336), 294–298 (1997).
  • Stegh AH, Herrmann H, Lampel S et al. Identification of the cytolinker plectin as a major early in vivo substrate for caspase 8 during CD95- and tumor necrosis factor receptor-mediated apoptosis. Mol. Cell. Biol.20(15), 5665–5679 (2000).
  • Villa PG, Henzel WJ, Sensenbrenner M, Henderson CE, Pettmann B. Calpain inhibitors, but not caspase inhibitors, prevent actin proteolysis and DNA fragmentation during apoptosis. J. Cell. Sci.111, 713–722 (1998).
  • Rao L, Perez D, White E. Lamin proteolysis facilitates nuclear events during apoptosis. J. Cell Biol.135, 1441–1455 (1996).
  • Heyder P, Gaipl US, Beyer TD et al. Early detection of apoptosis by staining of acid-treated apoptotic cells with FITC-labeled lectin from Narcissus pseudonarcissus. Cytometry55A(2), 86–93 (2003).
  • Appelt U, Sheriff A, Gaipl US et al. Viable, apoptotic and necrotic monocytes expose phosphatidylserine: cooperative binding of the ligand Annexin V to dying but not viable cells and implications for PS-dependent clearance. Cell Death Differ.12(2), 194–196 (2005).
  • Fadok VA, Voelker DR, Campbell PA et al. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J. Immunol.148(7), 2207–2216 (1992).
  • Verhoven B, Schlegel RA, Williamson P. Mechanisms of phosphatidylserine exposure, a phagocyte recognition signal, on apoptotic T lymphocytes. J. Exp. Med.182(5), 1597–1601 (1995).
  • Bratton DL, Fadok VA, Richter DA et al. Appearance of phosphatidylserine on apoptotic cells requires calcium-mediated nonspecific flip-flop and is enhanced by loss of the aminophospholipid translocase. J. Biol. Chem.272(42), 26159–26165 (1997).
  • Cohen GM, Sun XM, Snowden RT, Dinsdale D, Skilleter DN. Key morphological features of apoptosis may occur in the absence of internucleosomal DNA fragmentation. Biochem. J.286, 331–334 (1992).
  • Hsu H, Xiong J, Goeddel DV. The TNF receptor 1-associated protein TRADD signals cell death and NF-κ B activation. Cell81(4), 495–504 (1995).
  • Scaffidi C, Fulda S, Srinivasan A et al. Two CD95 (APO-1/Fas) signaling pathways. EMBO J.17(6), 1675–1687 (1998).
  • Li P, Nijhawan D, Budihardjo I et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell91(4), 479–489 (1997).
  • Hengartner MO. The biochemistry of apoptosis. Nature407(6805), 770–776 (2000).
  • Nakagawa T, Zhu H, Morishima N et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-β. Nature403(6765), 98–103 (2000).
  • Coleman ML, Sahai EA, Yeo M et al. Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I. Nat. Cell Biol.3(4), 339–345 (2001).
  • Savill J, Dransfield I, Gregory C, Haslett C. A blast from the past: clearance of apoptotic cells regulates immune responses. Nat. Rev. Immunol.2(12), 965–975 (2002).
  • Hart SP, Smith JR, Dransfield I. Phagocytosis of opsonized apoptotic cells: roles for ‘old-fashioned’ receptors for antibody and complement. Clin. Exp. Immunol.135(2), 181–185 (2004).
  • Lauber K, Bohn E, Krober SM et al. Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal. Cell113(6), 717–730 (2003).
  • Nagaosa K, Shiratsuchi A, Nakanishi Y. Concomitant induction of apoptosis and expression of monocyte chemoattractant protein-1 in cultured rat luteal cells by nuclear factor-κB and oxidative stress. Dev. Growth Differ.45(4), 351–359 (2003).
  • Franz S, Frey B, Sheriff A et al. Lectins detect changes of the glycosylation status of plasma membrane constituents during late apoptosis. Cytometry A69(4), 230–239 (2006).
  • Arur S, Uche UE, Rezaul K et al. Annexin I is an endogenous ligand that mediates apoptotic cell engulfment. Dev. Cell4(4), 587–598 (20003).
  • Ogden CA, deCathelineau A, Hoffmann PR et al. C1q and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells. J. Exp. Med.194(6), 781–795 (2001).
  • Vandivier RW, Ogden CA, Fadok VA et al. Role of surfactant proteins A, D, and C1q in the clearance of apoptotic cells in vivo and in vitro: calreticulin and CD91 as a common collectin receptor complex. J. Immunol.169(7), 3978–3986 (2002).
  • Okazaki Y, Ohno H, Takase K, Ochiai T, Saito T. Cell surface expression of calnexin, a molecular chaperone in the endoplasmic reticulum. J. Biol. Chem.275(46), 35751–35758 (2000).
  • Hanayama R, Tanaka M, Miyasaka K et al. Autoimmune disease and impaired uptake of apoptotic cells in MFG-E8-deficient mice. Science304(5674), 1147–1150 (2004).
  • Duvall E, Wyllie AH, Morris RG. Macrophage recognition of cells undergoing programmed cell death (apoptosis). Immunology56(2), 351–358 (1985).
  • Kim S, Elkon KB, Ma X. Transcriptional suppression of interleukin-12 gene expression following phagocytosis of apoptotic cells. Immunity21(5), 643–653 (2004).
  • Gao Y, Herndon JM, Zhang H, Griffith TS, Ferguson TA. Antiinflammatory effects of CD95 ligand (FasL)-induced apoptosis. J. Exp. Med.188(5), 887–896 (1998).
  • Cohen PL, Caricchio R, Abraham V et al. Delayed apoptotic cell clearance and lupus-like autoimmunity in mice lacking the c-mer membrane tyrosine kinase. J. Exp. Med.196(1), 135–140 (2002).
  • Marshak-Rothstein A, Rifkin IR. Immunologically active autoantigens: the role of Toll-like receptors in the development of chronic inflammatory disease. Annu. Rev. Immunol.25(1), 419–441 (2007).
  • Marshak-Rothstein A. Toll-like receptors in systemic autoimmune disease. Nat. Rev. Immunol.6(11), 823 (2006).
  • Ren Y, Stuart L, Lindberg FP et al. Nonphlogistic clearance of late apoptotic neutrophils by macrophages: efficient phagocytosis independent of β(2) integrins. J. Immunol.166(7) 4743–4750 (2001).
  • Herrmann M, Voll RE, Kalden JR. Etiopathogenesis of systemic lupus erythematosus. Immunol. Today21(9), 424–426 (2000).
  • Herrmann M, Winkler T, Gaipl U et al. Etiopathogenesis of systemic lupus erythematosus. Int. Arch. Allergy Immunol.123(1), 28–35 (2000).
  • Chu JL, Drappa J, Parnassa A, Elkon KB. The defect in Fas mRNA expression in MRL/lpr mice is associated with insertion of the retrotransposon. ETn. J. Exp. Med.178(2), 723–730 (1993).
  • Watanabe-Fukunaga R, Brannan CI, Copeland NG, Jenkins NA, Nagata S. Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature356(6367) 314–317 (1992).
  • Lynch DH, Watson ML, Alderson MR et al. The mouse Fas-ligand gene is mutated in gld mice and is part of a TNF family gene cluster. Immunity1(2), 131–136 (1994).
  • Canale VC, Smith CH. Chronic lymphadenopathy simulating malignant lymphoma. J. Pediatr.70(6), 891–899 (1967).
  • Del-Rey M, Ruiz-Contreras J, Bosque A et al. A homozygous Fas ligand gene mutation in a patient causes a new type of autoimmune lymphoproliferative syndrome. Blood108(4), 1306–1312 (2006).
  • Rieux-Laucat F, Le Deist F, Fischer A. Autoimmune lymphoproliferative syndromes: genetic defects of apoptosis pathways. Cell Death Differ.10(1), 124–133 (2003).
  • Sneller MC, Straus SE, Jaffe ES et al. A novel lymphoproliferative/autoimmune syndrome resembling murine lpr/gld disease. J. Clin. Invest.90(2), 334–341 (1992).
  • Mok CC, Lau CS. Pathogenesis of systemic lupus erythematosus. J. Clin. Pathol.56(7), 481–490 (2003).
  • Nisengard RJ, Jablonska S, Chorzelski TP et al. Diagnosis of systemic lupus erythematosus. Importance of antinuclear antibody titers and peripheral staining patterns. Arch. Dermatol.111(10), 1298–1300 (1975).
  • Salmon JE, Kimberly RP, Gibofsky A, Fotino M. Defective mononuclear phagocyte function in systemic lupus erythematosus: dissociation of Fc receptor-ligand binding and internalization. J. Immunol.133(5), 2525–2531 (1984).
  • Svensson B. Monocyte in vitro function in systemic lupus erythematosus (SLE). I. A clinical and immunological study. Scand. J. Rheumatol. Suppl.31, 29–41 (1980).
  • Herrmann M, Voll RE, Zoller OM et al. Impaired phagocytosis of apoptotic cell material by monocyte-derived macrophages from patients with systemic lupus erythematosus. Arthritis Rheum.41(7), 1241–1250 (1998).
  • Munoz LE, Gaipl US, Franz S et al. SLE – a disease of clearance deficiency? .Rheumatology (Oxford)44(9), 1101–1107 (2005).
  • Baumann I, Kolowos W, Voll RE et al. Impaired uptake of apoptotic cells into tingible body macrophages in germinal centers of patients with systemic lupus erythematosus. Arthritis Rheum.46(1), 191–201 (2002).
  • Janeway C. Immunobiology. The Immune System in Health and Disease. Current Biology Publications, NY, USA 339–358, 433–434 (1999).
  • Meyer O, Hauptmann G, Tappeiner G, Ochs HD, Mascart-Lemone F. Genetic deficiency of C4, C2 or C1q and lupus syndromes. Association with anti-Ro (SS-A) antibodies. Clin. Exp. Immunol.62(3), 678–684 (1985).
  • Carroll MC. A protective role for innate immunity in systemic lupus erythematosus. Nat. Rev. Immunol.4(10), 825–831 (2004).
  • Gaipl US, Kuenkele S, Voll RE et al. Complement binding is an early feature of necrotic and a rather late event during apoptotic cell death. Cell Death Differ.8(4), 327–334 (2001).
  • Botto M, Dell’Agnola C, Bygrave AE et al. Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies. Nat. Genet.19(1), 56–59 (1998).
  • Taylor P, Botto M, Walport M. The complement system. Curr. Biol.8(8), R259–R261 (1998).
  • Walport MJ, Davies KA, Botto M. C1q and systemic lupus erythematosus. Immunobiology199(2), 265–285 (1998).
  • Taylor PR, Carugati A, Fadok VA et al. A hierarchical role for classical pathway complement proteins in the clearance of apoptotic cells in vivo. J. Exp. Med.192(3), 359–366 (2000).
  • Chitrabamrung S, Rubin RL, Tan EM. Serum deoxyribonuclease I and clinical activity in systemic lupus erythematosus. Rheumatol. Int.1(2), 55–60 (1981).
  • Gaipl US, Beyer TD, Heyder P et al. Cooperation between C1q and DNase I in the clearance of necrotic cell-derived chromatin. Arthritis Rheum.50(2), 640–649 (2004).
  • Gewurz H, Zhang XH, Lint TF. Structure and function of the pentraxins. Curr. Opin. Immunol.7(1), 54–64 (1995).
  • Volanakis JE. Human C-reactive protein: expression, structure, and function. Mol. Immunol.38(2–3), 189–197 (2001).
  • Pereira Da Silva JA, Elkon KB, Hughes GR, Dyck RF, Pepys MB. C-reactive protein levels in systemic lupus erythematosus: a classification criterion? Arthritis Rheum.23(6), 770–771 (1980).
  • Pepys MB, Lanham JG, De Beer FC. C-reactive protein in SLE. Clin. Rheum. Dis.8(1), 91–103 (1982).
  • Russell AI, Cunninghame Graham DS, Shepherd C et al. Polymorphism at the C-reactive protein locus influences gene expression and predisposes to systemic lupus erythematosus. Hum. Mol. Genet.13(1), 137–147 (2004).
  • Bell SA, Faust H, Schmid A, Meurer M. Autoantibodies to C-reactive protein (CRP) and other acute-phase proteins in systemic autoimmune diseases. Clin. Exp. Immunol.113(3), 327–332 (1998).
  • Rovere P, Peri G, Fazzini F et al. The long pentraxin PTX3 binds to apoptotic cells and regulates their clearance by antigen-presenting dendritic cells. Blood96(13), 4300–4306 (2000).
  • Gaipl US, Voll RE, Sheriff A et al. Impaired clearance of dying cells in systemic lupus erythematosus. Autoimmun. Rev.4(4) 189–194 (2005).
  • Ballestar E, Esteller M, Richardson BC. The epigenetic face of systemic lupus erythematosus. J. Immunol.176(12), 7143–7147 (2006).
  • Wallace DJ. Antimalarial therapies. In: Dubois’ Lupus Erythematosus. Wallace DJ, Hahn BH (Eds). Lippincott Williams & Wilkins, PA, USA (2007).
  • McCune WJ, Marder W, Riskalla M. Immunosuppressive drug therapy. In: Dubois’ Lupus Erythematosus. Wallace DJ, Hahn BH (Eds). Lippincott Williams & Wilkins, PA, USA (2007).
  • Ginzler EM, Dvorkina O. Newer therapeutic approaches for systemic lupus erythematosus. Rheum. Dis. Clin. North Am.31(2), 315–328 (2005).
  • Heasman SJ, Giles KM, Rossi AG et al. Interferon γ suppresses glucocorticoid augmentation of macrophage clearance of apoptotic cells. Eur. J. Immunol.34(6), 1752–1761 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.