68
Views
6
CrossRef citations to date
0
Altmetric
Review

Insight into the inflammasome and caspase-activating mechanisms

&
Pages 61-77 | Published online: 10 Jan 2014

References

  • Martinon F, Tschopp J. NLRs join TLRs as innate sensors of pathogens. Trends Immunol.26, 447–454 (2005).
  • Jones JD, Dangl JL. The plant immune system.Nature444, 323–329 (2006).
  • Zipfel C, Felix G. Plants and animals: a different taste for microbes? Curr. Opin. Plant Biol.8, 353–360 (2005).
  • DeYoung BJ, Innes RW. Plant NBS-LRR proteins in pathogen sensing and host defense. Nat. Immunol.7, 1243–1249 ((2006).).
  • Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatorycaspases and processing of proIL-β. Mol. Cell10, 417–426 (2002).
  • Ghayur T, Banerjee S, Hugunin M et al. Caspase-1 processes IFN-γ -inducing factor and regulates LPS-induced IFN-γ production. Nature386, 619–623 (1997).
  • Schmitz J, Owyang A, Oldham E et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity23, 479–490 (2005).
  • Iwasaki A, Medzhitov R. Toll-like receptor control of the adaptive immune responses. Nat. Immunol.5, 987–995 (2004).
  • Takeda K, Akira S. Toll-like receptors in innate immunity Int. Immunol.17, 1–14 (2005).
  • Inohara Chamaillard, McDonald C, Nunez G. NOD-LRR proteins: role in host–microbial interactions and inflammatory disease. Annu. Rev. Biochem.74, 355–383 (2005).
  • Mariathasan S, Newton K, Monack DM et al. Differential activation of the inflammasome by caspase-1 adaptors ASCand Ipaf. Nature430, 213–218 (2004).
  • Zamboni DS, Kobayashi KS, Kohlsdorf T et al. The Birc1e cytosolic pattern-recognition receptor contributes to the detection and control of Legionella pneumophila infection. Nat. Immunol.7, 318–325 (2006).
  • Agostini L, Martinon F, Burns K, McDermott MF, Hawkins PN, Tschopp J. NALP3 forms an IL-1β-processing inflammasome with increased activity in Muckle–Wells autoinflammatory disorder. Immunity20, 319–325 (2004).
  • Kobe B, Kajava AV. The leucine-rich repeat as a protein recognition motif. Curr. Opin. Struct. Biol.11, 725–732 (2001).
  • Kobe B, Deisenhofer J. Crystal structure of porcine ribonuclease inhibitor, a protein with leucine-rich repeats. Nature366, 751–756 (1993).
  • Choe J, Kelker MS, Wilson IA. Crystal structure of human toll-like receptor 3 (TLR3) ectodomain. Science309, 581–585 (2005).
  • Masters SL, Lobito AA, Chae J, Kastner DL. Recent advances in the molecular pathogenesis of hereditary recurrent fevers. Curr. Opin. Allergy Clin. Immunol.6, 428–433 (2006).
  • Aksentijevich I, D Putnam C, Remmers EF et al. The clinical continuum of cryopyrinopathies: novel CIAS1 mutations in North American patients and a new cryopyrin model. Arthritis Rheum.56, 1273–1285 (2007).
  • Leipe DD, Koonin EV, Aravind L. STAND, a class of P-loop NTPases including animal and plant regulators ofprogrammed cell death: multiple, complex domain architectures, unusual phyletic patterns, and evolution by horizontal gene transfer. J. Mol. Biol.343, 1–28 (2004).
  • Martinon F, Tschopp J. Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory diseases. Cell117, 561–574 (2004).
  • Acehan D, Jiang X, Morgan DG, Heuser JE, Wang X, Akey CW. Threedimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Mol. Cell9, 423–432 (2002).
  • Faustin B, Lartigue L, Bruey JM et al. Reconstituted NALP1 inflammasome reveals two-step mechanism of caspase-1 activation. Mol. Cell25, 713–724 (2007).
  • Park HH, Lo YC, Lin SC, Wang L, Yang JK, Wu H. The death domain superfamily in intracellular signaling of apoptosis and inflammation. Annu. Rev. Immunol.25, 561–586 (2007).
  • Fesik SW. Insights into programmed cell death through structural biology. Cell103, 273–282 (2000).
  • Martinon F, Tschopp J. Inflammatory caspases and inflammasomes: master switches of inflammation. Cell Death Differ.14, 10–22 (2007).
  • Fritz JH, Ferrero RL, Philpott DJ, Girardin SE. Nod-like proteins in immunity, inflammation and disease. Nat. Immunol.7, 1250–1257 (2006).
  • Pan Q, Mathison J, Fearns C et al. MDP-induced interleukin-1β processing requires Nod2 and CIAS1/NALP3. J. Leukoc. Biol.82, 177–183 (2007).
  • Romanish MT, Lock WM, van de Lagemaat LN, Dunn CA, Mager DL. Repeated recruitment of LTR retrotransposons as promoters by the antiapoptotic locus NAIP during mammalian evolution. PLoS Genet.3, e10 (2007).
  • Yan N, Shi Y. Mechanisms of apoptosis through structural biology. Annu. Rev. Cell Dev. Biol.21, 35–56 (2005).
  • Jia Y, McAdams SA, Bryan GT, Hershey HP, Valent B. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J.19, 4004–4014 (2000).
  • Yu X, Acehan D, Menetret JF et al. A structure of the human apoptosome at 12.8 A resolution provides insights into this cell death platform. Structure13, 1725–1735 (2005).
  • Jiang X and Wang X. Cytochrome Cmediated apoptosis. Annu. Rev. Biochem.73, 87–106 (2004).
  • Park HH, Logette E, Raunser S et al. Death domain assembly mechanism revealed by crystal structure of the oligomeric PIDDosome core complex. Cell128, 533–546 (2007).
  • Peter ME, Krammer PH. The CD95(APO-1/Fas) DISC and beyond. Cell Death Differ.10, 26–35 (2003).
  • Holler N, Tardivel A, Kovacsovics-Bankowski M et al. Two adjacent trimeric Fas ligands are required for Fas signaling and formation of a death-inducing signaling complex. Mol. Cell Biol.23, 1428–1440 (2003).
  • Herskovits AA, Auerbuch V, Portnoy DA. Bacterial ligands generated in a phagosome are targets of the cytosolic innate immune system. PLoS Pathog.3, e51 (2007).
  • Kufer TA, Banks DJ, Philpott DJ. Innate immune sensing of microbes by Nod proteins. Ann. NY Acad. Sci.1072, 19–27 (2006).
  • Martinon F, Agostini L, Meylan E, Tschopp J. Identification of bacterial muramyl dipeptide as activator of the NALP3/cryopyrin inflammasome. Curr. Biol.14, 1929–1934 (2004).
  • Bruey JM, Bruey-Sedano N, Luciano F et al. Bcl-2 and Bcl-XL regulate proinflammatory caspase-1 activation by interaction with NALP1. Cell129, 45–56 (2007).
  • Boyden ED, Dietrich WF. Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin. Nat. Genet.38, 240–244 (2006).
  • Kanneganti TD, Ozoren N, Body-MalapelM et al. Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3. Nature440, 233–236 (2006).
  • Mariathasan S, Weiss DS, Newton K et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature440, 228–232 (2006).
  • Ozoren N, Masumoto J, Franchi L et al. Distinct roles of TLR2 and the adaptor ASC in IL-1β/IL-18 secretion in response to Listeria monocytogenes. J. Immunol.176, 4337–4342 (2006).
  • Sutterwala FS, Ogura Y, Szczepanik M et al. Critical role for NALP3/CIAS1/Cryopyrin in innate and adaptive immunity through its regulation of caspase-1. Immunity24, 317–327 (2006).
  • Damiano JS, Newman RM, Reed JC. Multiple roles of CLAN (caspase-associated recruitment domain, leucine-rich repeat, and NAIP CIIA HET-E, and TP1-containing protein) in the mammalian innate immune response. J. Immunol.173, 6338–6345 (2004).
  • Miao EA, Alpuche-Aranda CM, Dors M et al. Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1β via Ipaf. Nat. Immunol.7, 569–575 (2006).
  • Franchi L, Amer A, Body-Malapel M et al. Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1β in Salmonellainfected macrophages. Nat. Immunol.7, 576–582 (2006).
  • Mariathasan S, Weiss DS, Dixit VM, Monack DM. Innate immunity against Francisella tularensis is dependent on the ASC/caspase-1 axis. J. Exp. Med.202, 1043–1049 (2005).
  • Lamkanfi M, Amer A, Kanneganti TD et al. The Nod-like receptor family member Naip5/Birc1e restricts Legionella pneumophila growth independently of caspase-1 activation. J. Immunol.178, 8022–8027 (2007).
  • Amer A, Franchi L, Kanneganti TD et al. Regulation of Legionella phagosome maturation and infection through flagellin and host Ipaf. J. Biol. Chem.281, 35217–35223 (2006).
  • Sanz JM, Di Virgilio F. Kinetics and mechanism of ATP-dependent IL-1 β release from microglial cells. J. Immunol.164, 4893–4898 (2000).
  • Ferrari D, Pizzirani C, Adinolfi E et al. The P2X7 receptor: a key player in IL-1 processing and release. J. Immunol.176, 3877–3883 (2006).
  • Labasi JM, Petrushova N, Donovan C et al. Absence of the P2X7 receptor alters leukocyte function and attenuates an inflammatory response. J. Immunol.168, 6436–6445 (2002).
  • Kahlenberg JM, Dubyak GR. Mechanisms of caspase-1 activation by P2X7 receptormediated K+ release. Am. J. Physiol. Cell Physiol.286, C1100–C1108 (2004).
  • Petrilli V, Papin S, Dostert C, Mayor A, Martinon F, Tschopp J. Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ.14, 1583–1589 (2007).
  • Pelegrin P, Surprenant A. Pannexin-1 mediates large pore formation and interleukin-1β release by the ATP-gated P2X7 receptor. EMBO J.25, 5071–5082 (2006).
  • Pelegrin P, Surprenant A. Pannexin-1 couples to maitotoxin- and nigericin-induced interleukin-1β release through a dye uptakeindependent pathway. J. Biol. Chem.282, 2386–2394 (2007).
  • Andrei C, Margiocco P, Poggi A, Lotti LV, Torrisi MR, Rubartelli A. Phospholipases C and A2 control lysosome-mediated IL-1 β secretion: implications for inflammatory processes. Proc. Natl Acad. Sci. USA101, 9745–9750 (2004).
  • Chae JJ, Komarow HD, Cheng J et al. Targeted disruption of pyrin, the FMF protein, causes heightened sensitivity to endotoxin and a defect in macrophage apoptosis. Mol. Cell11, 591–604 (2003).
  • Papin S, Cuenin S, Agostini L et al. The SPRY domain of Pyrin, mutated in familial Mediterranean fever patients, interacts with inflammasome components and inhibits proIL-1β processing. Cell Death Differ.14, 1457–1466 (2007).
  • Yu JW, Fernandes-Alnemri T, Datta P et al. Pyrin activates the ASC pyroptosome in response to engagement by autoinflammatory PSTPIP1 mutants. Mol. Cell28, 214–227 (2007).
  • Muskett P, Parker J. Role of SGT1 in the regulation of plant R gene signalling. Microbes Infect.5, 969–976 (2003).
  • Mayor A, Martinon F, De Smedt T, Petrilli V, Tschopp J. A crucial function of SGT1 and HSP90 in inflammasome activity links mammalian and plant innate immune responses. Nat. Immunol.8, 497–503 (2007).
  • Azevedo C, Betsuyaku S, Peart J et al. Role of SGT1 in resistance protein accumulation in plant immunity. EMBO J.25, 2007–2016 (2006).
  • Bhattarai KK, Li Q, Liu Y, Dinesh-Kumar SP, Kaloshian I. The MI-1- mediated pest resistance requires Hsp90 andSgt1. Plant Physiol.144, 312–323 (2007).
  • da Silva Correia J, Miranda Y, Leonard N, Ulevitch R. SGT1 is essential for Nod1 activation. Proc. Natl Acad. Sci. USA104, 6764–6769 (2007).
  • Dinarello CA. Infection, fever, and exogenous and endogenous pyrogens: some concepts have changed. J. Endotoxin Res.10, 201–222 (2004).
  • Dunne A, O’Neill LA. The interleukin-1 receptor/Toll-like receptor superfamily: signal transduction during inflammation and host defense. Sci. STKE (171) re3 (2003).
  • Watanabe H, Gaide O, Petrilli V et al. Activation of the IL-1β-processing inflammasome is involved in contact hypersensitivity. J. Invest. Dermatol. (2007).
  • Dinarello CA. Interleukin-1 β, interleukin-18, and the interleukin-1 β converting enzyme. Ann. NY Acad. Sci.856, 1–11 (1998).
  • Kuida K, Lippke JA, Ku G et al. Altered cytokine export and apoptosis in mice deficient in interleukin-1 β converting enzyme. Science267, 2000–2003 (1995).
  • Li P, Allen H, Banerjee S et al. Mice deficient in IL-1 β-converting enzyme are defective in production of mature IL-1 β and resistant to endotoxic shock. Cell80, 401–411 (1995).
  • MacKenzie A, Wilson HL, Kiss-Toth E, Dower SK, North RA, Surprenant A. Rapid secretion of interleukin-1β by microvesicle shedding. Immunity15, 825–835 (2001).
  • Boraschi D and Dinarello CA. IL-18 in autoimmunity: review. Eur. Cytokine Netw.17, 224–252 (2006).
  • Boraschi D, Tagliabue A. The interleukin-1 receptor family. Vitam. Horm.74, 229–254 (2006).
  • Dinarello CA. An IL-1 family member requires caspase-1 processing and signals through the ST2 receptor. Immunity23, 461–462 (2005).
  • Naughton GK, Eisinger M, Bystryn JC. Antibodies to normal human melanocytes in vitiligo. J. Exp. Med.158, 246–251 (1983).
  • Le Poole IC, van den Wijngaard RM, Westerhof W, Das PK. Presence of T cells and macrophages in inflammatoryvitiligo skin parallels melanocyte disappearance. Am. J. Pathol.148, 1219–1228 (1996).
  • Sehgal VN, Srivastava G. Vitiligo: autoimmunity and immune responses. Int. J. Dermatol.45, 583–590 (2006).
  • Jin Y, Mailloux CM, Gowan K et al. NALP1 in vitiligo-associated multiple autoimmune disease. N. Engl. J. Med.356, 1216–1225 (2007).
  • Riedl SJ, Li W, Chao Y, Schwarzenbacher R, Shi Y. Structure of the apoptotic protease-activating factor 1 bound to ADP. Nature434, 926–933 (2005).
  • O’Sullivan BJ, Thomas HE, Pai S et al. IL-1 β breaks tolerance through expansion of CD25+ effector T cells. J. Immunol.176, 7278–7287 (2006).
  • Gauthier Y, Cario-Andre M, Lepreux S, Pain C, Taieb A. Melanocyte detachment after skin friction in non lesional skin of patients with generalized vitiligo. Br. J. Dermatol.148, 95–101 (2003).
  • Ting JP, Kastner DL, Hoffman HM. CATERPILLERs, pyrin and hereditary immunological disorders. Nat. Rev. Immunol.6, 183–195 (2006).
  • Hawkins PN, Lachmann HJ, McDermott MF. Interleukin-1-receptor antagonist in the Muckle–Wells syndrome. N. Engl. J. Med.348, 2583–2584 (2003).
  • Hoffman HM, Rosengren S, Boyle DL et al. Prevention of cold-associated acute inflammation in familial coldautoinflammatory syndrome by interleukin-1 receptor antagonist. Lancet364, 1779–1785 (2004).
  • Goldbach-Mansky R, Dailey NJ, Canna SW et al. Neonatal-onset multisystem inflammatory disease responsive to interleukin-1β inhibition. N. Engl. J. Med.355, 581–592 (2006).
  • Dinarello CA. Mutations in cryopyrin: bypassing roadblocks in the caspase 1 inflammasome for interleukin-1β secretion and disease activity. Arthritis Rheum.56, 2817–2822 (2007).
  • Gattorno M, Tassi S, Carta S et al. Pattern of interleukin-1β secretion in response to lipopolysaccharide and ATP before and after interleukin-1 blockade in patients with CIAS1 mutations. Arthritis Rheum.56, 3138–3148 (2007).
  • Kallinich T, Haffner D, Niehues T et al. Colchicine use in children and adolescents with familial Mediterranean fever: literature review and consensus statement. Pediatrics119, e474–e483 (2007).
  • Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature440, 237–241 (2006).
  • Shoham NG, Centola M, Mansfield E et al. Pyrin binds the PSTPIP1/CD2BP1 protein, defining familial Mediterranean fever and PAPA syndrome as disorders in the same pathway. Proc. Natl Acad. Sci. USA100, 13501–13506 (2003).
  • Martinon F, Glimcher LH. Gout: new insights into an old disease. J. Clin. Invest.116, 2073–2075 (2006).
  • Shi Y, Evans JE, Rock KL. Molecular identification of a danger signal that alerts the immune system to dying cells. Nature425, 516–521 (2003).
  • Rock KL, Hearn A, Chen CJ, Shi Y. Natural endogenous adjuvants. Springer Semin. Immunopathol.26, 231–246 (2005).
  • So A, De Smedt T, Revaz S, Tschopp J. A pilot study of IL-1 inhibition by anakinra in acute gout. Arthritis Res. Ther.9, R28 (2007).
  • Grabbe S, Schwarz T. Immunoregulatory mechanisms involved in elicitation of allergic contact hypersensitivity. Immunol. Today19, 37–44 (1998).
  • Grabbe S, Steinert M, Mahnke K, Schwartz A, Luger TA, Schwarz T. Dissection of antigenic and irritative effects of epicutaneously applied haptens in mice. Evidence that not the antigenic component but nonspecific proinflammatory effects ofhaptens determine the concentrationdependent elicitation of allergic contact dermatitis. J. Clin. Invest.98, 1158–1164 (1996).
  • Roper RJ, Ma RZ, Biggins JE et al. Interacting quantitative trait loci control loss of peripheral tolerance and susceptibility to autoimmune ovarian dysgenesis after day 3 thymectomy in mice. J. Immunol.169, 1640–1646 (2002).
  • Li H, Nookala S, Re F. Aluminum hydroxide adjuvants activate caspase-1 and induce IL-1β and IL-18 release. J. Immunol.178, 5271–5276 (2007).
  • Terheyden P, Kortum AK, Schulze HJ et al. Chemoimmunotherapy for cutaneous melanoma with dacarbazine and epifocal contact sensitizers: results of a nationwide survey of the German Dermatologic Cooperative Oncology Group. J. Cancer Res. Clin. Oncol.133, 437–444 (2007).
  • Feldmeyer L, Keller M, Niklaus G, Hohl D, Werner S, Beer HD. The inflammasome mediates UVB-induced activation and secretion of interleukin-1β by keratinocytes. Curr. Biol.17, 1140–1145 (2007).
  • Tong ZB, Gold L, Pfeifer KE et al. Mater, a maternal effect gene required for early embryonic development in mice. Nat. Genet.26, 267–268 (2000).
  • Tong ZB, Bondy CA, Zhou J, Nelson LM. A human homologue of mouse Mater, a maternal effect gene essential for early embryonic development. Hum. Reprod.17, 903–911 (2002).
  • Hamatani T, Falco G, Carter MG et al. Ageassociated alteration of gene expression patterns in mouse oocytes. Hum. Mol. Genet.13, 2263–2278 (2004).
  • Murdoch S, Djuric U, Mazhar B et al. Mutations in NALP7 cause recurrent hydatidiform moles and reproductive wastage in humans. Nat. Genet.38, 300–302 (2006).
  • Caillaud M, Duchamp G, Gerard N. in vivo effect of interleukin-1β and interleukin-1RA on oocyte cytoplasmic maturation, ovulation, and early embryonic development in the mare. Reprod. Biol. Endocrinol.3, 26 (2005).
  • Listing J, Strangfeld A, Kary S et al. Infections in patients with rheumatoid arthritis treated with biologic agents. Arthritis Rheum.52, 3403–3412 (2005).
  • Holzer AM, Kaplan LL, Levis WR. Haptens as drugs: contact allergens are powerful topical immunomodulators. J. Drugs Dermatol.5, 410–416 (2006).
  • Berman B, Perez OA, Zell D. Immunological strategies to fight skin cancer. Skin Therapy Lett.11, 1–7 (2006).
  • McCulloch CA, Downey GP, El-Gabalawy H. Signalling platforms that modulate the inflammatory response: new targets for drug development. Nat. Rev. Drug Discov.5, 864–876 (2006).
  • Mamula P, Markowitz JE, Baldassano RN. Inflammatory bowel disease in early childhood and adolescence: special considerations. Gastroenterol. Clin. North Am.32, 967–995 viii (2003).
  • Eckmann L, Karin M. NOD2 and Crohn’s disease: loss or gain of function? Immunity22, 661–667 (2005).
  • Pascual V, Allantaz F, Arce E, Punaro M, Banchereau J. Role of interleukin-1 (IL-1) in the pathogenesis of systemic onset juvenile idiopathic arthritis and clinical response to IL-1 blockade. J. Exp. Med.201, 1479–1486 (2005).
  • Fitzgerald AA, Leclercq SA, Yan A, Homik JE, Dinarello CA. Rapid responses to anakinra in patients with refractory adult-onset Still’s disease. Arthritis Rheum.52, 1794–1803 (2005).
  • Numerof RP, Asadullah K. Cytokine and anti-cytokine therapies for psoriasis and atopic dermatitis. BioDrugs20, 93–103 (2006).
  • Zirlik A, Abdullah SM, Gerdes N et al. Interleukin-18, the metabolic syndrome, and subclinical atherosclerosis. Results from the Dallas Heart Study. Arterioscler. Thromb. Vasc. Biol.27, 2043–2049 (2007).
  • Thomas HE, Irawaty W, Darwiche R et al. IL-1 receptor deficiency slows progression to diabetes in the NOD mouse. Diabetes53, 113–121 (2004).
  • Cornelis S, Kersse K, Festjens N, Lamkanfi M, Vandenabeele P. Inflammatory caspases: targets for novel therapies. Curr. Pharm. Des.13, 365–383 (2007).
  • Stack JH, Beaumont K, Larsen PD et al. IL-converting enzyme/caspase-1 inhibitor VX-765 blocks the hypersensitive response to an inflammatory stimulus in monocytes from familial cold autoinflammatory syndrome patients. J. Immunol.175, 2630–2634 (2005).
  • Akira S, Takeda K. Toll-like receptor signalling. Nat. Rev. Immunol.4, 499–511 (2004).
  • Lande R, Gregorio J, Facchinetti V et al. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature449, 564–569 (2007).

Websites

  • Amgen, Kineret, Anakinra, a soluble form of the IL-1Ra www.kineretrx.com.
  • Several clinical trials in Phase I and II for cryopirinopathies or related disorders, rheumatoid arthritis, knee injury and hemodyalisis patients http://clinicaltrials.gov/ct2/results?term=kineret.
  • Regeneron, IL-1TRAP, a recombinant fusion protein binding soluble IL-1 www.regeneron.com.
  • Clinical trial in Phase I for cryopirinopathies http://clinicaltrials.gov/ct2/results?term=il-1trap.
  • Novartis, ACZ885, a fully human anti-IL-1β antibody www.novartis.com.
  • Clinical trials in Phase I and II: cryopirinopathies and rheumatoid arthritis http://clinicaltrials.gov/ct2/results?term=acz885.
  • Vertex, Vx-765, a prodrug transformed in a zYVAD-peptido-mimetic www.novartis.com.
  • Clinical trial in Phase 2 for psoriasis http://clinicaltrials.gov/ct2/results?term=vx765.
  • Geldanamycin, a HSP-90 inhibitor, clinical trials in Phase I for solid tumors http://clinicaltrials.gov/ct2/results?term=geldanamycin.
  • 7-N-allylamino-17-demethoxy geldanamycin, a HSP-90 inhibitor, clinical trials in Phase I for solid tumors http://clinicaltrials.gov/ct2/results?term=allylaminogeldanamycin.
  • Chugai, tocilizumab, a fully humanized anti-IL-6 http://clinicaltrials.gov/ct2/results?term=tocilizumab.
  • Clinical Phase III trials for rheumatoid arthritis http://clinicaltrials.gov/ct2/results?term=abt-874.
  • Abbott, ABT-874, a fully human monoclonal anti-IL-12 antibody: clinical trials in Phase II for psoriasis and multiple sclerosis www.abbott.com.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.