115
Views
33
CrossRef citations to date
0
Altmetric
Review

Effect of complement and its regulation on myasthenia gravis pathogenesis

, &
Pages 43-52 | Published online: 10 Jan 2014

References

  • Lindstrom J. Acetylcholine receptors and myasthenia. Muscle Nerve23, 453–477 (2000).
  • Vincent A, Palace J, Hilton-Jones D. Myasthenia gravis. Lancet357(9274), 2122–2128 (2001).
  • Conti-Fine BM, Milani M, Kaminski HJ. Myasthenia gravis: past, present, and future. J. Clin. Invest.116(11), 2843–2854 (2006).
  • Nielsen FC, Rodgaard A, Djurup R, Somnier F, Gammeltoft S. A triple antibody assay for the quantitation of plasma IgG subclass antibodies to acetylcholine receptors in patients with myasthenia gravis. J. Immunol. Methods83(2), 249–258 (1985).
  • Engel AG, Lambert EH, Howard FM. Immune complexes (IgG and C3) at the motor end-plate in myasthenia gravis. Ultrastructure and light microscopic localization and electrophysiological correlations. Mayo Clin. Proc.52, 267–280 (1977).
  • Nakano S, Engel AG. Myasthenia gravis: quantitative immunocytochemical analysis of inflammatory cells and detection of complement membrane attack complex at the end-plate in 30 patients. Neurology43(6), 1167–1172 (1993).
  • Sahashi K, Engel AG, Lambert EH, Howard FM Jr. Ultrastructural localization of the terminal and lytic ninth complement component (C9) at the motor end-plate in myasthenia gravis. J. Neuropathol. Exp. Neurol.39(2), 160–172 (1980).
  • Engel AG, Sakakibara H, Sahashi K, Lindstrom J, Lambert EH, Lennon VA. Passively transferred experimental autoimmune myasthenia gravis. Sequential and quantitative study of the motor end-plate fine structure and ultrastructural localization of immune complexes (IgG and C3), and of the acetylcholine receptor. Neurology29(2), 179–188 (1979).
  • Kemper C, Atkinson JP. T-cell regulation: with complements from innate immunity. Nat. Rev. Immunol.7(1), 9–18 (2007).
  • Morgan BP, Marchbank KJ, Longhi MP, Harris CL, Gallimore AM. Complement: central to innate immunity and bridging to adaptive responses. Immunol. Lett.97(2), 171–179 (2005).
  • Kohl J. Self, non-self, and danger: a complementary view. Adv. Exp. Med. Biol.586, 71–94 (2006).
  • Boackle SA, Holers VM. Role of complement in the development of autoimmunity. Curr. Dir. Autoimmun.6, 154–168 (2003).
  • Blank M, Schoenfeld Y. B cell targeted therapy in autoimmunity. J. Autoimmun.28(2–3), 62–68 (2007).
  • Austen KF, Feeron DT. A molecular basis of activation of the alternative pathway of human complement. Adv. Exp. Med. Biol.120B, 3–17 (1979).
  • Bogers WM, Stad RK, van Es LA, Daham MR. Complement enhances the clearence of large-sized soluble IgA aggregates in rats. Eur. J. Immunol.21(5), 1093–1099 (1991).
  • Roos A, Bouwman LH, van Gijlswijk-Janssen DJ, Faber-Krol MC, Stahl GL, Daha MR. Human IgA activates the complement system via the mannan-binding lectin pathway. J. Immunol.167(5), 2861–2868 (2001).
  • Thiel S, Vorup-Jensen T, Stover CM et al. A second serine protease associated with mannan-binding lectin that activates complement. Nature386(6624), 506–510 (1997).
  • Huber-Lang M, Sarma JV, Zetoune FS et al. Generation of C5a in the absence of C3: a new complement activation pathway. Nat. Med.12(6), 682–687 (2006).
  • Navenot JM, Villanova M, Lucas-Heron B, Malandrini A, Blanchard D, Louboutin JP. Expression of CD59, a regulator of the membrane attack complex of complement, on human skeletal muscle fibers. Muscle Nerve20(1), 92–96 (1997).
  • Louboutin JP, Navenot JM, Rouger K, Blanchard D. S-protein is expressed in necrotic fibers in Duchenne muscular dystrophy and polymyositis. Muscle Nerve27(5), 575–581 (2003).
  • Lublin DM, Liszewski MK, Post TW et al. Molecular cloning and chromosomal localization of human membrane cofactor protein (MCP). Evidence for inclusion in the multigene family of complement-regulatory proteins. J. Exp. Med.168(1), 181–194 (1988).
  • Fujita T, Inoue T, Ogawa K, Iida K, Tamura N. The mechanism of action of decay-accelerating factor (DAF). DAF inhibits the assembly of C3 convertases by dissociating C2a and Bb. J. Exp. Med.166(5), 1221–1228 (1987).
  • Meri S, Morgan BP, Davies A et al. Human protectin (CD59), an 18,000–20,000 MW complement lysis restricting factor, inhibits C5b-8 catalysed insertion of C9 into lipid bilayers. Immunology71(1), 1–9 (1990).
  • Liu J, Miwa T, Hilliard B et al. The complement inhibitory protein DAF (CD55) suppresses T cell immunity in vivo. J. Exp. Med.201(4), 567–577 (2005).
  • Heeger PS, Lalli PN, Lin F et al. Decay-accelerating factor modulates induction of T cell immunity. J. Exp. Med.201(10), 1523–1530 (2005).
  • Longhi MP, Harris CL, Morgan BP, Gallimore AM. Holding T cells in check – a new role for complement regulators? Trends Immunol.27(2), 102–108 (2006).
  • Whiting PJ, Cooper J, Lindstrom JM. Antibodies in sera from patients with myasthenia gravis do not bind to nicotinic acetylcholine receptors from human brain. J. Neuroimmunol.16(2), 205–213 (1987).
  • Gomez CM, Richman DP. Anti-acetylcholine receptor antibodies directed against the α-bungarotoxin binding site induce a unique form of experimental myasthenia. Proc. Natl Acad. Sci. USA80(13), 4089–4093 (1983).
  • Drachman DB, Angus CW, Adams RN, Michelson JD, Hoffman GJ. Myasthenic antibodies cross-link acetylcholine receptors to accelerate degradation. N. Engl. J. Med.298, 1116–1122 (1978).
  • Lindstrom J, Einarson B. Antigenic modulation and receptor loss in experimental autoimmune myasthenia gravis. Muscle Nerve2, 173–179 (1979).
  • Jaretzki A 3rd, Barohn RJ, Ernstoff RM et al. Myasthenia gravis: recommendations for clinical research standards. Task Force of the Medical Scientific Advisory Board of the Myasthenia Gravis Foundation of America. Neurology55(1), 16–23 (2000).
  • Howard FJ, Lennon V, Finley J, Matsumoto J, Elveback L. Clinical correlations of antibodies that bind, block, or modulate human acetylcholine receptors in myasthenia gravis. Ann. NY Acad. Sci.505, 526–538 (1987).
  • Limburg PC, The TH, Hummel-Tappel E, Oosterhuis HJ. Anti-acetylcholine receptor antibodies in myasthenia gravis. I. Relation to clinical parameters in 250 patients. J. Neurol. Sci.58, 357–370 (1983).
  • Kaminski HJ, Li Z, Richmonds C, Lin F, Medof ME. Complement regulators in extraocular muscle and experimental autoimmune myasthenia gravis. Exp. Neurol.189(2), 333–342 (2004).
  • Porter JD, Khanna S, Kaminski HJ et al. Extraocular muscle is defined by a fundamentally distinct gene expression profile. Proc. Natl Acad. Sci. USA98, 12062–12067 (2001).
  • Hoch W, McConville J, Helms S, Newsom-Davis J, Melms A, Vincent A. Auto-antibodies to the receptor tyrosine kinase MuSK in patients with myasthenia gravis without acetylcholine receptor antibodies. Nat. Med.7(3), 365–368 (2001).
  • Vincent A, Bowen J, Newsom-Davis J, McConville J. Seronegative generalised myasthenia gravis: clinical features, antibodies, and their targets. Lancet Neurol.2(2), 99–106 (2003).
  • Chevessier F, Faraut B, Ravel-Chapuis A et al. [Pathophysiological characterization of congenital myasthenic syndromes: the example of mutations in the MUSK gene. J. Soc. Biol.199(1), 61–77 (2005).
  • Shiraishi H, Motomura M, Yoshimura T et al. Acetylcholine receptors loss and postsynaptic damage in MuSK antibody-positive myasthenia gravis. Ann. Neurol.57(2), 289–293 (2005).
  • McConville J, Farrugia ME, Beeson D et al. Detection and characterization of MuSK antibodies in seronegative myasthenia gravis. Ann. Neurol.55(4), 580–584 (2004).
  • Jha S, Xu K, Maruta T et al. Myasthenia gravis induced in mice by immunization with the recombinant extracellular domain of rat muscle-specific kinase (MuSK). J. Neuroimmunol.175(1–2), 107–117 (2006).
  • Shigemoto K, Kubo S, Maruyama N et al. Induction of myasthenia by immunization against muscle-specific kinase. J. Clin. Invest.116(4), 1016–1024 (2006).
  • Farrugia ME, Bonifati DM, Clover L, Cossins J, Beeson D, Vincent A. Effect of sera from AChR-antibody negative myasthenia gravis patients on AChR and MuSK in cell cultures. J. Neuroimmunol.185(1–2), 136–144 (2007).
  • Mygland Å, Vincent A, Newsom-Davis J et al. Autoantibodies in thymoma-associated myasthenia gravis with myositis or neuromyotonia. Arch. Neurol.57, 527–531 (2000).
  • Skeie GO, Mygland Å, Aarli JA, Gilhus NE. Titin antibodies in patients with late onset myasthenia gravis: clinical correlations. Autoimmunity20, 99–104 (1995).
  • Romi F, Skeie GO, Vedeler C, Aarli JA, Zorzato F, Gilhus NE. Complement activation by titin and ryanodine receptor autoantibodies in myasthenia gravis. A study of IgG subclasses and clinical correlations. J. Neuroimmunol.111(1–2), 169–176 (2000).
  • Romi F, Kristoffersen EK, Aarli JA, Gilhus NE. The role of complement in myasthenia gravis: serological evidence of complement consumption in vivo. J. Neuroimmunol.158(1–2), 191–194 (2005).
  • Barohn RJ, Brey RL. Soluble terminal complement components in human myasthenia gravis. Clin. Neurol. Neurosurg.95(4), 285–290 (1993).
  • Chamberlain-Banoub J, Neal JW, Mizuno M, Harris CL, Morgan BP. Complement membrane attack is required for endplate damage and clinical disease in passive experimental myasthenia gravis in Lewis rats. Clin. Exp. Immunol.146(2), 278–286 (2006).
  • Morgan BP, Chamberlain-Banoub J, Neal JW, Song W, Mizuno M, Harris CL. The membrane attack pathway of complement drives pathology in passively induced experimental autoimmune myasthenia gravis in mice. Clin. Exp. Immunol.146(2), 294–302 (2006).
  • Biesecker G, Gomez CM. Inhibition of acute passive transfer experimental autoimmune myasthenia gravis with Fab antibody to complement C6. J. Immunol.142(8), 2654–2659 (1989).
  • Piddlesden SJ, Jiang S, Levin JL, Vincent A, Morgan BP. Soluble complement receptor 1 (sCR1) protects against experimental autoimmune myasthenia gravis. J. Neuroimmunol.71(1–2), 173–177. (1996).
  • Lennon VA, Seybold ME, Lindstrom JM, Cochrane C, Ulevitch R. Role of complement in the pathogenesis of experimental autoimmune myasthenia gravis. J. Exp. Med.147(4), 973–983. (1978).
  • Christadoss P. C5 gene influences the development of murine myasthenia gravis. J. Immunol.140, 2589–2592 (1988).
  • Karachunski P, Ostlie N, Monfardini C, Conti-Fine B. Absence of IFN-γ or IL-12 has different effects on experimental myasthenia gravis in C57BL/6 mice. J. Immunol.164, 5236–5244 (2000).
  • Lin F, Kaminski H, Conti-Fine B, Wang W, Richmonds C, Medof M. Enhanced susceptibility to experimental autoimmune myasthenia gravis in the absence of decay-accelerating factor protection. J. Clin. Invest.110, 1269–1274 (2002).
  • Kaminski HJ, Kusner LL, Richmonds C, Medof ME, Lin F. Deficiency of decay accelerating factor and CD59 leads to crisis in experimental myasthenia. Exp. Neurol.202(2), 287–293 (2006).
  • Reid KB, Colomb M, Petry F, Loos M. Complement component C1 and the collectins – first-line defense molecules in innate and acquired immunity. Trends Immunol.23(3), 115–117 (2002).
  • van den Berg RH, Faber-Krol MC, Sim RB, Daha MR. The first subcomponent of complement, C1q, triggers the production of IL-8, IL-6, and monocyte chemoattractant peptide-1 by human umbilical vein endothelial cells. J. Immunol.161(12), 6924–6930 (1998).
  • Faust D, Loos M. In vitro modulation of C1q mRNA expression and secretion by interleukin-1, interleukin-6, and interferon-γ in resident and stimulated murine peritoneal macrophages. Immunobiology206(4), 368–376 (2002).
  • Matusevicius D, Navikas V, Palasik W, Pirskanen R, Fredrikson S, Link H. Tumor necrosis factor-α, lymphotoxin, interleukin (IL)-6, IL-10, IL-12 and perforin mRNA expression in mononuclear cells in response to acetylcholine receptor is augmented in myasthenia gravis. J. Neuroimmunol.71(1–2), 191–198 (1996).
  • Deng C, Goluszko E, Tuzun E, Yang H, Christadoss P. Resistance to experimental autoimmune myasthenia gravis in IL-6-deficient mice is associated with reduced germinal center formation and C3 production. J. Immunol.169(2), 1077–1083 (2002).
  • Tuzun E, Saini SS, Ghosh S, Rowin J, Meriggioli MN, Christadoss P. Predictive value of serum anti-C1q antibody levels in experimental autoimmune myasthenia gravis. Neuromuscul. Disord.16(2), 137–143 (2006).
  • Tuzun E, Li J, Saini SS, Yang H, Christadoss P. Pros and cons of treating murine myasthenia gravis with anti-C1q antibody. J. Neuroimmunol.182(1–2), 167–176 (2007).
  • Kirschfink M. Targeting complement in therapy. Immunol. Rev.180, 177–189 (2001).
  • Tuzun E, Scott BG, Goluszko E, Higgs S, Christadoss P. Genetic evidence for involvement of classical complement pathway in induction of experimental autoimmune myasthenia gravis. J. Immunol.171(7), 3847–3854 (2003).
  • Wang Y. Complementary therapies for inflammation. Nat. Biotech.24(10), 1224–1226 (2006).
  • Zhou Y, Gong B, Lin F, Rother RP, Medof ME, Kaminski HJ. Anti-C5 antibody treatment ameliorates weakness in experimentally acquired myasthenia gravis. J. Immunol.179, 8562–8567 (2007).
  • Morgan BP, Gasque P, Singhrao SK, Piddlesden SJ. Role of complement in inflammation and injury in the nervous system. Exp. Clin. Immunogenet.14(1), 19–23 (1997).
  • Schmidt RE, Gessner JE. Fc receptors and their interaction with complement in autoimmunity. Immunol. Lett.100(1), 56–67 (2005).
  • Tuzun E, Scott BG, Yang H et al. Circulating immune complexes augment severity of antibody-mediated myasthenia gravis in hypogammaglobulinemic RIIIS/J mice. J. Immunol.172(9), 5743–5752 (2004).
  • Tuzun E, Saini SS, Yang H, Alagappan D, Higgs S, Christadoss P. Genetic evidence for the involvement of Fcγ receptor III in experimental autoimmune myasthenia gravis pathogenesis. J. Neuroimmunol.174(1–2), 157–167 (2006).
  • Harboe M, Ulvund G, Vien L, Fung M, Mollnes TE. The quantitative role of alternative pathway amplification in classical pathway induced terminal complement activation. Clin. Exp. Immunol.138(3), 439–446 (2004).
  • Louboutin JP, Navenot JM, Villanova M, Rouger K, Merlini L, Fardeau M. X-linked vacuolated myopathy: membrane attack complex deposition on the surface membrane of injured muscle fibers is not accompanied by S-protein. Muscle Nerve21(7), 932–935 (1998).
  • Tuzun E, Saini SS, Morgan BP, Christadoss P. Complement regulator CD59 deficiency fails to augment susceptibility to actively induced experimental autoimmune myasthenia gravis. J. Neuroimmunol.181, 29–33 (2006).
  • Kusner LL, Puwanant A, Kaminski HJ. Ocular myasthenia: diagnosis, treatment, and pathogenesis. Neurologist12(5), 231–239 (2006).
  • Tang H, Brimijoin S. Complement regulatory proteins and selective vulnerability of neurons to lysis on exposure to acetylcholinesterase antibody. J. Neuroimmunol.115(1–2), 53–63 (2001).
  • Carroll MC. The complement system in B cell regulation. Mol. Immunol.41(2–3), 141–146 (2004).
  • Nielsen CH, Hegedus L, Rieneck K, Moeller AC, Leslie RG, Bendtzen K. Production of interleukin (IL)-5 and IL-10 accompanies T helper cell type 1 (Th1) cytokine responses to a major thyroid self-antigen, thyroglobulin, in health and autoimmune thyroid disease. Clin. Exp. Immunol.147(2), 287–295 (2007).
  • Molina H. Complement and immunity. Rheum. Dis. Clin. North Am.30(1), 1–18 (2004).
  • Poea-Guyon S, Christadoss P, Le Panse R et al. Effects of cytokines on acetylcholine receptor expression: implications for myasthenia gravis. J. Immunol.174(10), 5941–5949 (2005).
  • Duan RS, Wang HB, Yang JS, Scallon B, Link H, Xiao BG. Anti-TNF-α antibodies suppress the development of experimental autoimmune myasthenia gravis. J. Autoimmun.19(4), 169–174 (2002).
  • Yang H, Tuzun E, Alagappan D et al. IL-1 receptor antagonist-mediated therapeutic effect in murine myasthenia gravis is associated with suppressed serum proinflammatory cytokines, C3, and anti-acetylcholine receptor IgG1. J. Immunol.175(3), 2018–2025 (2005).
  • Ostlie N, Milani M, Wang W, Okita D, Conti-Fine BM. Absence of IL-4 facilitates the development of chronic autoimmune myasthenia gravis in C57BL/6 mice. J. Immunol.170(1), 604–612 (2003).
  • Leite MI, Strobel P, Jones M et al. Fewer thymic changes in MuSK antibody-positive than in MuSK antibody-negative MG. Ann. Neurol.57(3), 444–448 (2005).
  • Shiono H, Roxanis I, Zhang W et al. Scenarios for autoimmunization of T and B cells in myasthenia gravis. Ann. NY Acad. Sci.998, 237–256 (2003).
  • Leite MI, Jones M, Strobel P et al. Myasthenia gravis thymus: complement vulnerability of epithelial and myoid cells, complement attack on them, and correlations with autoantibody status. Am. J. Pathol.171(3), 893–905 (2007).
  • Hillmen P, Young NS, Schubert J et al. The complement inhibitor eculizumab in paroxysmal nocturnal hemoglobinuria. N. Engl. J. Med.355(12), 1233–1243 (2006).
  • Hepburn NJ, Chamberlain-Banoub JL, Williams AS, Morgan BP, Harris CL. Prevention of experimental autoimmune myasthenia gravis by rat Crry-Ig: a model agent for long-term complement inhibition in vivo. Mol. Immunol.45(2), 395–405 (2008).
  • van der Neut Kolfschoten M, Schuurman J, Losen M et al. Anti-inflammatory activity of human IgG4 antibodies by dynamic Fab arm exchange. Science317(5844), 1554–1557 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.